GFCI wiring details, back view (C) Daniel FriedmanBackwiring Electrical Receptacles (wall plugs) & Switches
Some back-wired electrical devices perform well, but some push-in devices may be unsafe

  • BACK-WIRED ELECTRICAL DEVICES - CONTENTS: how to back wire an electrical receptacle (outlet) safely & which types of back-wired receptacles are unsafe. Some back-wired devices perform poorly in the field and risk circuit failure, overheating, or fire. Others may be fine. The distinction is described in this article.
  • POST a QUESTION or READ FAQs about how to install and wire electrical outlets or receptacles in buildings.
InspectAPedia tolerates no conflicts of interest. We have no relationship with advertisers, products, or services discussed at this website.

Back wired electrical receptacles:

Using the back-wire or push-in type connection points on an electrical receptacle or switch may be just fine, or it may not be reliable nor safe, depending on the age and type of back-wire connector provided. Here we describe the types of backwire connectors used on electrical receptacles and light switches and we explain the safety and performance questions that may arise.

This article series explains receptacle types, receptacle grounding, connecting wires to the right receptacle terminal screws, electrical wire size, electrical wire color codes, and special receptacles for un-grounded circuits.

Green links show where you are. © Copyright 2015, All Rights Reserved.

Performance of Push-In, Back-Wired Electrical Devices: receptacles & switches

Wire being pushed into the back of a back-wired spring clip type receptacle (C) Daniel FriedmanArticle Series Contents

At left we illustrate a #14 solid copper wire being pushed into the backwire opening of a common electrical receptacle. The wire has not been pushed fully into the connection as I wanted to show the diameter of the wire entering the push-in connector opening.

This article illustrates and explains possible electrical failures and fire risk when using the push-in rear connectors on some back-wired electrical devices such as receptacles and switches.

We illustrate the typical connector used in some receptacles and switches that accept a simple push-in connection usually found on the rear of the device. The rectangular opening is used to release an installed wire. Simple screw terminals are also visible in the lower left of the photo.

Three Types of Push-In, Back-Wired Electrical Devices: receptacles & switches

1. Push-In or Conventional Binding-Head Screw Back-Wired Receptacles

Side screw connectors on an electrical receptacle (C) Daniel Friedman

A lower price ($0.69 U.S.D.) push-in type back-wired receptacle purchased at a Home Depot store in 2015 is illustrated above. Above the photo gives view of the neutral wire side screw connectors and a green grounding conductor connector screw.

[Click to enlarge any image]

Push-in connection opening on the back of an electrical receptacle (C) Daniel Friedman

Just above you can see on the back of this device the round opening that accepts a push-in connection of a #14 solid copper wire (white arrow). The small rectangular opening permits insertion of a probe to open the spring clip to release wires that have been installed through the round opening.

We disassembled the push-in backwire receptacle shown above to permit a view of the wire connections inside this device. In the photo at below left, and viewed from the front with the electrical receptacle's plastic front cover removed, the white and black arrows indicate the side screw connectors while the white and black circles show the interior location of the push-in spring-clip connectors. However wires are pushed in from the other side - the "back" of this device as I show at below right.

Interior of a back-wired push-in type electrical receptacle showing its connectors (C) Daniel Friedman 2015 Connectors available on a screw termainal & push-in backwired electrical receptacle Eaton #2427D UL listed (C() Daniel Friedman

Below at left is a close-up of the spring clip connector. Click to enlarge this image and you'll see that the end of the spring clip has a rounded notch (red arrow) that I think is intended to increase the contact area and security of spring grip on the wire when it's pushed through this opening.

