FREE Encyclopedia of Building & Environmental Construction, Diagnosis, Maintenance & Repair The accuracy & trustworthiness of every article or Q&A is researched by human experts. See WHO ARE WE?
POST a QUESTION or COMMENT about how to recognize, diagnose, evaluate, and repair building foundation damage due to earthquake activity
Manmade earthquakes around the world:
This article describes several known and possible causes of man-made earthquakes around the world and provides links to and citations of expert sources on both manmade earthquakes and the unclamping effects of pressure changes in the earth or in rock formations that may explain an increase in earthquakes in some areas as well as certain severe earthquakes that have occurred around the world.
For building professionals and building owners/occupants, the apparent increase in earthquakes traced to human activity must be considered when evaluating both existing building damage and in predicting future losses or safety hazards.
The page top illustration is a USGS map showing the epicenter of a recent earthquake near Oklahoma City in the U.S. - an earthquake that may have been triggered by the cumulative effects of pressure-well disposal of oil drilling wastewater, though other causes may also be considered.
InspectAPedia tolerates no conflicts of interest. We have no relationship with advertisers, products, or services discussed at this website.
- Daniel Friedman, Publisher/Editor/Author - See WHO ARE WE?
Manmade Earthquake Damage Sources: mining, oil or gas extraction & hydraulic fracturing or "fracking" activities can lead to earthquakes
In diagnosing earthquake type damage to buildings and their structures or foundations, note that even in areas that are not considered earthquake zones earthquakes may occur and may be traced to human activities.
Photo at left: building damage in Los Angeles examined by the author [DF] following California's Northridge Earthquake of 1994. This building collapse was not due to a man-made earthquake, but ...
Significant earthquakes are increasingly occurring within the continental interior of the United States, including five of moment magnitude (Mw) ≥ 5.0 in 2011 alone. - Keranen et als (2013) [27]
When a stress fracture is unclamped, areas of rock formation may move or "slip" past one another causing earthquakes of varying magnitude. [12] Ross Stein at the USGS offers this crisp explanation of the effects of unclamping and its relationship to earthquakes: [13][14][15]
An earthquake alters the shear and normal stress on surrounding faults. New evidence strengthens the hypothesis that such small, sudden stress changes cause large changes in seismicity rate. Rates climb where the stress increases (aftershocks) and fall where the stress drops.
Both increases and decreases in seismicity rate are followed by a time-dependent recovery. When stress change is translated into probability change, seismic hazard is seen to be strongly influenced by earthquake interaction. - Ross Stein (1999) [13]
King (2001) reported similarly on "fault interaction by elastic stress changes" [18] Drilling and mining activities are also traced to a different type of earth movement: sinkhole formation in many areas of the world.
Details and examples are at SINKHOLES, WARNING SIGNS. But in addition, even if sinkholes are not appearing over or close to drilling and mining sites, oil drilling and in particular the disposal of oil-drilling wastewater by forced injection into underground wells may cause earthquakes of sufficient magnitude to damage buildings by causing changes in underground rock formation pressures, a process referred to as unclamping of pre-existing stress-faults.
Manmade Earthquakes in Oklahoma and Other Parts of the United States
USGS scientists have found that at some locations the increase in seismicity coincides with the injection of wastewater in deep disposal wells. Much of this wastewater is a byproduct of oil and gas production and is routinely disposed of by injection into wells specifically designed and approved for this purpose.
... It has long been understood that earthquakes can be induced by impoundment of water in reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. - USGS (2013) [26]
In December 2013 The New York Times reported a significant increase in the frequency of earthquakes in and around Oklahoma city, an area with a long history of extensive oil drilling and exploration.
The Times explained that the area, not previously known to be earthquake prone, had historically experienced about 50 earth tremors annually, almost all "minor". But in 2013 the area experienced more than 2600 earthquakes including 87 in the second week of December of 2013. In addition to the 520% increase in earthquake frequency in the past year, in 2011 the area suffered a 5.6 magnitude earthquake, the largest ever recorded in Oklahoma. [12]
The Times article reported that disposal wells pose the greatest risk of causing these unclamping type earthquakes and that the cumulative effects of years of disposal of oil drilling wastewater into pressure fed wells may have reached some cumulative tipping point.
