

Submersible Pump Sizing & Selection

Presented by National Exploration, Wells & Pumps

Office Locations

Outline

- 1. Why pump size matters
- 2. How submersible pumps work
- 3. Pump parameters
- 4. Pump selection
- 5. Maintenance & Repair

Size Matters!

Pump size determines well diameter. NOT THE OTHER WAY AROUND!!!

How it works

- Each combination of a chamber with an impeller is referred to as a "stage" or "bowl"
- 2. Each stage adds lift to the pump
- 3. The impellers are directly connected to the motor which creates flow.
- 4. As with all variable displacement pumps: flow rate is inversely related to the head pressure.

Pump Parameters

Q: So what determines the necessary size of the pump?

A: Flow rate & the amount of lift required.

- Flow Rate: Make sure the aquifer is capable of supporting your desired flow rate. Do you have any pump test data? Why not?
- 2. Lift: Submersible pumps do not build pressure. They provide lift which overcomes head pressure, which is measured in feet.

The head pressure against which a submersible pump operates is referred to as...

TOTAL DYNAMIC HEAD (TDH)

Friction Loss Table – VALVES and FITTINGS

(Friction Loss in Equivalent Number of Feet of Straight Pipe)

		NON	/INAL	SIZ	ITTING AND PIPE					
TYPE OF FITTING	PIPE AND	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"		
AND APPLICATION	FITTING	EQUIVALENT LENGTH OF PIPE(IN FEET)								
Insert Coupling	Plastic	3	3	3	3	3	3	3		
Threaded Adapter										
(Plastic to Thread)	Plastic	3	3	3	3	3	3	3		
90° Standard Elbow	Steel	2	2	3	4	4	5	6		
	Plastic	2	2	3	4	4	5	6		
Standard Tee	Steel	1	2	2	3	3	4	4		
(Flow Through Run)	Plastic	1	2	2	3	3	4	4		
Standard Tee	Steel	4	5	6	7	8	11	13		
(Flow Through Side)	Plastic	4	5	6	7	8,	11	13		
Gate Valve ¹	Steel	1	1	1	1	2	2	2		
Swing Check Valve ¹	• Steel	5	7	9	12	13	17	21		

Pump Selection

- Q: So I know my flow rate and system TDH. Now what?
- A: Start shopping!
- 1. Pump suppliers publish pump curves for all the various models. Select your flow range...

PERFORMANCE CURVES 5 GPM

MODEL 5S

Pump Selection

Q: So I know my flow rate and system TDH. Now what?

A: Start shopping!

- 1. Pump suppliers publish pump curves for all the various models. Select your flow range...
- 2. They also provide "easy selection charts" which are just pump curves for several models of pumps in a table format.