Back wired receptacle spring clip close up details (C) Daniel Friedman Wire contact points in a push-in type backwired electrical receptacle (C) Daniel Friedman

There are two points of electrical contact with the wire: the notched end of the spring blade (red arrows in the photographs above) and the side contact plate against which the wire is pushed (green arrow). Details about this connection and a discussion of wire-to-device contact area and contact force are given below

2. Screw-Clamp Type Back-Wired Electrical Receptacles

Clamp type electrical receptical connectors on a 20A device (C) Daniel Friedman Receptacle 20A backwired clamp type (C) D Friedman

[Click to enlarge any image]

Modern back-wired electrical devices like receptacles and light switches use a clamp-type screw and plate that permits very good contact between the electrical connector on the device and the wire - as shown in our photograph at above-left. With wires stripped to the proper length, not nicked, and with the screw tightened, these are, in our OPINION, good electrical connections. Shown at above left is a FS Spec Grade 20-Amp 120V electrical receptacle listed by UL, CSA, and other agencies. This device is marked as suitable for copper wire only.

At above right is a top view of a #12 copper wire inserted into one of the clamp type electrical receptacle openings. At right in the same photo you can see the silver edge of the clamp pushed against the copper plate beneath the screw when the device is fully closed.

Watch out: to make proper use of this electrical connector on a receptacle you must be sure to insert the electrical wire between the silver coloured clamp and the inner face of the copper screw plate. Otherwise when you tighten the connector screw it will not clamp onto the wire. A close-up view of the wire inserted properly into the screw-clamp connector is shown at below right.

Closeup of clamp connector on an electrical receptacle (C) Daniel Friedman Closeup of clamp connector on an electrical receptacle (C) Daniel Friedman

Definition of "FS" and "FD" electrical boxes & devices: The label "FS" on an electrical device indicates (F) it is suitable for mounting on a metallic ("ferrous") electrical box and (S) indicates it will fit in a shallow box. Other devices may be labelled "FD" indicating "Ferrous" and "Deep" electrical boxes. An "FS" type electrical box has a minimum depth of 1 3/4" and 13.5 cubic inches and can accept up to 6 #14 or 6 #12 electrical wires. An "FD" type electrical box has a minum internal depth of 2 3/8", 18.0, and can accept up to 9 #14 wires or 8 #12 gauge wires. - NEC Table 314-16 (A)

  • Eaton Crouse-Hinds, "Switch & Outlet Boxes - Technical Data", Eaton Crouse-Hinds Commercial Catalog (2015),, Tel: US: 1-866-764-5454, Canada: 1-800-265-0502. Excerpting from NFPA 70-2005, the National Electrical Code (2005), National Fire Protection Association (NFPA), Quincy MA 02269.
  • NEC Table 314.16 (A) Metal Boxes
  • U.S. National Electrical Code NEC Article 314 that covers the installation and use of electrical boxes. Also see "NEC Article 370, Outlet,Device, Pull and Junction Boxces, Conduit Bodies and Fittings" for a mention of this appellation, including the excessively cited text "Boxes such as FS and FD or larger cast or sheet metal boxes are not classified as conduit bodies."


3. Dual-Wire (#12 or #14) Push-in Back-Wired Electrical Receptacles

Back wired electrical receptacle (C) Daniel Friedman Split wired receptacle back-wired (C) InspectApedia JE

Older electrical receptacles and light switches and some lower-cost modern products use a spring-clip type contact that presses the mere edge of a metal spring or clip inside the device against the edge of a wire that is pushed into the device through a hole on the device back. These devices offer two different methods of connecting wires: through use of a binding head screw usually found on the device side, or through a simple push-in connector on the device back.

Typically these electrical switches or receptacles are referred to as "backwired" if the push-in connectors on the device back surface are used to make electrical wiring connections. An example of a back-wired electrical receptacle is shown at above-right. Most-likely this receptacle was a split-wired unit - note the red and black wires on the receptacle's left or "hot" side and the common neutral wire in and out of the receptacle on its neutral side. This image was contributed by reader J.K.

These devices provide less electrical contact area between the device electrical connector and the wire surface than the clamp type connector, but are code-permitted and may work acceptably provided that the devices are not re-used. That is, in our OPINION, if you remove and reinsert wires in devices that rely on a spring clip rather than a screw and plate clamp connector, the spring may be weakened and the connection less reliable.