The article pointed out that there could be other explanations as well, and Toda and Stein reported on the cumulative effects of earthquakes as a force that "untoggles" earth movement.[19] And Hayes, U.S. Department of Interior observed in 2012
USGS’s studies do not suggest that hydraulic fracturing, commonly known as “fracking,” causes the increased rate of earthquakes. USGS’s scientists have found, however, that at some locations the increase in seismicity coincides with the injection of wastewater in deep disposal wells. [28]
Catalog of Recent Manmade Earthquakes Around the World & Unclamping Effects
The New York Times reporter, Henry Fountain, included a mini catalog of locations where injection wells or other human activities had the effect of unclamping old faults and leading to earthquakes that we have expanded a bit from other sources.
Australia, 1989 Earthquake: cumulative effect of removal of billions of tons of coal
Canada: British Columbia, possible effects of fracking (hydraulic fracturing by injection of high pressure liquid into shale rock to obtain oil or gas*)
China, Sichuan Province, 2008 Earthquake: weight of water behind a new dam [16]
England: possible effects of fracking *
Italy: "... If previous ruptures unclamp the fault planes of subsequent earthquakes, fluid flow can play a dominant role in promoting earthquakes during the seismic sequence." (the 1997 Umbria / March earthquake) [21]
Netherlands:
In March 2013 The New York Times reported on new earthquakes occurring at Loppersum in the Netherlands. Tremors have been recorded at a magnitude of 3.4 on the Richter scale. The Times reporter explained that after more than fifty years of natural gas extraction in the area, recent earthquakes have become more common. Quoting from the Times article:
Chief Seinen, a spokesman for the gas consortium known as NAM, said the extraction had created at least 1,800 faults in the region's subsoil. 'These faults are seen as a mechanism to induce earthquake.' he said. [8]
New Zealand: deliberate manmade earthquake at Christchurch, testing in 2012 [25]
Japan, 2011 Tohoku earthquake: time-dependent stress transfer and toggling effects of earthquakes [23]
Switzerland: geothermal projects
United States:
California: geothermal projects, mining projects (the 1992 Landers earthquake & the 1999Hector Mine earthquake) [17][22]
California: Simpson & Reasenberg reported on earthquake-induced static stress changes on central California fault lines [20]
Oklahoma: possible effects of oil well wastewater disposal into wells [27]
Oklahoma: possible effects of fracking *(hydraulic fracturing by injection of high pressure liquid into shale rock to obtain oil or gas)
Texas: use of water flooding to improve old oil well yield;
* The December 2013 New York Times article noted that fracking-related earthquakes occurred only over short time periods, unlike other earthquakes traced to or suspected as the cause of manmade earthquakes. [12]
...
ADVERTISEMENT
Reader Comments, Questions & Answers About The Article Above
Below you will find questions and answers previously posted on this page at its page bottom reader comment box.
Question: How to distinguish earthquake damage from other structural movement
Is there anyway to prove earthquake damage to a foundation? I have a single story ranch house built in the 1930’s that has recently been subjected to a mild earthquake in 2009 and 2011 (Midwest) both of which I felt the house shaking and was awaken from a sound sleep.
I have glass block windows that have started to splinter in one of the sections of my basement. Started first sometime after March 2011 when I notice the blocks were cracked.
A couple of weeks later I found glass fragments splintering from blocks. Been watching it periodically then forgot until yesterday I found several larger pieces of glass block…corner pieces on two of them. The mortar that holds the blocks in window area show cracking as well. This would indicate to me that there is still ongoing stress to my frame house which is causing continual splintering from the glass blocks.
I contacted a structural engineer who said it was not possible by looking at it to tell whether it was earthquake damage or not. He indicated soil testing would have to be done which would be very expensive.
I am concerned that my home or at least parts of it will collapse. I have contacted my insurance agent but they do not provide any services of which to tell if it is earthquake related or not.
If you have any referrals or helpful information, I would appreciate it.