5 GPM

SELEC	TION	СН	ART	S								FLO	N RAI	NGE											PU	MP OU	TLET
(Ratings a	are in C	ALL	ONS	PER	MIN	UTE-	GPM))			(1.2 7	07	GPN	1)											1 " NP"	г
									DEF	тн то	O PUN	MPIN	G WAT	TER L	EVEL	(LIFT) IN F	EET									
PUMP																											
MODEL	HP	PSI	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	1100
		0				7.1	6.7	6.2	5.8	5.3	4.8	4.3	3.2	2.1													
		20		7.0	6.6	6.1	5.7	5.2	4.6	4.0	2.8	1.6															
5S03-9	1/3	30		6.5	6.0	5.6	5.1	4.6	3.8	2.9	1.5																
		40	6.7	6.0	5.5	5.1	4.4	3.8	2.4																		
		50	6.2	5.5	4.9	4.4	3.4	2.5	1.3																		
		60	5.6	4.9	4.2	3.5	1.9																				
SHUT-OFF	PSI:	0	102	94	85	76	68	59	50	42	33	24	16	7	4.0	15	0.0	0.0									
		20	-	-	73	70	67	63	6.0	5.7	5.4	5.0	5.5	5.2	4.8	4.5	3.9	2.3	-								<u> </u>
5\$05-13 1	1/2	30		7.2	6.9	6.6	6.3	6.0	5.7	5.4	5.0	4.7	4.2	3.7	2.8	2.0	2.0	-						_			<u> </u>
		40	7.2	6.9	6.6	6.3	5.9	5.6	5.3	5.0	4.6	4.2	3.5	2.8	1.6												
		50	6.8	6.5	6.2	5.9	5.6	5.3	4.9	4.6	4.0	3.5	2.6	1.6													
		60	6.5	6.2	5.8	5.5	5.2	4.9	4.5	4.0	3.3	2.6	1.3	1													
SHUT-OFF	PSI:		152	143	134	126	117	108	100	91	82	74	65	56	48	39	30	13									
		0								7.1	6.9	6.7	6.4	6.2	6.0	5.8	5.6	5.1	4.2	2.7							
		20						7.1	6.8	6.6	6.4	6.2	5.9	5.7	5.5	5.3	5.0	4.5	3.2								
5S07-18	3/4	30					7.0	6.8	6.6	6.3	6.1	5.9	5.7	5.5	5.2	5.0	4.7	4.0	2.5								
		40			7.2	7.0	6.8	6.5	6.3	6.1	5.9	5.6	5.4	5.2	4.9	4.7	4.4	3.5	1.5								
		50		7.2	7.0	6.7	6.5	6.3	6.1	5.8	5.6	5.4	5.1	4.9	4.6	4.3	3.9	2.9									
		60	7.1	6.9	6.7	6.5	6.2	6.0	5.8	5.6	5.3	5.1	4.9	4.6	4.3	3.9	3.4	2.1			_						
SHUT-OFF	PSI:		213	204	195	187	178	169	161	152	143	135	126	117	109	100	91	74	48	22							
		0										7.1	6.9	6.7	6.6	6.4	6.2	5.8	5.3	4.7	3.8	1.7					
		20								7.1	6.9	6.7	6.5	6.3	6.1	6.0	5.8	5.4	4.8	4.0	2.8						
5S10-22	1	30							7.0	6.8	6.7	6.5	6.3	6.1	5.9	5.7	5.6	5.2	4.6	3.6	2.1						
		40					-	7.0	6.8	6.6	6.5	6.3	6.1	5.9	5.7	5.5	5.4	5.0	4.3	3.1	1.3						
		50				7.2	7.0	6.8	6.6	6.4	6.2	6.1	5.9	5.7	5.5	5.3	5.1	4.7	3.9	2.5							
		60		-	7.1	6.9	6.8	6.6	6.4	6.2	6.0	6.0	5.7	5.5	5.3	5.1	4.9	4.4	3.5	1.7							
SHUT-OFF	PSI:				245	237	228	219	211	202	194	185	176	168	159	150	142	124	98	72	46	12					
		0												7.1	7.0	6.8	6.7	6.4	5.9	5.4	4.9	4.1	2.1	1			
		20										7.1	6.9	6.8	6.6	6.5	6.3	6.0	5.5	5.1	4.5	3.4					
5\$15-26	1 1/2	30			<u> </u>	<u> </u>					7.1	6.9	6.7	6.6	6.4	6.3	6.1	5.8	5.4	4.8	4.2	2.9					
		40			<u> </u>	<u> </u>				7.0	6.9	6.7	6.6	6.4	6.3	6.1	6.0	5.6	5.2	4.6	5.6	2.4					
		50			-	-			7.0	6.9	6.7	6.5	6.4	6.2	6.1	5.9	5.8	5.5	5.0	4.4	3.6	1.7					
		60				<u> </u>		7.0	6.8	6.7	6.5	6.4	6.2	6.1	5.9	5.8	5.6	5.3	4.8	4.1	3.1						
SHUT-OFF	PSI:							269	260	252	243	234	226	217	208	200	191	174	148	122	96	61	18				
		0														7.1	7.0	6.7	6.3	5.9	5.5	6.7	4.1	2.6			
		20									_			7.1	6.9	6.8	6.7	6.4	6.0	5.6	5.2	4.6	3.5	1.6			
5515-31	1 1/2	30			<u> </u>	<u> </u>				-			7.0	6.9	6.8	6.6	6.5	6.2	5.9	5.5	5.1	4.4	3.2	0.9			
		40			-	-			-			7.0	6.9	6.8	6.6	6.5	6.4	6.1	5.7	5.3	4.9	4.2	2.8				
	3	50			-	-				7.1	7.0	6.9	6.7	6.6	6.5	6.3	6.2	6.0	5.6	5.2	4.7	4.0	2.3				
		60	-	-		-			7.1	7.0	6.8	6.7	6.6	6.5	6.3	6.2	6.1	5.8	5.4	5.0	4.5	3.7	1.7				L
SHUT-OFF	PSI:								320	311	303	294	285	277	268	259	251	233	207	181	155	121	77	34			

See 5S performance curves for higher head models. SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

Worksheet: *Peter Piper picked a peck of pickled pumps!*

How to size a pump:

- 1. What is required/desired flow (GPM)
- 2. Determine TDH
- 3. Consult Pump Curve(s)
- 4. Select wire size

How to size a pump:

What is required/desired flow? 5 GPM

Determine TDH

First, let's calculate friction loss!

