2015 EDITION

CLICK ANYWHERE on THIS PAGE to RETURN TO WATER PUMP & TANK I&O & REPAIR MANUALS at InspectApedia.com

Franklin Electric is committed to provide customers with defect free products through our program of continuous improvement.

Quality shall, in every case, take precedence over quantity.

ATTENTION! IMPORTANT INFORMATION FOR INSTALLERS OF THIS EQUIPMENT!

THIS EQUIPMENT IS INTENDED FOR INSTALLATION BY TECHNICALLY QUALIFIED PERSONNEL. FAILURE TO INSTALL IT IN COMPLIANCE WITH NATIONAL AND LOCAL ELECTRICAL CODES, AND WITHIN FRANKLIN ELECTRIC RECOMMENDATIONS, MAY RESULT IN ELECTRICAL SHOCK OR FIRE HAZARD, UNSATISFACTORY PERFORMANCE, AND EQUIPMENT FAILURE. FRANKLIN INSTALLATION INFORMATION IS AVAILABLE FROM PUMP MANUFACTURERS AND DISTRIBUTORS, AND DIRECTLY FROM FRANKLIN ELECTRIC. CALL FRANKLIN TOLL FREE 800-348-2420 FOR INFORMATION.

WARNING

SERIOUS OR FATAL ELECTRICAL SHOCK MAY RESULT FROM FAILURE TO CONNECT THE MOTOR, CONTROL ENCLOSURES, METAL PLUMBING, AND ALL OTHER METAL NEAR THE MOTOR OR CABLE, TO THE POWER SUPPLY GROUND TERMINAL USING WIRE NO SMALLER THAN MOTOR CABLE WIRES. TO REDUCE RISK OF ELECTRICAL SHOCK, DISCONNECT POWER BEFORE WORKING ON OR AROUND THE WATER SYSTEM. DO NOT USE MOTOR IN SWIMMING AREAS.

ATTENTION! INFORMATIONS IMPORTANTES POUR L'INSTALLATEUR DE CET EQUIPEMENT.

CET EQUIPEMENT DOIT ETRE INTALLE PAR UN TECHNICIEN QUALIFIE. SI L'INSTALLATION N'EST PAS CONFORME AUX LOIS NATIONALES OU LOCALES AINSI QU'AUX RECOMMANDATIONS DE FRANKLIN ELECTRIC, UN CHOC ELECTRIQUE, LE FEU, UNE PERFORMANCE NON ACCEPTABLE, VOIRE MEME LE NON-FONCTIONNEMENT PEUVENT SURVENIR. UN GUIDE D'INSTALLATION DE FRANKLIN ELECTRIC EST DISPONIBLE CHEZ LES MANUFACTURIERS DE POMPES, LES DISTRIBUTEURS, OU DIRECTEMENT CHEZ FRANKLIN. POUR DE PLUS AMPLES RENSEIGNEMENTS, APPELEZ SANS FRAIS LE 800-348-2420.

AVERTISEMENT

UN CHOC ELECTRIQUE SERIEUX OU MEME MORTEL EST POSSIBLE, SI L'ON NEGLIGE DE CONNECTER LE MOTEUR, LA PLOMBERIE METALLIQUE, BOITES DE CONTROLE ET TOUT METAL PROCHE DU MOTEUR A UN CABLE ALLANT VERS UNE ALIMENTATION D'ENERGIE AVEC BORNE DE MISE A LA TERRE UTILISANT AU MOINS LE MEME CALIBRE QUE LES FILS DU MOTEUR. POUR REDUIRE LE RISQUE DE CHOC ELECTRIQUE. COUPER LE COURANT AVANT DE TRAVAILLER PRES OU SUR LE SYSTEM D'EAU. NE PAS UTILISER CE MOTEUR DANS UNE ZONE DE BAIGNADE.

ATENCION! INFORMACION PARA EL INSTALADOR DE ESTE EQUIPO.

PARA LA INSTALACION DE ESTE EQUIPO, SE REQUIERE DE PERSONAL TECNICO CALIFICADO. EL NO CUMPLIR CON LAS NORMAS ELECTRICAS NACIONALES Y LOCALES, ASI COMO CON LAS RECOMENDACIONES DE FRANKLIN ELECTRIC DURANTE SU INSTALACION, PUEDE OCASIONAR, UN CHOQUE ELECTRICO, PELIGRO DE UN INCENDIO, OPERACION DEFECTUOSA E INCLUSO LA DESCOMPOSTURA DEL EQUIPO. LOS MANUALES DE INSTALACION Y PUESTA EN MARCHA DE LOS EQUIPOS, ESTAN DISPONIBLES CON LOS DISTRIBUIDORES, FABRICANTES DE BOMBAS O DIRECTAMENTE CON FRANKLIN ELECTRIC. PUEDE LLAMAR GRATUITAMENTE PARA MAYOR INFORMACION AL TELEFONO 800-348-2420.