- Thank you,- B.O. in Missouri
Reply: Expert, experienced inspectors should be able to form a reasonably confident opinion about building damage, extent, and cause
A competent onsite inspection by an expert usually finds additional clues that help accurately diagnose a problem with the structure, its history, probable cause, and extent of impact on the building and its safety.
That said,
I'm in no position by mere email to argue with your engineer, but having inspected a very large number of earthquake damaged buildings (while serving the Red Cross) it is my OPINION that an inspector, contractor, home inspector, or engineer who has familiarity with earthquake damage in general as well as with specific earthquake activity in a particular area can recognize the presence of damage to the building structure and form an opinion about its general safety.
If inspected by an experienced diagnostician, typical causes of building structural movement can almost always be traced to a probable cause. In all cases of building foundation or other structural damage, understanding the cause of the damage is an essential part in planning for the necessary repairs.
For example, lateral or horizontal "shaking" by an earthquake is likely to damage all sides of a building while differential settlement due to soil problems tends to cause focused cracking, bending, leaning etc. If the cause of foundation damage is inadequate footings the repair requirements may be quite different from earthquake damage.
I am unclear why soil testing is a high priority step in evaluating the building;
The first order of priority, which should not be delayed, is an inspection of the property for safety and safe occupancy. Unless your property actually has no significant damage of any kind (regardless of origin), that inspection needs to be performed for your own safety regardless of arguments about the root cause.
Watch out: - some safety defects that may be present following an earthquake as well as following other structural movements or damage can be subtle such as gas leaks and unsafe electrical wiring - even if the visible structural damage is minimal. At Northridge following the LA earthquake some buildings were very extensively damaged by the side to side movement of the earth during that event. But other buildings looked just about perfect, still sitting square on their foundations. Yet some of those "perfect-looking" structures were unsafe due to gas leaks that risked (and in some cases occurred) explosions and fires caused when subtle building movements damaged the utility lines.
Question: our newly built townhouse vibrates and shudders and we hear banging
Just moved in to a new build town house which vibrates constantly and suffers with shuddering (top/3rd floor more noticeable with windows also shaking). On ground floor can sometimes hear banging, like someone has jumped or dropped heavy object from above. On a main road but this does not always happen when heavy vehicle drives past. Also suffering noise from pipes/ventilation outlets. - Lesley Anne 12/29/2011
Reply:
Lesley:
If the building movement and noises you describe were due to an earthquake or ongoing temblers or tremors, you could quickly confirm that condition with your local emergency services departments and building department, or perhaps even neighbors, as other buildings would be experiencing symptoms as well.
If that is not the case, then what you describe sounds specific to your individual building. Because some building movements, vibrations, and sounds can be symptoms of a pending catastrophic collapse, it makes sense to ask for expert advice promptly. An expert will listen to your concerns and will make his/her own thorough inspection of the structure both outdoors and inside, looking for
Indications of actual building movement and related damage, such as cracks, separation of framing, sticking windows or doors, floors or ceilings out of level, walls out of plumb.
Indications of foundation movement or damage such as cracks, leans, bulges, bows.
The purpose of the initial assessment of building condition will focus on the discovery of signs of an immediate life safety hazard. If that sort of hazard is comfortably ruled out, what remains may be construction methods and materials issues to review with the building owner, contractor, or an independent professional structural or civil engineer who is familiar with the type of construction used for your building.
Keep us posted, what you learn may assist other readers.
EARTHQUAKES, MAN-MADE at InspectApedia.com - online encyclopedia of building & environmental inspection, testing, diagnosis, repair, & problem prevention advice.
Or use the SEARCH BOX found below to Ask a Question or Search InspectApedia
Ask a Question or Search InspectApedia
Try the search box just below, or if you prefer, post a question or comment in the Comments box below and we will respond promptly.
Search the InspectApedia website
Note: appearance of your Comment below may be delayed:if your comment contains an image, photograph, web link, or text that looks to the software as if it might be a web link, your posting will appear after it has been approved by a moderator. Apologies for the delay.
