Charles' Law: this article describes and defines Charles Law, explaining the role of temperature in gas pressures, including examples of using Charles Gas Law to explain what happens to air in a water storage tank, LP gas in a gas tank, oil & fumes in an oil storage tank, or air conditioning /heat pump refrigerant liquid & gas volumes inside of an air conditioning or heat pump system.
InspectAPedia tolerates no conflicts of interest. We have no relationship with advertisers, products, or services discussed at this website.
- Daniel Friedman, Publisher/Editor/Author - See WHO ARE WE?
Charle's Law explains the relationship between the volume of a gas and its change with temperature. Simply put, Charles' law explains how and how much the volume of
any gas increases with increases in temperature or decreases when the temperature drops.
V1/T1=V2/T2
(V= volume, T= Temperature)
What about the effects of changes in ambient temperature around a water storage/pressure tank? Suppose we wonder if seasonal temperature changes might cause important changes in in-water-tank pressure. For simplicity we'll work with a fixed volume full tank of just air. We'll change the temperature of the tank and its air from 60 deg.F. to 90 deg.F.
As most people would guess from practical experience, raising the temperature of a container of air while keeping the container size fixed will increase the pressure of air in the container.
Charles' Law: V1/T1=V2/T2
says that if we raise the temperature of a cubic foot of air, the air will want to occupy a larger volume.
30gal of air (or 4 cu. ft.) of air at 33 psi and at 60 degF is changed to 90 degF (by the warming ambient air) while the container size is kept constant.
Charles would say: 4cu.ft./60degF = NEWCUFT/90degF or 0.066 = NEWCUFT/90 0.066 x 90 = NEWCUFT or about 6 cu. ft.
This is 2 cu. ft. more than where we started, or a 50% increase in the starting volume of air.
Technical note: when working with the gas laws and temperature, all temperatures have to be converted to Kelvins or "K" - their Kelvin equivalent before the law can be applied. The Kelvin temperature scale relates temperature to absolute zero, where 0 Kelvins = absolute zero. We can convert Fahrenheit to Kelvins using this simple formula: K = (degF + 459.67) / 1.8.
We can convert Kelvins to Fahrenheit using this formula: degF = (K x 1.8) - 459.67. And for folks who work with Celsius, we can convert Celsius to Kelvin with this formula: K = degC + 273.15, or we can conver4t from Kelvin back to degrees of temperature in Celsius with this formula: degC = K-273.15.
(However for temperature intervals one degree Kelvin = one degree Celsius.) Also, 0 degrees Kelvin = -273.15 degC = -459.67 degF.
...
Continue reading at COMBINED GAS LAW or select a topic from closely-related articles below, or see our complete INDEX to RELATED ARTICLES. or select a topic from the closely-related articles below, or see the complete ARTICLE INDEX.
Or see these
CHARLES' LAW at InspectApedia.com - online encyclopedia of building & environmental inspection, testing, diagnosis, repair, & problem prevention advice.
Or see this
Or use the SEARCH BOX found below to Ask a Question or Search InspectApedia
Try the search box just below, or if you prefer, post a question or comment in the Comments box below and we will respond promptly.
Search the InspectApedia website
Note: appearance of your Comment below may be delayed: if your comment contains an image, photograph, web link, or text that looks to the software as if it might be a web link, your posting will appear after it has been approved by a moderator. Apologies for the delay.
Only one image can be added per comment but you can post as many comments, and therefore images, as you like.
You will not receive a notification when a response to your question has been posted.
Please bookmark this page to make it easy for you to check back for our response.
IF above you see "Comment Form is loading comments..." then COMMENT BOX - countable.ca / bawkbox.com IS NOT WORKING.
In any case you are welcome to send an email directly to us at InspectApedia.com at editor@inspectApedia.com
We'll reply to you directly. Please help us help you by noting, in your email, the URL of the InspectApedia page where you wanted to comment.
In addition to any citations in the article above, a full list is available on request.