Still older receptacles and switches (shown at left, no longer sold in the U.S. or Canada) used a hole diameter on the device back that would accept either No. 12 or No. 14 copper wire to be connected by a push-in back-wired connection method (red arrows).

Not only did these devices sport a limited electrical contact between the wire and the connector (just the edge of a flat spring in contact with the edge of a round wire), but worse, if a device was back-wired using No. 12 wire and later re-used with smaller diameter No. 14 wire, the contact spring, having been bent open by the No. 12 wire, performed poorly against a No. 14 wire later inserted into the same opening.

In our OPINION these older devices were less reliable, less safe, and should not be used by backwiring. The devices would perform acceptably, however, if the screw connectors on the device side were used to connect the wires.

Reader Question: I'm changing a wall plug and the wires are too thick to go through the holes on the back of the new device.

(June 3, 2014) William said:
I am changing a wall plug with a double plug but the wires are too thick to go through the hole of the new device. HOW can I resolve this?


Use the screw terminals not the backward device.

Watch out. What are those large diameter wires? If aluminum you have a bigger safety hazard to address.




Reader Question: Is it safe to plug a 10-Amp A/C into an outlet that is back wired?

Is it safe to plug in an ac unit that runs 10 amps , into outlet that is backed wired, i had read that you don't like this method, the outlet is on third floor and is on a 15 amp breaker - Johnny B 5/2/w

Reply: Comparing Three Types of Backwired Receptacles: 20-A Clamp Type & 15-ASpring Type & Clamp Type Backwiring Devices

Johnny, that's an interesting question and one I'm scared to answer - by online posting one cannot assure the electrical safety of your building.

Here we will illustrate three different types of electrical receptacles that can be wired from their back-side.

Our photo (left) illustrates a spec-grade 20-Amp, 125V rated electrical receptacle that looks as if it is "back-wired" - in fact while a wire can be wrapped around the terminal screws on this device, the screw is intended to be used to tighten a rectangular brass plate against a square metal nut (silver in color) that makes a very strong and positive connection over a good area of wire surface. This receptacle is marked on its back surface as CU Wire Only - copper only. [Click images to see enlarged details.]

That said, I agree that older, spring-type back-wired electrical connections (shown at below left) are not as reliable as connections made under a screw or clamp, as the total contact area between the back-wire spring edge and the wire surface is minimal.

Nevertheless, on a 15-A circuit using 15-A devices such as receptacles, the circuit and its devices are rated and intended to be able to support the 10-amp load you describe, so long as the sum of all of the items plugged into that electrical circuit don't overload it.


Thank you for responding, my town home was built in 1999, not sure if that is considered newer or older, lights do dim though when i use 10 amp vacuum . - Johnny B.


Backwiring electrical receptacles is a permitted installation and might be found in a 1999 home - but as we show above, there are two different approaches, the second of which is a better quality installation and is in our opinion more reliable. See the details just below.

Push-in back-wire spring connector receptacle

Contractor-grade 15-A spring-type-connector back-wired electrical receptacles (below left) provide a single opening at each of the four terminals (two neutral wires - yellow arrows, and two hot wires - red arrows) on the back of the receptacle.

The white arrows point to the smaller rectangular opening giving access to a press-to-releaserelease spring that will allow removal of the wire, but we prefer not to re-use this type of back-wired receptacle. Tightening the screw at the main wire terminal (blue arrow) has nothing to do with the spring-clamp that is securing the back-wired terminal wire.

Back wired electrical receptacle (C) Daniel Friedman

You can see that this receptacle also includes two binding head screw connectors on each side - silver screws for neutral wire (right side in the photo) and brass-coloured screws for hot or black wire (left side in the photo). I consider these screws a more secure electrical connection than the push-in backwire connectors though of course a bit more labour is involved as well.