ADVERTENCIA

PUEDE OCURRIR UN CHOQUE ELECTRICO, SERIO O FATAL DEBIDO A UNA ERRONEA CONECCION DEL MOTOR, DE LOS TABLEROS ELECTRICOS, DE LA TUBERIA, DE CUALQUIER OTRA PARTE METALICA QUE ESTA CERCA DEL MOTOR O POR NO UTILIZAR UN CABLE PARA TIERRA DE CALIBRE IGUAL O MAYOR AL DE LA ALIMENTACION. PARA REDUCIR EL RIESGO DE CHOQUE ELECTRIC, DESCONECTAR LA ALIMENTACION ELECTRICA ANTES DE INICIAR A TRABAJAR EN EL SISTEMA HIDRAULICO. NO UTILIZAR ESTE MOTOR EN ALBERCAS O AREAS EN DONDE SE PRACTIQUE NATACION.

Application • Installation • Maintenance Manual

The submersible motor is a reliable, efficient and trouble-free means of powering a pump. Its needs for a long operational life are simple. They are:

- 1. A suitable operating environment
- 2. An adequate supply of electricity
- 3. An adequate flow of cooling water over the motor
- 4. An appropriate pump load

All considerations of application, installation, and maintenance of submersible motors relating to these four areas are presented in this manual. Franklin Electric's web page, www.franklin-electric.com, should be checked for the latest updates.

Contents

Application

All Motors			
Storage	3	Three-Phase Motors	
Frequency of Starts	3	Cable Selection - 60 °C Three-Wire	16-17
Mounting Position	3	Cable Selection - 60 °C Six-Wire	
Transformer Capacity	4	Cable Selection - 75 °C Three-Wire	
Effects of Torque	4	Cable Selection - 75 °C Six-Wire	
Use of Engine Driven Generators		Three-Phase Motor Specifications	
Use of Check Valves	5	Overload Protection	
Well Diameters, Uncased, Top Feeding, Screens	6		
Water Temperature and Flow		Submersible Motor Installation Record (Action Facts)	
Flow Inducer Sleeve	6	Submersible Motor Installation Record (No. 2207)	
Pumptec Products		Submersible Booster Installation Record (No. 3655)	-
- Head Loss Past Motor	7	SubMonitor	
Hot Water Applications		Power Factor Correction	
Drawdown Seals		Three-Phase Starter Diagrams	
Grounding Control Boxes and Panels		Three-Phase Power Unbalance	
Grounding Surge Arrestors		Rotation and Current Unbalance	
Control Box, Pumptec Products and Panel Environment		Three-Phase Motor Lead Identification	-
Equipment Grounding		Phase Converters	
		Reduced Voltage Starters	
Single–Phase Motors		Inline Booster Pump Systems	
3-Wire Control Boxes	10	Variable Speed Operation	40-4
2-Wire Motor Solid State Controls		Electronic Products	
QD Relays (Solid State)		SubDrive/MonoDrive Overview	EC
Cable Selection 2-Wire or 3-Wire		SubDrive/MonoDrive Generator Sizing	
Two Different Cable Sizes		SubDrive/MonoDrive Ground Wire Location	
Single-Phase Motor Specifications		SubDrive/MonoDrive Fuse/Circuit Breaker Sizing	
Single-Phase Motor Fuse Sizing		SubDrive/MonoDrive Wire Sizing	
Auxiliary Running Capacitors		SubDrive/MonoDrive Pressure Tank Sizing	
Buck-Boost Transformers		SubDrive/MonoDrive Pressure Tank Pre-Charge	
Installation		Jabonte, rondome ressare talk ne enarge	
All Motors			
Submersible Motors - Dimensions	47	Pump to Motor Assembly	43
Tightening Lead Connector Jam Nut		Shaft Height and Free End Play	43
Pump to Motor Coupling		Submersible Leads and Cables	
Maintenance			
All Motors		Integral hp Control Box Parts	
System Troubleshooting	11-15	Control Box Wiring Diagrams	53-57
Preliminary Tests		Electronic Controls	
Insulation Resistance			=
Resistance of Drop Cable		Pumptec-Plus Troubleshooting During Installation	
·	10 17	Pumptec-Plus and Pumptec After Installation	
Single–Phase Motors and Controls		QD Pumptec and Pumptec Troubleshooting	
Identification of Cables	48	SubDrive/MonoDrive Troubleshooting	
Single-Phase Control Boxes	48	SubMonitor Troubleshooting	
Ohmmeter Tests	49	Abbreviations	

Storage

Franklin Electric submersible motors are a water-lubricated design. The fill solution consists of a mixture of deionized water and Propylene Glycol (a non-toxic antifreeze). The solution will prevent damage from freezing in temperatures to -40 °F (-40 °C); motors should be stored in areas that do not go below this temperature. The solution will partially freeze below 27 °F (-3 °C), but no damage occurs. Repeated freezing and thawing should be avoided to prevent possible loss of fill solution.