Only one image can be added per comment but you can post as many comments, and therefore images, as you like.
You will not receive a notification when a response to your question has been posted. Please bookmark this page to make it easy for you to check back for our response.
Our Comment Box is provided by Countable Web Productions countable.ca
In addition to any citations in the article above, a full list is available on request.
[1] Arakida, Masaru. "Measuring vulnerability: The ADRC perspective for the theoretical basis and principles of indicator development." Measuring Vulnerability to Natural Hazards–towards disaster resilient societies, United Nations University Press, Tokyo (2006): 290-299.
[2] Comerio, Mary C. "Public policy for reducing earthquake risks: a US perspective." Building Research & Information 32, no. 5 (2004): 403-413.
[3] Kamat, Vineet R., and Sherif El-Tawil. "Evaluation of augmented reality for rapid assessment of earthquake-induced building damage." Journal of computing in civil engineering 21, no. 5 (2007): 303-310.
[4] Kovacs, Paul. Reducing the risk of earthquake damage in Canada: Lessons from Haiti and Chile. Institute for Catastrophic Loss Reduction, 2010.
[5] Mills, Evan, Evan Mills, and Ivo Knoepfel. Energy-efficiency options for insurance loss prevention. Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory, 1997.
[6] Noji, Eric K., and Keith T. Sivertson. "Injury prevention in natural disasters. A theoretical framework." Disasters 11, no. 4 (1987): 290-296.
[7] Peek-Asa, Coritme, Jess F. Kraus, Linda B. Bourque, Dushyanthi Vimalachandra, Jenny Yu, and Jackie Abrams. "Fatal and hospitalized injuries resulting from the 1994 Northridge earthquake." International Journal of Epidemiology 27, no. 3 (1998): 459-465.
[8] John Tagliabue, Parts of Low Country Are Now Quake Country", The New York Times, 27 March 2013, p. A6.
[9] "A Foundation for Unstable Soils," Harris Hyman, P.E., Journal of Light Construction, May 1995
[10] "Backfilling Basics," Buck Bartley, Journal of Light Construction, October 1994
[11] "Inspecting Block Foundations," Donald V. Cohen, P.E., ASHI Reporter, December 1998. This article in turn cites the Fine Homebuilding article noted below.
[12] Henry Fountain, "Experts Eye Oil and Gas Industry as Quakes Shake Oklahoma", The New York Times, 13 December 2013, p. A20, A23.
[13] Stein, Ross S. "The role of stress transfer in earthquake occurrence." Nature 402, no. 6762 (1999): 605-609. US Geological Survey, MS 977, Menlo Park, California 94025, USA , Email: rstein@usgs.gov.
[14] Lin, Jian, and Ross S. Stein. "Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults." Journal of Geophysical Research: Solid Earth (1978–2012) 109, no. B2 (2004).
[15] Parsons, Tom, Ross S. Stein, Robert W. Simpson, and Paul A. Reasenberg. "Stress sensitivity of fault seismicity: A comparison between limited‐offset oblique and major strike‐slip faults." Journal of Geophysical Research: Solid Earth (1978–2012) 104, no. B9 (1999): 20183-20202.
[16] Toda, Shinji, Jian Lin, Mustapha Meghraoui, and Ross S. Stein. "12 May 2008 M= 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems." Geophysical Research Letters 35, no. 17 (2008).
[17] Parsons, Tom, and Douglas S. Dreger. "Static‐stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M= 7.1 Hector Mine earthquake, southern California." Geophysical research letters 27, no. 13 (2000): 1949-1952.
[18] King, G. C. P., and M. Cocco. "Fault interaction by elastic stress changes: New clues from earthquake sequences." Advances in Geophysics 44 (2001): 1-VIII.
[19] Toda, Shinji, and Ross Stein. "Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A demonstration of time-dependent stress transfer." Journal of geophysical research 108, no. B12 (2003): 2567.
[20] Simpson, Robert W., and Paul A. Reasenberg. "Earthquake-induced static stress changes on central California faults." US Geol. Surv. Prof. Pap 55 (1994): 89.
