pH in Drinking-water

Background document for development of WHO Guidelines for Drinking-water Quality

Preface

One of the primary goals of WHO and its member states is that “all people, whatever their stage of development and their social and economic conditions, have the right to have access to an adequate supply of safe drinking water.” A major WHO function to achieve such goals is the responsibility “to propose regulations, and to make recommendations with respect to international health matters”

The first WHO document dealing specifically with public drinking-water quality was published in 1958 as International Standards for Drinking-Water. It was subsequently revised in 1963 and in 1971 under the same title. In 1984–1985, the first edition of the WHO Guidelines for drinking-water quality (GDWQ) was published in three volumes: Volume 1, Recommendations; Volume 2, Health criteria and other supporting information; and Volume 3, Surveillance and control of community supplies. Second editions of these volumes were published in 1993, 1996 and 1997, respectively. Addenda to Volumes 1 and 2 of the second edition were published in 1998, addressing selected chemicals. An addendum on microbiological aspects reviewing selected microorganisms was published in 2002.

The GDWQ are subject to a rolling revision process. Through this process, microbial, chemical and radiological aspects of drinking-water are subject to periodic review, and documentation related to aspects of protection and control of public drinking-water quality is accordingly prepared/updated.

Since the first edition of the GDWQ, WHO has published information on health criteria and other supporting information to the GDWQ, describing the approaches used in deriving guideline values and presenting critical reviews and evaluations of the effects on human health of the substances or contaminants examined in drinking-water.

For each chemical contaminant or substance considered, a lead institution prepared a health criteria document evaluating the risks for human health from exposure to the particular chemical in drinking-water. Institutions from Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Poland, Sweden, United Kingdom and United States of America prepared the requested health criteria documents.

Under the responsibility of the coordinators for a group of chemicals considered in the guidelines, the draft health criteria documents were submitted to a number of scientific institutions and selected experts for peer review. Comments were taken into consideration by the coordinators and authors before the documents were submitted for final evaluation by the experts meetings. A “final task force” meeting reviewed the health risk assessments and public and peer review comments and, where appropriate, decided upon guideline values. During preparation of the third edition of the GDWQ, it was decided to include a public review via the world wide web in the process of development of the health criteria documents.

During the preparation of health criteria documents and at experts meetings, careful consideration was given to information available in previous risk assessments carried out by the International Programme on Chemical Safety, in its Environmental Health
Criteria monographs and Concise International Chemical Assessment Documents, the International Agency for Research on Cancer, the joint FAO/WHO Meetings on Pesticide Residues, and the joint FAO/WHO Expert Committee on Food Additives (which evaluates contaminants such as lead, cadmium, nitrate and nitrite in addition to food additives).

Further up-to-date information on the GDWQ and the process of their development is available on the WHO internet site and in the current edition of the GDWQ.
Acknowledgements

The work of the following coordinators was crucial in the development of this background document for development of WHO Guidelines for drinking-water quality:

J.K. Fawell, Water Research Centre, United Kingdom
(inorganic constituents)
U. Lund, Water Quality Institute, Denmark
(organic constituents and pesticides)
B. Mintz, Environmental Protection Agency, USA
(disinfectants and disinfectant by-products)

The WHO coordinators were as follows:

Headquarters:
H. Galal-Gorchev, International Programme on Chemical Safety
R. Helmer, Division of Environmental Health

Regional Office for Europe:
X. Bonnefoy, Environment and Health
O. Espinoza, Environment and Health

Ms Marla Sheffer of Ottawa, Canada, was responsible for the scientific editing of the document.

The efforts of all who helped in the preparation and finalization of this document, including those who drafted and peer reviewed drafts, are gratefully acknowledged.