There may be an interchange of fill solution with well water during operation. Care must be taken with motors removed from wells during freezing conditions to prevent damage.

When the storage temperature does not exceed 100 °F (37 °C), storage time should be limited to two years. Where temperatures reach 100° to 130 °F, storage time should be limited to one year.

Loss of a few drops of liquid will not damage the motor as an excess amount is provided, and the filter check valve will allow lost liquid to be replaced by filtered well water upon installation. If there is reason to believe there has been a considerable amount of leakage, consult the factory for checking procedures.

Frequency of Starts

The average number of starts per day over a period of months or years influences the life of a submersible pumping system. Excessive cycling affects the life of control components such as pressure switches, starters, relays, and capacitors. Rapid cycling can also cause motor spline damage, bearing damage, and motor overheating. All these conditions can lead to reduced motor life.

The pump size, tank size, and other controls should be selected to keep the starts per day as low as practical for longest life. The maximum number of starts per 24-hour period is shown in Table 3.

Motors should run a minimum of one minute to dissipate heat build up from starting current. Six inch and larger motors should have a minimum of 15 minutes between starts or starting attempts.

Table 3 Number of Starts

MOTOR	RATING	MAXIMUM STARTS PER 24 HR PERIOD					
НР	KW	SINGLE-PHASE	THREE-PHASE				
Up to 0.75	Up to 0.55	300	300				
1 thru 5.5	0.75 thru 4	100	300				
7.5 thru 30	5.5 thru 22	50	100*				
40 and over	30 and over	-	100				

^{*} Keeping starts per day within the recommended numbers provides the best system life. However, when used with a properly configured Reduced Voltage Starter (RVS) or Variable Frequency Drive (VFD), 7.5 thru 30 hp three-phase motors can be started up to 200 times per 24 hour period.

Mounting Position

Franklin submersible motors are designed primarily for operation in the vertical, shaft-up position.

During acceleration, the pump thrust increases as its output head increases. In cases where the pump head stays below its normal operating range during startup and full speed condition, the pump may create upward thrust. This creates upward thrust on the motor upthrust bearing. This is an acceptable operation for short periods at each start, but running continuously with upthrust will cause excessive wear on the upthrust bearing.

With certain additional restrictions as listed in this section and the Inline Booster Pump Systems sections of this manual, motors are also suitable for operation in positions from shaft-up to shaft-horizontal. As the mounting position becomes further from vertical and closer to horizontal, the probability of shortened thrust bearing life increases. For normal motor life expectancy with motor positions other than shaft-up, follow these recommendations:

- Minimize the frequency of starts, preferably to fewer than per 24-hour period.
 Six and eight inch motors should have a minimum of 20 minutes between starts or starting attempts
- Do not use in systems which can run even for short periods at full speed without thrust toward the motor.

Transformer Capacity - Single-Phase or Three-Phase

Distribution transformers must be adequately sized to satisfy the kVA requirements of the submersible motor. When transformers are too small to supply the load, there is a reduction in voltage to the motor.

Table 4 references the motor horsepower rating, single-phase and three-phase, total effective kVA required, and the smallest transformer required for open or closed

three-phase systems. Open systems require larger transformers since only two transformers are used.

Other loads would add directly to the kVA sizing requirements of the transformer bank.

Table 4 Transformer Capacity

МОТО	R RATING	TOTAL	SMALLEST KVA RATIN	G-EACH TRANSFORMER
НР	KW	EFFECTIVE KVA REQUIRED	OPEN WYE OR DELTA 2- Transformers	CLOSED Wye or delta 3- Transformers
1.5	1.1	3	2	1
2	1.5	4	2	1.5
3	2.2	5	3	2
5	3.7	7.5	5	3
7.5	5.5	10	7.5	5
10	7.5	15	10	5
15	11	20	15	7.5
20	15	25	15	10
25	18.5	30	20	10
30	22	40	25	15
40	30	50	30	20
50	37	60	35	20
60	45	75	40	25
75	55	90	50	30
100	75	120	65	40
125	93	150	85	50
150	110	175	100	60
175	130	200	115	70
200	150	230	130	75

NOTE: Standard kVA ratings are shown. If power company experience and practice allows transformer loading higher than standard, higher loading values may be used to meet total effective kVA required, provided correct voltage and balance is maintained.