[21] Cocco, Massimo, Concetta Nostro, and G. Ekström. "Static stress changes and fault interaction during the 1997 Umbria-Marche earthquake sequence." Journal of seismology 4, no. 4 (2000): 501-516.
[22] Zeng, Yuehua. "Viscoelastic stress‐triggering of the 1999 Hector Mine Earthquake by the 1992 Landers Earthquake." Geophysical research letters 28, no. 15 (2001): 3007-3010.
[23] Toda, Shinji, Jian Lin, and Ross S. Stein. "Using the 2011 M= 9.0 Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure." Earth Planets Space 63 (2011): 1-6.
[24] Freed, Andrew M. "Earthquake triggering by static, dynamic, and postseismic stress transfer." Annu. Rev. Earth Planet. Sci. 33 (2005): 335-367. Quoting: Earthquake triggering is the process by which stress changes associated with an earthquake can induce or retard seismic activity in the surrounding region or trigger other earthquakes at great distances. Calculations of static Coulomb stress changes associated with earthquake slip have proven to be a powerful tool in explaining many seismic observations, including aftershock distributions, earthquake sequences, and the quiescence of broad, normally active regions following large earthquakes. Delayed earthquake triggering, which can range from seconds to decades, can be explained by a variety of time-dependent stress transfer mechanisms, such as viscous relaxation, poroelastic rebound, or afterslip, or by reductions in fault friction, such as predicted by rate and state constitutive relations. Rapid remote triggering of earthquakes at great distances (from several fault lengths to 1000s of km) is best explained by the passage of transient (dynamic) seismic waves, which either immediately induce Coulomb-type failure or initiate a secondary mechanism that induces delayed triggering. The passage of seismic waves may also play a significant role in the triggering of near-field earthquakes.
[25] "
Man-made earthquake strikes Christchurch
", The New Zealand Herald, 17 April 2012, Quoting:
Man-made earthquake strikes Christchurch
3:58 PM Tuesday Apr 17, 2012
A magnitude 4 earthquake is to strike Christchurch - but this one will be man-made. The "earthquake" struck at 11.30am, at QEII Stadium, at a depth of up to 12km. The jolt is part of tests by the Earthquake commission into whether liquefaction-prone land in the east of the city can be repaired. About 25 small underground explosives are to be placed up to 12 metres deep and set off to simulate an earthquake of about magnitude 4.
[26] William Ellsworth (ellsworth@usgs.gov), Jessica Robertson (jrobertson@usgs.gov), and Christopher Hook (703-648-4460), "Man-Made Earthquakes Update", USGS, 12 July 2013, retrieved 13 December 2013, original source: http://www.usgs.gov/blogs/features/usgs_top_story/man-made-earthquakes/
[27] Katie M. Keranen, Heather M. Savage, Geoffrey A. Abers and Elizabeth S. Cochran, "Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake", Geology, January 2013, retrieved 12/13/2013, original source: http://geology.gsapubs.org/content/early/2013/03/26/G34045.1.abstract
Quoting from the abstract: Significant earthquakes are increasingly occurring within the continental interior of the United States, including five of moment magnitude (Mw) ≥ 5.0 in 2011 alone. Concurrently, the volume of fluid injected into the subsurface related to the production of unconventional resources continues to rise. Here we identify the largest earthquake potentially related to injection, an Mw 5.7 earthquake in November 2011 in Oklahoma. The earthquake was felt in at least 17 states and caused damage in the epicentral region. It occurred in a sequence, with 2 earthquakes of Mw 5.0 and a prolific sequence of aftershocks. We use the aftershocks to illuminate the faults that ruptured in the sequence, and show that the tip of the initial rupture plane is within ∼200 m of active injection wells and within ∼1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Subsurface data indicate that fluid was injected into effectively sealed compartments, and we interpret that a net fluid volume increase after 18 yr of injection lowered effective stress on reservoir-bounding faults. Significantly, this case indicates that decades-long lags between the commencement of fluid injection and the onset of induced earthquakes are possible, and modifies our common criteria for fluid-induced events. The progressive rupture of three fault planes in this sequence suggests that stress changes from the initial rupture triggered the successive earthquakes, including one larger than the first.