Insert & screw-clamp 15-A back-wire receptacle connectors

Some newer heavy-duty 15-A back-wired electrical receptacles (below-left) do not rely on a simple spring-edge to contact the electrical wire, as we illustrate in our photo below. Rather, when the wire is inserted into any of 4 receiving holes on the back of the receptacle (red arrows) on the line side (black wire) and another 4 receiving openings on the load or neutral side (white wire) of the device.. When the terminal screw is tightened that actually snugs up a clamp that contacts a much larger surface area of the back-wired wire. That's a more secure connection mechanically. On this receptacle, instead on a single back terminal accepting a single wire, there are a pair of back terminal openings at each of the four terminal screws.

Back wired electrical receptacle (C) Daniel Friedman

Insert & screw-clamp 20-A back-wire receptacle connectors

The 20-A rated electrical receptalce shown below is a variation on the 15-A pressure-clamp connector discussed just above. This receptacle dispenses with the round holes in the plastic receptacle back and exposes the wire clamps for a more clear view of what's happening. The electrical wire (copper-only according to markings on these device) is inserted between a copper face plate (red arrow) and a thicker silver colored base plate (green arrow). Turnngn the screw (blue arrow) at any of these four connectors (each of which will accept two wires) pinches the stripped wire-end between these two plates. At below right is a side-view of the tigthened connector.

20-A rated pressure clamp type back-wired electrical receptacle (C) Daniel Friedman Clap type or pressure plate type electrical wire connection on  an electrical receptacle (C) Daniel Friedman

A comparison of crude contact areas between the copper wire and the different types of wire connectors is at RECEPTACLE WIRE-TO-CONNECTOR CONTACT AREA SIZES.


Illustrated Details of the Push-In Spring-Clip Electrical Wire Connections at Receptacles & Switches

Reader Question: how to show the poor contact between the spring edge and wire surface of a spring-clip type back-wired receptacle or switch

10/24/2015 Markus said:

Is there a picture somewhere that shows the flimsy spring clip contact against the inserted wire? I have a hard time convincing friends that the large and secure contact area of the clamp style backwire outlet is superior to the spring clamp.


Push-in backwire connection between receptacle or switch and copper wire (C) Jess Aronstein 2015 Great suggestion, Markus. It's of course difficult to photograph the poor spring-clip-to-wire contact without disassembling the receptacle as the pushed-in wire covers the opening through which the spring is visible.

Shown at left is a close-up photograph showing the connection between the edge of a push-in type "backwire" electrical receptacle contact spring and the edge of a copper electrical wire. The photo at left was provided by Dr. Jess Aronstein,

You can see that the contact area on the spring-side of the connector is quite small - just the point at which the edge of the spring touches the rounded surface of the copper wire. In some of the spring clips that I've examined and not visible in the photo at left, we may find that the end of the spring clip that contacts the wire is cut out in a round profile or "notch" to increase the contact area against the rounded surface of the wire, but still the total contact area will be very small as only the edge of the angled clip touches the wire.

You can also infer that all of the spring force against the wire has to come from the arc of the copper spring.

[Click to enlarge any image]

Dr. Aronstein points out that in the connector shown at left there are two contact areas: the edge of the spring clip (red arrow #1) and possibly the larger surface area of the contact plate (red arrow #2). Certainly there will probably be at least some contact between the wire and surface #2 or the spring clip may not hold the wire in place at all.

I have added a sketch below to illustrate the types of contact between the electrical wire and the connector within or on the device such as an electrical switch or receptacle.

The sketch (below) compares the wire-to-receptacle (or switch) contact area sizes of an older type flat spring with the contact area of a compression plate or screw type connector pushing against the same wire size.

Diagram of Differences in Electrical Contact Area Between Push-in Back-wire Spring Connectors and Screw / Pressure-Plate Connectors on Electrical Receptacles & Switches

In the sketch below we depict the labeled items as follows

[Click to enlarge any image]

  1. The electrical wire, shown in yellow
  2. The contact plate found in both receptacles and switches on both types of devices: push-in wired or screw-connector-wired. This plate is found on the opposite side of the wire or sometimes partly-surrounding the wire that is held in place by ...
  3. The connector spring in a push-in type back-wired electrical device. You can note that on this side of the wire, the electrical contact surface between the edge of a spring clip and the surface of the wire itself (black in my drawing) is very small compared with the surface contact when a screw or clamp-type connector is used.