Effects of Torque

During starting of a submersible pump, the torque developed by the motor must be supported through the pump, delivery pipe or other supports. Most pumps rotate in the direction which causes unscrewing torque on right-handed threaded pipe or pump stages. All threaded joints, pumps and other parts of the pump support system must be capable of withstanding the maximum torque repeatedly without loosening or breaking. Unscrewing joints will break electrical cable and may cause loss of the pump-motor unit.

To safely withstand maximum unscrewing torques with a minimum safety factor of 1.5, tightening all threaded joints to at least 10 lb-ft per motor horsepower is recommended (Table 4A). It may be necessary to tack or strap weld pipe joints on high horsepower pumps, especially at shallower settings.

Table 4A Torque Required (Examples)

МОТ	MINIMUM SAFE				
HP	KW	TORQUE-LOAD			
1 hp & Less	0.75 kW & Less	10 lb-ft			
20 hp	15 kW	200 lb-ft			
75 hp	55 kW	750 lb-ft			
200 hp	150 kW	2000 lb-ft			

Use of Engine Driven Generators - Single-Phase or Three-Phase

Table 5 lists minimum generator sizes based on typical 80 °C rise continuous duty generators, with 35% maximum voltage dip during starting, for Franklin's three-wire motors, single- or three-phase.

This is a general chart. The generator manufacturer should be consulted whenever possible, especially on larger sizes.

There are two types of generators available: externally and internally regulated. Most are externally regulated. They use an external voltage regulator that senses the output voltage. As the voltage dips at motor start-up, the regulator increases the output voltage of the generator.

Internally regulated (self-excited) generators have an extra winding in the generator stator. The extra winding senses the output current to automatically adjust the output voltage.

Generators must be sized to deliver at least 65% of the rated voltage during starting to ensure adequate starting torque. Besides sizing, generator frequency is important as the motor speed varies with the frequency (Hz). Due to pump affinity laws, a pump running at 1 to 2 Hz below motor nameplate frequency design will not meet its performance curve. Conversely, a pump running at 1 to 2 Hz above may trip overloads.

Generator Operation

Always start the generator before the motor is started and always stop the motor before the generator is shut down. The motor thrust bearing may be damaged if the generator is allowed to coast down with the motor running. This same condition occurs when the generator is allowed to run out of fuel.

Follow generator manufacturer's recommendations for de-rating at higher elevations or using natural gas.

Table 5 Engine Driven Generators

NOTE: This chart applies to 3-wire or 3-phase motors. For best starting of 2-wire motors, the minimum generator rating is 50% higher than shown.

MOTOR	RATING		MINIMUM RATING OF GENERATOR									
шь	WW	EXTERNAL	LY REGULATED	INTERNALLY	REGULATED							
HP	KW	KW	KVA	KW	KVA							
1/3	0.25	1.5	1.9	1.2	1.5							
1/2	0.37	2	2.5	1.5	1.9							
3/4	0.55	3	3.8	2	2.5							
1	0.75	4	5.0	2.5	3.13							
1.5	1.1	5	6.25	3	3.8							
2	1.5	7.5	9.4	4	5							
3	2.2	10	12.5	5	6.25							
5	3.7	15	18.75	7.5	9.4							
7.5	5.5	20	25.0	10	12.5							
10	7.5	30	37.5	15	18.75							
15	11	40	50	20	25							
20	15	60	75	25	31							
25	18.5	75	94	30	37.50							
30	22	100	125	40	50							
40	30	100	125	50	62.5							
50	37	150	188	60	75							
60	45	175	220	75	94							
75	55	250	313	100	125							
100	75	300	375	150	188							
125	93	375	469	175	219							
150	110	450	563	200	250							
175	130	525	656	250	313							
200	150	600	750	275	344							

WARNING: To prevent accidental electrocution, automatic or manual transfer switches must be used any time a generator is used as standby or back up on power lines. Contact power company for use and approval.

Use of Check Valves

It is recommended that one or more check valves always be used in submersible pump installations. If the pump does not have a built-in check valve, a line check valve should be installed in the discharge line within 25 feet of the pump and below the draw down level of the water supply. For deeper settings, check valves should be installed per the manufacturer's recommendations. More than one check valve may be required, but more than the recommended number of check valves should not be used.

Swing type check valves are **not** acceptable and should never be used with submersible motors/pumps. Swing type check valves have a slower reaction time which can cause water hammer (see next page). Internal pump check valves or spring loaded check valves close quickly and help eliminate water hammer.