The convening of the experts meetings was made possible by the financial support afforded to WHO by the Danish International Development Agency (DANIDA), Norwegian Agency for Development Cooperation (NORAD), the United Kingdom Overseas Development Administration (ODA) and the Water Services Association in the United Kingdom, the Swedish International Development Authority (SIDA), and the following sponsoring countries: Belgium, Canada, France, Italy, Japan, Netherlands, United Kingdom of Great Britain and Northern Ireland and United States of America.
GENERAL DESCRIPTION

The pH of a solution is the negative common logarithm of the hydrogen ion activity:

\[\text{pH} = -\log (H^+) \]

In dilute solutions, the hydrogen ion activity is approximately equal to the hydrogen ion concentration.

The pH of water is a measure of the acid–base equilibrium and, in most natural waters, is controlled by the carbon dioxide–bicarbonate–carbonate equilibrium system. An increased carbon dioxide concentration will therefore lower pH, whereas a decrease will cause it to rise. Temperature will also affect the equilibria and the pH. In pure water, a decrease in pH of about 0.45 occurs as the temperature is raised by 25 °C. In water with a buffering capacity imparted by bicarbonate, carbonate, and hydroxyl ions, this temperature effect is modified (1). The pH of most raw water lies within the range 6.5–8.5 (1).

ANALYTICAL METHODS

The pH of an aqueous sample is usually measured electrometrically with a glass electrode. Temperature has a significant effect on pH measurement (1, 2).

RELATIONSHIP WITH WATER-QUALITY PARAMETERS

The pH is of major importance in determining the corrosivity of water. In general, the lower the pH, the higher the level of corrosion. However, pH is only one of a variety of factors affecting corrosion (3–8).

EFFECTS ON LABORATORY ANIMALS

When solutions differing in pH were injected into the abdominal skin of mice, skin irritation was manifested at pH 10 after 6 h (9). In the rabbit, intracutaneous skin irritation was observed above pH 9.0 (9). In addition, a pH above 10 has been reported to be an irritant to the eyes of rabbits (9). No significant eye effects were reported in rabbits exposed to water of pH 4.5 (10).

EFFECTS ON HUMANS

Exposure to extreme pH values results in irritation to the eyes, skin, and mucous membranes. Eye irritation and exacerbation of skin disorders have been associated with pH values greater than 11. In addition, solutions of pH 10–12.5 have been reported to cause hair fibres to swell (10). In sensitive individuals, gastrointestinal irritation may also occur. Exposure to low pH values can also result in similar effects. Below pH 4, redness and irritation of the eyes have been reported, the severity of which increases with decreasing pH. Below pH 2.5, damage to the epithelium is irreversible and extensive (10). In addition, because pH can affect the degree of corrosion of metals as well as disinfection efficiency, it may have an indirect effect on health.

CONCLUSIONS

Although pH usually has no direct impact on water consumers, it is one of the most important operational water-quality parameters. Careful attention to pH control is necessary at all stages of water treatment to ensure satisfactory water clarification and disinfection. For effective disinfection with chlorine, the pH should preferably be less than 8. The pH of the water entering the distribution system must be controlled to minimize the corrosion of water mains.
and pipes in household water systems. Failure to do so can result in the contamination of
drinking-water and in adverse effects on its taste, odour, and appearance.

The optimum pH will vary in different supplies according to the composition of the water and
the nature of the construction materials used in the distribution system, but is often in the
range 6.5–9.5. Extreme pH values can result from accidental spills, treatment breakdowns,
and insufficiently cured cement mortar pipe linings.

No health-based guideline value is proposed for pH.

REFERENCES

1. American Public Health Association. *Standard methods for the examination of water and
2. *The measurement of electrical conductivity and laboratory determination of the pH value
3. Nordberg GF, Goyer RA, Clarkson TW. Impact of effects of acid precipitation on toxicity
4. McClanahan MA, Mancy KH. Effect of pH on the quality of calcium carbonate film
deposited from moderately hard and hard water. *Journal of the American Water Works
5. Langelier WF. Chemical equilibria in water treatment. *Journal of the American Water
6. Webber JS, Covey JR, King MV. Asbestos in drinking water supplied through grossly
Conference of the American Water Works Association*, Part 1, Denver, CO, AWWA,
8. Stone A et al. The effects of short-term changes in water quality on copper and zinc