  4. The contact plate or the under-side of the head of the screw itself on switches or receptacles that use a binding-head screw or a screw + compression plate to connect the electrical wire to the electrical device

The large and small gray-colored arrows depict differences in force between the contacting device (spring or plate or screw) and the surface of the wire. The force exerted using a screw type connector will be significantly greater than the force exerted by the thin metal spring clip in older back wired electrical receptacles or switches.

Poor contact between backwired receptacle spring and wire surface compared with other connector methods (C) Daniel Friedman 2015

Watch out: the older thin-spring type push-in back-wired electrical receptacle or switch hazard arises not just the very small surface area contact at the spring. After all, both types of wire-to-device connectors include a contact plate against which the spring or screw force the wire. But in a connector-spring-type "push-in" electrical wire connector, anything that weakens the spring - itself a thin flat copper component - such as age, re-use of the electrical device, removal and re-insertion of the wire, or changing wire sizes from a #12 to a smaller $14 wire gauge or possibly even bending forces exerted by the pushed-in wires as the device is pushed back into the electrical box are likely to weaken the contact force as well.

In a binding-head screw connection, Aronstein also points out, there are again two current paths: one at the interface between the wire and the contact plate (#2 in the right-portion of the illustration above) and a second through the screw to the connector plate (#4 in the illustration above) or through the under-side of the screw head to the wire directly depending on the connector type.

In my opinion the effects and thus the benefits of the greater contact area and the greater contact force of the newer screw-type connections are additive and are features not available using the simpler spring-clip push-in type back-wired electrical connectors shown here.

Watch out: Dr. Aronstein warns (Aronstein to DF 2015) that while the screw-clamp type connections are an improvement on electrical switches and receptacles that permit back-wiring, they are not fail-safe, warning that "... they sometimes fail due to the wire moving when the receptacle is pushed back into the [electrical] box, loosening the connection."

Below is a magnified view of the connection between the spring clip and the copper wire after it has been pushed in through the back-wire opening.

Wire in place in the push-in backwired spring clip of a receptacle (C) Daniel Friedman

You can see the rounded notch in the end of the spring clip that we mentioned earlier (red arrow). In this connection the two current paths are through the wire to the notched end of the spring clip (red arrow) and through the wire to the contact plate (green arrow).

Sources of Limitations in Wire-to-Connector Contact Area in Push-in Back-wired Electrical Receptacles and Switches

Our lab photographs below illustrate conditions that may reduce size of the contact area between the electrical wire and the electrical receptacle or switch when a push-in, back-wire type connector is in use. The factors described here are opinion and have not been peer-reviewed by a professional forensic electrical engineer or other industry experts. Use our page bottom CONTACT link or the comments box to offer suggestions or critique.

Wire contact points in a push-in type backwired electrical receptacle (C) Daniel Friedman

The photograph above illustrates the two intended contact areas between the push-in backwire electrical connector and a #14 copper wire: the contact spring (A in the photo) and the contact plate against which the spring pushes the wire (B in the photo).

Effects of Curved Electrical Wires on Push-In Connector Contact Area in an Electrical Receptacle

Relatively straight copper wire in a push-in backwired receptacle connector (C) Daniel Friedman

At above left is a typical, relatively-straight #14 new copper wire pushed into the spring-connector of a push-in back-wire electrical receptacle connector. You'll notice that the wire at above-left is not perfectly straight. Some contact between wire and contact plate may be lost at arrow A. Even when trying to keep the wire straight some bending may occur from handling, during insertion into the electrical device, or near the end when the wire was cut to the proper insertion length - arrow B in the photo above.

Electrical contact area reduced by curved wire in a push-in backwired electrical receptacle (C) Daniel Friedman

Above is a curved #14 copper wire illustrating the reduction in contact between the wire and the contact plate against which the push-in wire connector spring is exerting force. Click to enlarge the photo and you'll see that the wire is in contact with the connector plate over about the wire length indicated by the red lines and double-headed arrow.