Check valves are used to hold pressure in the system when the pump stops. They also prevent backspin, water hammer and upthrust. Any of these can lead to early pump or motor failure.

NOTE: Only positive sealing check valves should be used in submersible installations. Although drilling the check valves or using drain-back check valves may prevent back spinning, they create upthrust and water hammer problems.

A. Backspin - With no check valve or a failed check valve, the water in the drop pipe and the water in the system can flow down the discharge pipe when the motor

- stops. This can cause the pump to rotate in a reverse direction. If the motor is started while it is backspinning, an excessive force is placed across the pumpmotor assembly that can cause impeller damage, motor or pump shaft breakage, excessive bearing wear, etc.
- B. Upthrust With no check valve, a leaking check valve, or drilled check valve, the unit starts under a zero head condition. This causes an uplifting or upthrust on the impeller-shaft assembly in the pump. This upward movement carries across the pump-motor coupling and creates an upthrust condition in the motor. Repeated upthrust can cause premature failure of both the pump and the motor.
- Water Hammer If the lowest check valve is more than 30 feet above the standing (lowest static) water level, or a lower check valve leaks and the check valve above holds, a vacuum is created in the discharge piping. On the next pump start, water moving at very high velocity fills the void and strikes the closed check valve and the stationary water in the pipe above it, causing a hydraulic shock. This shock can split pipes, break joints and damage the pump and/or motor. Water hammer can often be heard or felt. When discovered, the system should be shut down and the pump installer contacted to correct the problem.

Wells – Large Diameter, Uncased, Top Feeding and Screened Sections

Franklin Electric submersible motors are designed to operate with a cooling flow of water over and around the full length of the motor.

If the pump installation does not provide the minimum flow shown in Table 6, a flow inducer sleeve (flow sleeve) must be used. The conditions requiring a flow sleeve are:

- Well diameter is too large to meet Table 6 flow requirements
- Pump is in an open body of water
- Pump is in a rock well or below the well casing
- The well is "top-feeding" (a.k.a. cascading)
- Pump is set in or below screens or perforations

Water Temperature and Flow

Franklin Electric's standard submersible motors, except Hi-Temp designs (see note below), are designed to operate up to maximum service factor horsepower in water up to 86 °F (30 °C). A flow of 0.25 ft/s for 4" motors rated 3 hp and higher, and 0.5 ft/s for 6" and 8" motors is required for proper cooling. Table 6 shows minimum flow rates, in gpm, for various well diameters and motor sizes.

If a standard motor is operated in water over 86 °F (30 °C), water flow past the motor must be increased to maintain safe motor operating temperatures. See HOT WATER APPLICATIONS on page 7.

NOTE: Franklin Electric offers a line of Hi-Temp motors designed to operate in water at higher temperatures or lower flow conditions. Consult factory for details.

Table 6 Required Cooling Flow

MINIMUM	GPM REQUIRED FOR MOTOR COOL	ING IN WATER UP TO 86	5 °F (30 °C)		
CASING OR SLEEVE ID INCHES (MM)	4" MOTOR (3-10 HP) 0.25 FT/S GPM (L/M)	6" MOTOR 0.50 FT/S GPM (L/M)	8" MOTOR 0.50 FT/S GPM (L/M)		
4 (102)	1.2 (4.5)	-	-		
5 (127)	7 (26.5)	-	-		
6 (152)	13 (49)	9 (34)	-		
7 (178)	20 (76)	25 (95)	-		
8 (203)	30 (114)	45 (170)	10 (40)		
10 (254)	50 (189)	90 (340)	55 (210)		
12 (305)	80 (303)	140 (530)	110 (420)		
14 (356)	110 (416)	200 (760)	170 (645)		
16 (406)	150 (568)	280 (1060)	245 (930)		

0.25 ft/s = 7.62 cm/sec 0.50 ft/s = 15.24 cm/sec

1 inch = 2.54 cm

Flow Inducer Sleeve

If the flow rate is less than specified, then a flow inducer sleeve must be used. A flow sleeve is always required in an open body of water. FIG. 1 shows a typical flow inducer sleeve construction.

EXAMPLE: A 6" motor and pump that delivers 60 gpm will be installed in a 10" well.

From Table 6, 90 gpm would be required to maintain proper cooling. In this case adding an 8" or smaller flow sleeve provides the required cooling.

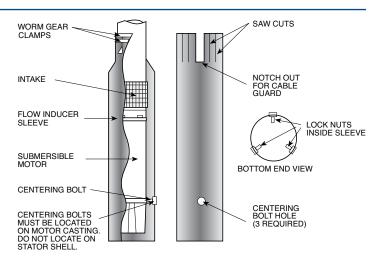


FIG. 1

Table 7 lists the approximate head loss due to flow between an average length motor and smooth casing or flow inducer sleeve.