Friction loss = total length X friction loss (straight pipe) factor + friction loss (fittings)

Friction loss = (____' X ____') + (__' X __)

Friction loss = ____' + ____'

Friction loss = ____' Head Pressure

Now we can calculate TDH!

TDH = pumping level + vertical rise + friction loss

TDH = ____' + ____' + ____'

TDH = ____′

Now that we know the TDH and required/desired flow, we can select a pump from a performance curve.

Which 4" pump/motor combination will deliver 5 GPM at the calculated TDH?

Friction Loss Table – SCH 40 PVC

(Friction Loss in Feet of Head Per 100 Feet of Pipe)

		1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"
		ID								
GPM	GPH	0.622"	0.824"	1.049"	1.380"	1.610"	2.067"	2.469"	3.068"	4.026"
2	120	4.1								
3	180	8.7	2.2							
4	240	14.8	3.7							
5	300	22.2	5.7	1.8						
6	360	31.2	8	2.5						
7	420	41.5	10.6	3.3						
8	480	53	13.5	4.2						
9	540	66	16.8	5.2						
10	600	80.5	20.4	6.3	1.7					
12	720		28.6	8.9	2.3	1.1				
14	840		38	11.8	3.1	1.4				
16	960		48.6	15.1	4	1.9				
20	1,200		60.5	22.8	6	2.8				
25	1,500			38.7	9.1	4.3	1.3			
30	1,800				12.7	6	1.8			
35	2,100				16.9	8	2.4			
40	2,400				21.6	10.2	3	1.1		
45	2,700				28	12.5	3.8	1.4		
50	3,000					15.4	4.6	1.7		
60	3,600					21.6	6.4	2.3		
70	4,200					28.7	8.5	3	1.2	
80	4,800					36.8	10.9	3.8	1.4	
90	5,400					45.7	13.6	4.8	1.8	
100	6,000					56.6	16.5	5.7	2.2	
120	7,200						23.1	8	3	
140	8,400						30.6	10.5	4	1.1
160	9,600						39.3	13.4	5	1.4
200	12,000						66.3	20.1	7.6	2.1
260	15,600							32.4	12.2	3.4
300	18,000							42.1	15.8	4.4

Friction Loss Table – VALVES and FITTINGS

(Friction Loss in Equivalent Number of Feet of Straight Pipe)

		NON	/INAL	SIZ	ITTING AND PIPE					
TYPE OF FITTING	PIPE AND	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"		
AND APPLICATION	FITTING	EQUIVALENT LENGTH OF PIPE(IN FEET)								
Insert Coupling	Plastic	3	3	3	3	3	3	3		
Threaded Adapter										
(Plastic to Thread)	Plastic	3	3	3	3	3	3	3		
90° Standard Elbow	Steel	2	2	3	4	4	5	6		
	Plastic	2	2	3	4	4	5	6		
Standard Tee	Steel	1	2	2	3	3	4	4		
(Flow Through Run)	Plastic	1	2	2	3	3	4	4		
Standard Tee	Steel	4	5	6	7	8	11	13		
(Flow Through Side)	Plastic	4	5	6	7	8,	11	13		
Gate Valve ¹	Steel	1	1	1	1	2	2	2		
Swing Check Valve ¹	• Steel	5	7	9	12	13	17	21		

How to size a pump:

What is required/desired flow? 5 GPM

Determine TDH

First, let's calculate friction loss!

Friction loss = total length X friction loss (straight pipe) factor + friction loss (fittings)

Friction loss = $(922 , X _1.8 '/ _100) + (3' X _2) (1.8'/100')$

Friction loss = <u>16.60 '</u> + <u>.108 '</u>

Friction loss = <u>17</u>' Head Pressure

Now we can calculate TDH!

