Insulating a Greenhouse or Solarium Against Night Time Heat Loss:
This article describes how to ventilate a greenhouse used for solar heating, and how to connect the greenhouse to the house for effective heating.
We discuss insulating the greenhouse against night time heat losses, and also we describe how to get warm air or heat from the greenhouse into the rest of the building.
We give suggestions for ventilating greenhouses or sunspaces in hot summer weather, and we describe where to watch out for leaks in greenhouse or sunspace or solarium roofs & walls. Solar Age Magazine Articles on Renewable Energy, Energy Savings, Construction Practices
InspectAPedia tolerates no conflicts of interest. We have no relationship with advertisers, products, or services discussed at this website.
- Daniel Friedman, Publisher/Editor/Author - See WHO ARE WE?
The table of insulation properties at page top and accompanying text are reprinted/adapted/excerpted with permission from Solar Age Magazine - editor Steven Bliss.
Our photo above illustrates a small greenhouse constructed at a private residence in Hanmer Springs, New Zealand.
I plan to convert a carport to a greenhouse / dining room. The brick wall between the carport and the house contains a door to the kitchen and a window to the living room.
How should the greenhouse be ventilated and how should the greenhouse be connected to the house for effective solar heating? - Michael Moran, Clemson SC
Answer:
Sunspace or Greenhouse Trombe Wall Retrofit Advice for Solar Heating
The brick wall between house and the new greenhouse has the makings of a Trombe wall, with one minor hitch - if it does not receive direct sunlight, its value as a thermal mass that absorbs, stores, and later returns heat is greatly reduced.
Cutting skylights into the carport roof would help the thermal mass wall work better by allowing sunlight to strike it directly.
Our photo above shows a large sunspace constructed atop a converted factory building in Poughkeepsie, NY.
The question-and-answer article about greenhouses or solariums on this page quotes-from, updates, and comments an original article, from Solar Age Magazine and written by Steven Bliss.
To get proper air circulation from the sunspace to the house you will need two vents - one high and one low.
The doorway and window should provide this ventilation, though a high vent can be added if required.
Since natural air convection is relatively week in a one-story building, a thermostatically controlled fan in the wall would give greater control and move even more heated air from the greenhouse sunspace into the rest of the house.
For summer ventilation of the greenhouse or sunspace, high and low vents to the outdoors usually suffice. A doorway at one end, combined with a high vent at the other end is a common setup.
Another greenhouse solution combines awning windows along the front with operable skylights for roof vents. For accurate sizing for venting and heating of a sunspace, see "The Last Word in Sunspace Design," Solar Age 6/84
Our greenhouse photo above was taken in the Barri Gotic in Barcelona, Spain.
Here we include solar energy, solar heating, solar hot water, and related building energy efficiency improvement articles reprinted/adapted/excerpted with permission from Solar Age Magazine - editor Steven Bliss.
As Carson Dunlop Associates point out in their sketch (left), greenhouses and solariums can be leaky, especially where an add-on solarium abuts the original structure.
Often we can spot these leaks as stains down the building wall below the points of contact between the solarium roof and the building walls.
Watch out: a solarium or greenhouse leak that enters the wall cavity may not show up immediately as a stain on the building interior, but it can lead to rot, insect damage, or a mold problem
First, my hardy congratulations to you for an absolutely fabulous website that gives better detailed help than anything else I have found on the Internet. Thank you for this generous public service.
Across our country there is more and more interest in backyard solar greenhouse construction, yet there is very little expert direction on many of the issues involved.
With the high humidity and warm temps inside these structures, and the emphasis on heavy insulation the issue of vapor barrier/retarder is important.
I have explored your excellent website and the principles you give about the use of vapor barriers is thorough. (Thank you.) However, my question involving paint is not specifically answered hence my email question here.
The South wall is glazed. The North, East, and West walls are stud construction with the layers inside to outside as follows: Hardy board vertical siding, 6 mil poly, studs and unfaced fiberglass R-21 insulation bats, 3/4" OSB, 15# felt, Hardy board vertical siding installed per manufacturer's guidelines.
My question involves paint on the outside and paint on the inside. The outside siding is factory primed with acrylic latex. The manufacturer recommendations are for TWO additional finish coats of exterior acrylic latex paint. I am concerned that this paint will form a vapor barrier that will trap moisture in the walls and dampen my insulation. Is this any concern at all??
Similarly, for reflective purposes, I want to put a light-reflecting paint on the inside walls of the solar greenhouse. Do I need to worry about this painting making the inside wall a vapor barrier?
This solar greenhouse is in Central KY. Some other solar greenhouses have been built in this climate zone with NO vapor barrier other than several coats of latex paint on the inside walls. Do you think this is advisable?
Another greenhouse builder is putting 15 mil aluminum coil stock "carefully overlapped" on the inside of his greenhouse and no other vapor barrier. His reasoning: "If there is no air flow here, I won't have any moisture problems." His greenhouse is in Colorado. Again, I find this idea intriguing, but is it a safe way to protect a solar greenhouse from condensation, mold, and rot?
I would appreciate your expert opinion. Warm Regards, R.B., Richmond KY
Reply:
RE: " Hardy board vertical siding, 6 mil poly, studs and unfaced fiberglass R-21 insulation bats, 3/4" OSB, 15# felt, Hardy board vertical siding installed per manufacturer's guidelines"
It sounds as if you are describing wall construction the inside out. If so the poly is where I'd put it too, since a greenhouse will have higher moisture inside in nearly all climates.