Table 7 Head Loss in Feet (Meters) at Various Flow Rates

MO	MOTOR DIAMETER		4"	4"	6"	6"	6"	8"	8"
CASING	ID IN INCHES (MM)	4 (102)	5 (127)	6 (152)	6 (152)	7 (178)	8 (203)	8.1 (206)	10 (254)
	25 (95)	0.3 (.09)							
	50 (189)	1.2 (.37)							
	100 (378)	4.7 (1.4)	0.3 (.09)		1.7 (.52)				
	150 (568)	10.2 (3.1)	0.6 (.18)	0.2 (.06)	3.7 (1.1)				
(m/J)	200 (757)		1.1 (.34)	0.4 (.12)	6.3 (1.9)	0.5 (.15)		6.8 (2.1)	
udb ı	250 (946)		1.8 (.55)	0.7 (.21)	9.6 (2.9)	0.8 (.24)		10.4 (3.2)	
flow Rate in gpm (J/m)	300 (1136)		2.5 (.75)	1.0 (.30)	13.6 (4.1)	1.2 (.37)	0.2 (.06)	14.6 (4.5)	
Flow	400 (1514)				23.7 (7.2)	2.0 (.61)	0.4 (.12)	24.6 (7.5)	
	500 (1893)					3.1 (.94)	0.7 (.21)	37.3 (11.4)	0.6 (0.2)
	600 (2271)					4.4 (1.3)	1.0 (.30)	52.2 (15.9)	0.8 (0.3)
	800 (3028)								1.5 (0.5)
	1000 (3785)								2.4 (0.7)

Hot Water Applications (Standard Motors)

Franklin Electric offers a line of Hi-Temp motors which are designed to operate in water with various temperatures up to 194 °F (90 °C) without increased flow. When a standard pump-motor operates in water hotter than 86 °F (30 °C), a flow rate of at least 3 ft/s is required. When selecting the motor to drive a pump in over 86 °F (30 °C) water, the motor horsepower must be de-rated per the following procedure.

 Using Table 7A, determine pump gpm required for different well or sleeve diameters. If necessary, add a flow sleeve to obtain at least 3 ft/s flow rate.

Table 7A Minimum gpm (I/m) Required for 3 ft/s (.91 m/sec) Flow Rate

CASING SLEEVE			HIGH Motor	6" N	10TOR	8″ N	10TOR
INCHES	(MM)	GPM	(L/M)	GPM	(L/M)	GPM	(L/M)
4	(102)	15	(57)				
5	(127)	80	(303)				
6	(152)	160	(606)	52	(197)		
7	(178)			150	(568)		
8	(203)			260	(984)	60	(227)
10	(254)			520	(1970)	330	(1250)
12	(305)					650	(2460)
14	(356)					1020	(3860)
16	(406)					1460	(5530)

2. Determine pump horsepower required from the pump manufacturer's curve.

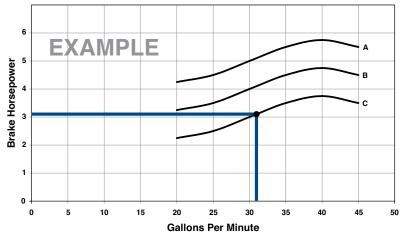


FIG. 2 MANUFACTURER'S PUMP CURVE

Table 8 Heat Factor Multiplier at 3 ft/s (.91 m/sec) Flow Rate

3. Multiply the pump horsepower required by the heat factor multiplier from Table 8.

MAXIMUM Water Temperature	1/3 - 5 HP .25 - 3.7 KW	7 1/2 - 30 HP 5.5 - 22 KW	OVER 30 HP OVER 22 KW
140 °F (60 °C)	1.25	1.62	2.00
131 °F (55 °C)	1.11	1.32	1.62
122 °F (50 °C)	1.00	1.14	1.32
113 °F (45 °C)	1.00	1.00	1.14
104 °F (40 °C)	1.00	1.00	1.00
95 °F (35 °C)	1.00	1.00	1.00

Table 8A Service Factor Horsepower

Select a rated hp motor on Table 8A whose Service Factor Horsepower is at least the value calculated in Item 3.