[28] David J. Hayes, "Is the Recent Increase in Felt Earthquakes in the Central US Natural or Manmade?", David J. Hayes, Deputy Secretary, U.S. Department of the Interior, DOI News, retrievedf 12/13/2013, original source: http://www.doi.gov/ news/doinews/Is-the-Recent-Increase-in-Felt-Earthquakes -in-the-Central-US-Natural-or-Manmade.cfm
Building Failures, Diagnosis & Avoidance, 2d Ed., W.H. Ransom, E.& F. Spon, New York, 1987 ISBN 0-419-14270-3
Domestic Building Surveys, Andrew R. Williams, Kindle book, Amazon.com
Defects and Deterioration in Buildings: A Practical Guide to the Science and Technology of Material Failure, Barry Richardson, Spon Press; 2d Ed (2001), ISBN-10: 041925210X, ISBN-13: 978-0419252108. >
Guide to Domestic Building Surveys, Jack Bower, Butterworth Architecture, London, 1988, ISBN 0-408-50000 X
Dave Wickersheimer, P.E. R.A. - IL, professor, school of structures division, UIUC - University of Illinois at Urbana-Champaign School of Architecture. Professor Wickersheimer specializes in structural failure investigation and repair for wood and masonry construction. * Mr. Wickersheimer's engineering consulting service can be contacted at HDC Wickersheimer Engineering Services. (3/2010)
Building Pathology, Deterioration, Diagnostics, and Intervention, Samuel Y. Harris, P.E., AIA, Esq., ISBN 0-471-33172-4, John Wiley & Sons, 2001 [General building science-DF] ISBN-10: 0471331724
ISBN-13: 978-0471331728
Building Pathology: Principles and Practice, David Watt, Wiley-Blackwell; 2 edition (March 7, 2008) ISBN-10: 1405161035 ISBN-13: 978-1405161039
Diagnosing & Repairing House Structure Problems, Edgar O. Seaquist, McGraw Hill, 1980 ISBN 0-07-056013-7 (obsolete, incomplete, missing most diagnosis steps, but very good reading; out of print but used copies are available at Amazon.com, and reprints are available from some inspection tool suppliers). Ed Seaquist was among the first speakers invited to a series of educational conferences organized by D Friedman for ASHI, the American Society of Home Inspectors, where the topic of inspecting the in-service condition of building structures was first addressed.
Design of Wood Structures - ASD, Donald E. Breyer, Kenneth Fridley, Kelly Cobeen, David Pollock, McGraw Hill, 2003, ISBN-10: 0071379320, ISBN-13: 978-0071379328 This book is an update of a long-established text dating from at least 1988 (DJF); Quoting: This book is gives a good grasp of seismic design for wood structures. Many of the examples especially near the end are good practice for the California PE Special Seismic Exam design questions. It gives a good grasp of how seismic forces move through a building and how to calculate those forces at various locations.THE CLASSIC TEXT ON WOOD DESIGN UPDATED TO INCLUDE THE LATEST CODES AND DATA. Reflects the most recent provisions of the 2003 International Building Code and 2001 National Design Specification for Wood Construction. Continuing the sterling standard set by earlier editions, this indispensable reference clearly explains the best wood design techniques for the safe handling of gravity and lateral loads. Carefully revised and updated to include the new 2003 International Building Code, ASCE 7-02 Minimum Design Loads for Buildings and Other Structures, the 2001 National Design Specification for Wood Construction, and the most recent Allowable Stress Design.
In addition to citations & references found in this article, see the research citations given at the end of the related articles found at our suggested
Carson, Dunlop & Associates Ltd., 120 Carlton Street Suite 407, Toronto ON M5A 4K2. Tel: (416) 964-9415 1-800-268-7070 Email: info@carsondunlop.com. Alan Carson is a past president of ASHI, the American Society of Home Inspectors.
Carson Dunlop Associates provides extensive home inspection education and report writing material. In gratitude we provide links to tsome Carson Dunlop Associates products and services.