RE: your paint question, while I agree that paints form a moisture resistant barrier, a latex paint is the right coating to avoid adding to a moisture trap.
Moisture moves through walls from the more moist area to the less moist area.
Because you've got a good poly barrier on the inside of the wall (between the more moist greenhouse interior and the less moist wall cavity) it sounds to me as if latex on the wall exterior of the wall should not be a problem any more than it would be on an ordinary building that was not a greenhouse.
When you paint the greenhouse interior wall surfaces, I'd stick with a latex paint for the same reasons. Latex paint is more porous or has a lower perm rating (moisture penetrates more easily) than alkyd (modern oils).
That will leave your poly as the most moisture resistant barrier in the wall structure. You could argue for painting the interior surface with an alkyd (more moisture resistant) but I think it's a better design to use a paint that has a lower risk of trapping any moisture that finds its way behind the coating itself - latex.
About Kentucky greenhouses built using no vapor barrier other than paint, if we look at comparative perm ratings, paint has a lower perm rating than poly and foil has a nearly zero perm rating.
A design that relies only on paint on the interior of a KY greenhouse may work just fine provided that moisture can continue to move all the way through the insulation and to outside without ever condensing in the insulation.
The risk in the no-vapor barrier design is that if the walls are also insulated, in some of your colder months you may well reach the dew point in the insulation, leading to condensation there, and wet insulation, and ultimately even a rot or mold problem in the wall cavity.
The real answer is that the movement of moisture in and out of greenhouse wall cavities ... well it depends on at least these variables:
- the amount of moisture in the greenhouse interior air
- the use of exhaust fans that may at times place the greenhouse interior under negative pressure with respect to outdoor conditions
- the cool weather conditions that the greenhouse will experience
- the amount or R-value of insulation in the greenhouse walls
- details of wall construction and the care with which all wall penetrations are sealed against air movement in and out of the wall cavity
- the exterior wall cladding material and its permeability and contribution to the total wall R-value
- all factors that determine whether or not we reach excessive in-wall-cavity moisture that won't simply dry out when weather changes.
Finally, I agree mostly with your builder who uses aluminum coil stock "carefully overlapped" and I certainly agree with his point about airflow.
Moisture movement studies reported at the Boston 1985 Journal of Light Construction building conference confirmed that most moisture movement into and out of building cavities occurs at penetrations where there are air leaks and air movement.
Air may move in either direction - in or out of the wall cavity, depending on varying building conditions of temperature, humidity, and even building pressures. No air movement means no consequential moisture movement into the wall cavity in most construction designs.
Further, aluminum coil stock would have a perm rating of zero, except that air could move thorough those overlapped joints unless they were taped with a foil tape.
But in my opinion, for owners who don't want to look at aluminum greenhouse walls, an equally moisture-resistant wall could have been built using foil as the vapor barrier, over which you install a finish paneling or wall covering of your choice.
The devil in both cases is in the details: how carefully does the builder seal wall penetrations left for electrical receptacles, switches, and around windows and doors.
But all of the above is my OPINION. By copy of this note I'll invite our solar design expert Steven Bliss for any comments or corrections he may want to offer and I'll post any updates here.
Comments on Greenhouse Moisture Control
In general, as you point out, moisture is much more likely to enter walls via air leakage than diffusion (and most likely to get via exterior leaks due to capillary action, flashing problems, etc.) Air leakage into walls typically occurs around electrical outlets and penetrations for doors and windows, and where the wall finishes meet the floor. Assuming the greenhouse is a fairly moist environment, it would be important to seal these areas well.
If moisture levels are very high and outdoor temperatures low, then diffusion could also play a significant role in the absence of an interior vapor retarder.
Using a layer of polyethylene on the interior side of the wall, sealed well at joints and edges with a sheathing tape approved for use with polyethylene (3M Construction Seaming Tape and Tuck Tape are two brands) would work well as both the air barrier and vapor retarder.
With a good seal and effective vapor retarder on the interior, the painted Hardiboard siding should not create any problems.
- Steven Bliss
...
Continue reading at INSULATION CHOICES & PROPERTIES or select a topic from the closely-related articles below, or see the complete ARTICLE INDEX.
Or see these
GREENHOUSE DESIGN for SOLAR HEATING at InspectApedia.com - online encyclopedia of building & environmental inspection, testing, diagnosis, repair, & problem prevention advice.
Or see this
Or use the SEARCH BOX found below to Ask a Question or Search InspectApedia
Questions & answers or comments about trombe wall designs, solar heating, & greenhouses or sunspaces.
Try the search box just below, or if you prefer, post a question or comment in the Comments box below and we will respond promptly.
Search the InspectApedia website
Note: appearance of your Comment below may be delayed: if your comment contains an image, photograph, web link, or text that looks to the software as if it might be a web link, your posting will appear after it has been approved by a moderator. Apologies for the delay.
Only one image can be added per comment but you can post as many comments, and therefore images, as you like.
You will not receive a notification when a response to your question has been posted.
Please bookmark this page to make it easy for you to check back for our response.
Our Comment Box is provided by Countable Web Productions countable.ca
In addition to any citations in the article above, a full list is available on request.