Curved wire ends may be more likely to occur in old-work, re-wiring, in electrical outlet or switch replacement and similar situations, particularly if the wire being inserted was previously connected by having been bent or curved around the shaft of the screw of an electrical receptacle switch that is being replaced.

Curved #14 copper wire in a push-in back-wire electrical receptacle reducing wire contact surface (C) Daniel Friedman

The width of the contact plate surface is about 11mm (see the red scale). I estimate that the wire is in contact with the contact plate (ignoring any effects of the cut-out opening) over about 2mm. of that distance.

Additional wire-to-connector effects from notches, abrasion or damage to an older wire are not depicted here: I was using new #14 wire.

Effects of the Leaf Spring on Push-In Connector Contact Area in an Electrical Receptacle

Spring connector wire contact in a push-in backwire electrical receptacle (C) Daniel Friedman Notch in copper wire cut by spring of a push in backwire electrical receptacle (C) Daniel Friedman

Above at left the photo shows a typical contact point between the notched end of the spring and the copper wire in a push-in backwire connector in an electrical receptacle. The rounded notch appears to be designed both to increase the wire-to-spring contact area and perhaps to improve the cut or notch formed in the wire by the spring pressure - an effect that would probably improve the resistance against wire withdrawal as well as the wire-to-connector contact. The notch cut by the spring in the copper wire seems to be increased if the wire is rotated at all during installation or when the receptacle is pushed back into the electrical box.

Above at right is a close-up of the wire notch I'm discussing. You can see that notch increases the actual contact between spring and wire includes more than the mere sharp edge of the spring as it permits contact between the back side of the spring (red arrow) as well as the face or end of the spring (green arrow). Incidentally we note that the cut-out area of the contact plate (blue arrow) might reduce the contact surface between the wire and the contact plate against which the spring pushes the wire.

Variations in Wire-to-Connector Contact Area on Three Electrical Receptacle Connector Types

The article cited just below compares the approximate size of contact areas between an electrical wire and the connector surfaces in an electrical receptacle across three different connector designs:

  1. Push-in back-wired electrical receptacles
  2. Binding head screw connector on electrical receptacles
  3. Insert-in screw-clamp type back wired or side-wired electrical receptacles

This article concludes that

On an electrical receptacle or switch the binding head screw wire contact area offers about four times the contact surface as a perfectly-made push-in backwired receptacle or switch connection, and if the wire is bent in a push-in connection, the binding head screw offers nearly ten times the contact area as the push-in device.

Please see RECEPTACLE WIRE-TO-CONNECTOR CONTACT AREA SIZES - separate article - for details.

Photo-Examples of Failures in Back-Wired Electrical Receptacles Illustrate the Failure Condition

Push-in backwired receptacle failure causing fire ignition (C) Jess Aronstein Mike Lane 2015

The photograph above illustrates a failure of a push-in type back-wired electrical receptacle. A fault occurred between the live contact assembly and the grounded receptacle mounting strap (center of the photo) causing fire ignition. The photograph shows the end result of a long-term and multi-step process, where the overheating push-in wire termination caused carbonization of the bakelite around it, which then faulted (probably when it absorbed moisture from the atmosphere during long "off" periods). - J. Aronstein to D Friedman, private email, 10/29/2015

Dr. Aronstein reports having encountered this failure multiple times and in each occasion the receptacle had been push-in backwired.

Low Contact Force is a Key Performance Difference Between Push-In Wire Connections & Clamp or Screw Terminals on Receptacles & Switches

Low contact force between the wire and the receptacle connector where spring-type push-in backwired terminals are used on receptacles is probably the most significant reason that these connections can be expected to deteriorate over many years. The small contact area afforded by these connectors, documented at RECEPTACLE WIRE-TO-CONNECTOR CONTACT AREA SIZES may increase that risk.