TDH = pumping level + vertical rise + friction loss

TDH = <u>500</u> ' + <u>222</u> ' + <u>17</u> '

TDH = <u>739 ′</u>

Now that we know the TDH and required/desired flow, we can select a pump from a performance curve.

PERFORMANCE CURVES 5 GPM

MODEL 5S

How to size a pump:

What is required/desired flow? 5 GPM

Determine TDH

First, let's calculate friction loss!

Friction loss = total length X friction loss (straight pipe) factor + friction loss (fittings)

Friction loss = $(922 , X _1.8 '/ _100) + (3' X _2) (1.8'/100')$

Friction loss = <u>16.60 '</u> + <u>.108 '</u>

Friction loss = <u>17</u>' Head Pressure

Now we can calculate TDH!

TDH = pumping level + vertical rise + friction loss

TDH = <u>500</u> ' + <u>222</u> ' + <u>17</u> '

TDH = <u>739 /</u>

Now that we know the TDH and required/desired flow, we can select a pump from a performance curve.

Which 4" pump/motor combination will deliver 5 GPM at the calculated TDH?

5520-39DS (2 HP).

MAXIMUM MOTOR CABLE LENGTH

TABLE 8-Q(2) Single Phase 60Hz (Motor Service to Entrance)

Motor F	Rating						Сор	per Wir	e Size					1
Volts	HP	14	12	10	8	6	4	2	0	00	000	0000	250	300
115	1/3	130	210	340	540	840	1300	1960	2910				Ý	
	1/2	100	160	250	390	620	960	1460	2160					
	1/3	550	880	1390	2190	3400	5250	7960	Denade 1					
230	1/2	400	650	1020	1610	2510	3880	5880						
	3/4	300	480	760	1200	1870	2890	4370	6470					
	1	250	400	630	990	1540	2380	3610	5360	6520				
, , ,	1 ¹ / ₂	190	310	480	770	1200	1870	2850	4280	5240				
	2	150	250	390	620	970	1530	2360	3620	4480				
	3	120	190	300	470	750	1190	1850	2890	3610				
	5			180	280	450	710	1110	1740	2170				
	71/2				200	310	490	750	1140	1410				
	10					250	390	600	930	1160				
Three Pha	ase 60H	z												

Volts	HP	14	12	10	8	6	4	2	0	00	000	0000	250	300
208	1 ¹ / ₂	310	500	790	1260				rtosib art		ni X-ta minh		serie anici	
	2	240	390	610	970	1520								
	3	180	290	470	740	1160	1810							
	5		170	280	440	690	1080	1660						
	7 ¹ / ₂			200	310	490	770	1180	1770					
	10		10.69		230	370	570	880	1330	1640			9-5-2600	
	15					250	390	600	910	1110	1340			
	20						300	460	700	860	1050	1270		
	25							370	570	700	840	1030	1170	
	30		REF.					310	470	580	700	850	970	1110
230	1 ¹ / ₂	360	580	920	1450									
	2	280	450	700	1110	1740								
	3	210	340	540	860	1340	2080				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
	5		200	320	510	800	1240	1900	-					
	7 ¹ / ₂			230	360	570	890	1350	2030					
	10		10 ave 100		270	420	660	1010	1520	1870	to all the to the		and set of the	
	15					290	450	690	1040	1280	1540			
	20						350	530	810	990	1200	1450		
	25						280	430	650	800	970	1170	1340	
	30						Lent.	350	540	660	800	970	1110	1270

• The gauge of the wire is a function of your operating voltage and length.

Maintenance & Repair

- Q: It's been two years and the bowls are worn out on my submersible pump. What do I do?
- A: Go back in time and design a better well screen and filter pack.
- A: Okay, you'll have to pull the pump. Go ahead and hire someone with a well service rig. DON'T TRY IT YOURSELF!
- Well professionals have the right kind of equipment to pull a submersible pump without damaging the drop pipe, power cable and pump itself.
- You don't.

Maintenance & Repair

- Q: My pump just stopped working. What happened?
- A: A lot of things could be the problem, but a common issue is motor burn-out.
- If water doesn't flow around the motor housing on its way to the intake, the motor isn't being cooled properly. This can lead to overheating.
- Set your pump above your screen interval but below your dynamic pumping level so water comes from below.
- If conditions preclude this design, consider a shroud.