HP	KW	SFHP	HP	KW	SFHP	HP	KW	SFHP	HP	KW	SFHP
1/3	0.25	0.58	3	2.2	3.45	25	18.5	28.75	100	75	115.00
1/2	0.37	0.80	5	3.7	5.75	30	22.0	34.50	125	93	143.75
3/4	0.55	1.12	7.5	5.5	8.62	40	30.0	46.00	150	110	172.50
1	0.75	1.40	10	7.5	11.50	50	37.0	57.50	175	130	201.25
1.5	1.10	1.95	15	11.0	17.25	60	45.0	69.00	200	150	230.00
2	1.50	2.50	20	15.0	23.00	75	55.0	86.25			

Hot Water Applications – Example

EXAMPLE: A 6" pump end requiring 39 hp input will pump 124 °F water in an 8" well at a delivery rate of 140 gpm. From Table 7A, a 6" flow sleeve will be required to increase the flow rate to at least 3 ft/s.

Using Table 8, the 1.62 heat factor multiplier is selected because the hp required is over 30

hp and water temperature is above 122 °F. Multiply 39 hp x 1.62 (multiplier), which equals 63.2 hp. This is the minimum rated service factor horsepower usable at 39 hp in 124 °F. Using Table 8A, select a motor with a rated service factor horsepower above 63.2 hp. A 60 hp motor has a service factor horsepower of 69, so a 60 hp motor may be used.

Drawdown Seals

Allowable motor temperature is based on atmospheric pressure or higher surrounding the motor. "Drawdown seals," which seal the well to the pump above its intake to

maximize delivery are not recommended, since the suction created can be lower than atmospheric pressure.

Grounding Control Boxes and Panels

The National Electrical Code requires that the control box or panel-grounding terminal always be connected to supply ground. If the circuit has no grounding conductor and no metal conduit from the box to supply panel, use a wire at least as large as line conductors and connect as required by the National Electrical Code, from the grounding terminal to the electrical supply ground.

WARNING: Failure to ground the control frame can result in a serious or fatal electrical shock hazard.

Grounding Surge Arrestors

An above ground surge arrestor must be grounded, metal to metal, all the way to the lowest draw down water strata for the surge arrestor to be effective. GROUNDING THE ARRESTOR TO THE SUPPLY GROUND OR TO A DRIVEN GROUND ROD PROVIDES LITTLE OR NO SURGE PROTECTION FOR THE MOTOR.

Control Box, Pumptec Products, and Panel Environment

Franklin Electric control boxes, Pumptec products and three-phase panels meet UL requirements for NEMA Type 3R enclosures. They are suitable for indoor and outdoor applications within temperatures of +14 °F (-10 °C) to 122 °F (50 °C). Operating control boxes below +14 °F can cause reduced starting torque and loss of overload protection when overloads are located in control boxes.

Control boxes, Pumptec products, and three-phase panels should never be mounted in direct sunlight or high temperature locations. This will cause shortened capacitor life (where applicable) and unnecessary tripping of overload protectors. A ventilated

enclosure painted white to reflect heat is recommended for an outdoor, high temperature location.

A damp well pit, or other humid location, accelerates component failure from corrosion. Control boxes with voltage relays are designed for vertical upright mounting only. Mounting in other positions will affect the operation of the relay.

Equipment Grounding

WARNING: Serious or fatal electrical shock may result from failure to connect the motor, control enclosures, metal plumbing, and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires.

The primary purpose of grounding the metal drop pipe and/or metal well casing in an installation is safety. It is done to limit the voltage between nonelectrical (exposed metal) parts of the system and ground, thus minimizing dangerous shock hazards. Using wire at least the size of the motor cable wires provides adequate current-carrying capability for any ground fault that might occur. It also provides a low resistance path to ground, ensuring that the current to ground will be large enough to trip any overcurrent device designed to detect faults (such as a ground fault circuit interrupter, or GFCI).

Normally, the ground wire to the motor would provide the primary path back to the power supply ground for any ground fault. There are conditions, however, where the ground wire connection could become compromised. One such example would be the case where the water in the well is abnormally corrosive or aggressive. In this example, a grounded metal drop pipe or casing would then become the primary path to ground.

However, the many installations that now use plastic drop pipes and/or casings require further steps to be taken for safety purposes, so that the water column itself does not become the conductive path to ground.

When an installation has abnormally corrosive water AND the drop pipe or casing is plastic, Franklin Electric recommends the use of a GFCI with a 10 mA set-point. In this case, the motor ground wire should be routed through the current-sensing device along with the motor power leads. Wired this way, the GFCI will trip only when a ground fault has occurred AND the motor ground wire is no longer functional.

3-Wire Control Boxes

Single-phase three-wire submersible motors require the use of control boxes. Operation of motors without control boxes or with incorrect boxes can result in motor failure and voids warranty.

Control boxes contain starting capacitors, a starting relay, and, in some sizes, overload protectors, running capacitors, and contactors.