Watch out:

The key performance difference between the push-in and clamp or screw terminals is the rate of deterioration of the electrical connection. The condition of the connection and connector and rate of deterioration become important over a time frame of years in the typical installed environments (which are highly variable). There may also be considerable variation in the conditions among the 30 or more push-in wire connections in a typical string of receptacles on each receptacle circuit in a home. Those receptacles that are subject to more frequent use and those subject to heavier loads get more disturbance over time.

A push-in spring connection, inherently much weaker than a screw or clamp type connection, will suffer more disturbance, movement, and weakening than the stronger connectors as the receptacle is used, possibly increasing the risk of a subsequent failure.

The time scale of this deterioration usually is years and decades. This means that the fact that electrical failures or problems with these devices were not seen early in their installed life is no assurance whatsoever that the connectors and devices in an older home will continue to remain safe and reliable in the future.

In other words, the probability of a failure, overheating, and a possible fire and loss increase over time. In a 40 or 50 year old home, push-in wired electrical connections on the home's electrical system are not to be trusted. - J. Aronstein Op. Cit.

Below are front and rear view of another push-in type back-wired electrical receptacle failure. These photographs are provided courtesy Jess Aronstein.

Push-in backwired electrical receptacle failure (C) Jess Aronstein Sprole 2015 Push-in backwired electrical receptacle failure (C) Jess Aronstein Sprole 2015

  • Aronstein, Jess,[Personal communication, J.A. to the editor (Daniel Friedman)], 25 October 2015. Dr. Jess Aronstein, is a research consultant and an electrical engineer in Schenectady, NY. Dr. Aronstein provides forensic engineering services and independent laboratory testing for various agencies. Dr. Aronstein has published widely on and has designed and conducted tests on aluminum wiring failures, Federal Pacific Stab-Lok electrical equipment, and numerous electrical products and hazards.
  • RECEPTACLE WIRE-TO-CONNECTOR CONTACT AREA SIZES - measurements & calculations of the contact area between an electrical wire and the connecting device on an electrical receptacle or switch explain differences between push-in type backwire connectors, compression plate connectors, and binding head screw connectors, all of which are found on many electrical receptacles and switches.
  • Also see REFERENCES

Continue reading at CLEARANCES of WIRES or select a topic from the More Reading links or topic ARTICLE INDEX shown below.

Or see ELECTRICAL OUTLET, HOW TO ADD & WIRE - home - for general wiring procedures, connections & advice for connecting electrical receptacles.

Details about how to wire up an electrical receptacle are at ELECTRICAL RECEPTACLE CONNECTION DETAILS - where to connect black, white, red, green, ground wires.

Or see RECEPTACLE WIRE-TO-CONNECTOR CONTACT AREA SIZES for a discussion of the areas of wire-to-receptacle contacts on electrical receptacles.

Suggested citation for this web page

BACK-WIRED ELECTRICAL DEVICES at - online encyclopedia of building & environmental inspection, testing, diagnosis, repair, & problem prevention advice.

More Reading

Green link shows where you are in this article series.


OR use the Search Box found below at Ask a Question or Search InspectApedia


Frequently Asked Questions (FAQs)

Click to Show or Hide FAQs

Ask a Question or Search InspectApedia

Questions & answers or comments about how to install and wire electrical outlets or receptacles in buildings.

Use the "Click to Show or Hide FAQs" link just above to see recently-posted questions, comments, replies, try the search box just below, or if you prefer, post a question or comment in the Comments box below and we will respond promptly.

Search the InspectApedia website

HTML Comment Box is loading comments...

Technical Reviewers & References

Publisher's Google+ Page by Daniel Friedman

Click to Show or Hide Citations & References

Support & See Fewer Advertisements

From Google's Contributor website: Contribute a few dollars each month. See fewer ads. The money you contribute helps fund the sites you visit.

Google-Contributor supports websites while reducing advertisements. You can support InspectApedia with a contribution of any amount you wish. Or you can contribute nothing and we'll still keep our website free to all readers - supported by advertising. Either approach is OK.