Ratings through 1 hp may use either a Franklin Electric solid state QD or a potential (voltage) type starting relay, while larger ratings use potential relays.

Potential (Voltage) Relays

Potential relays have normally closed contacts. When power is applied, both start and main motor windings are energized, and the motor starts. At this instant, the voltage across the start winding is relatively low and not enough to open the contacts of the relay.

As the motor accelerates, the increasing voltage across the start winding (and the relay coil) opens the relay contacts. This opens the starting circuit and the motor continues to run on the main winding alone, or the main plus run capacitor circuit. After the motor is started the relay contacts remain open.

CAUTION: The control box and motor are two pieces of one assembly. Be certain that the control box and motor hp and voltage match. Since a motor is designed to operate with a control box from the same manufacturer, we can promise warranty coverage only when a Franklin control box is used with a Franklin motor.

2-Wire Motor Solid State Controls

BIAC Switch Operation

When power is applied the bi-metal switch contacts are closed, so the triac is conducting and energizes the start winding. As rpm increases, the voltage in the sensor coil generates heat in the bi-metal strip, causing the bi-metal strip to bend and open the switch circuit. This removes the starting winding and the motor continues to run on the main winding alone.

Approximately 5 seconds after power is removed from the motor, the bi-metal strip cools sufficiently to return to its closed position and the motor is ready for the next start cycle. If, during operation, the motor speed drops, the lowered voltage in the sensor coil allows the bi-metal contacts to close, and bring the motor back to operating speed.

Rapid Cycling

The BIAC starting switch will reset within approximately 5 seconds after the motor is stopped. If an attempt is made to restart the motor before the starting switch has reset, the motor may not start; however, there will be current in the main winding until the overload protector interrupts the circuit. The time for the protector to reset is longer

than the reset of the starting switch. Therefore, the start switch will have closed and the motor will operate.

A waterlogged tank will cause fast cycling. When a waterlogged condition does occur, the user will be alerted to the problem during the off time (overload reset time) since the pressure will drop drastically. When the waterlogged tank condition is detected, the condition should be corrected to prevent nuisance tripping of the overload protector.

Bound Pump (Sandlocked)

When the motor is not free to turn, as with a sandlocked pump, the BIAC switch creates a "reverse impact torque" in the motor in either direction. When the sand is dislodged, the motor will start and operate in the correct direction.

CAUTION: Restarting the motor within 5 seconds after power is removed may cause the motor overload to trip.

QD Relays (Solid State)

There are two elements in the relay: a reed switch and a triac. The reed switch consists of two tiny rectangular blade-type contacts, which bend under magnetic flux. It is hermetically sealed in glass and is located within a coil, which conducts line current. When power is supplied to the control box, the main winding current passing through the coil immediately closes the reed switch contacts. This turns on the triac, which supplies voltage to the start winding, thus starting the motor.

Once the motor is started, the operation of the QD relay is an interaction between the triac, the reed switch, and the motor windings. The solid state switch senses motor

speed through the changing phase relationship between start winding current and line current. As the motor approaches running speed, the phase angle between the start current and the line current becomes nearly in phase. At this point, the reed switch contacts open, turning off the triac. This removes voltage from the start winding and the motor continues to run on the main winding only. With the reed switch contacts open and the triac turned off, the QD relay is ready for the next starting cycle.

2- or 3-Wire Cable, 60 Hz (Service Entrance to Motor - Maximum Length In Feet)

Table 11														60)°C
	MOTOR RATING 60 °C INSULATION – AWG COPPER WIRE SIZE														
VOLTS	HP	KW	14	14 12 10 8 6 4 3 2 1 0 00							000	0000			
115	1/2	.37	100	160	250	390	620	960	1190	1460	1780	2160	2630	3140	3770
	1/2	.37	400	650	1020	1610	2510	3880	4810	5880	7170	8720			
	3/4	.55	300	480	760	1200	1870	2890	3580	4370	5330	6470	7870		
	1	.75	250	400	630	990	1540	2380	2960	3610	4410	5360	6520		
	1.5	1.1	190	310	480	770	1200	1870	2320	2850	3500	4280	5240		
230	2	1.5	150	250	390	620	970	1530	1910	2360	2930	3620	4480		
250	3	2.2	120	190	300	470	750	1190	1490	1850	2320	2890	3610		
	5	3.7	0	0	180	280	450	710	890	1110	1390	1740	2170	2680	
	7.5	5.5	0	0	0	200	310	490	610	750	930	1140	1410	1720	
	10	7.5	0	0	0	0	250	390	490	600	750	930	1160	1430	1760
	15	11	0	0	0	0	170	270	340	430	530	660	820	1020	1260

75°C Table 11A MOTOR RATING 75 °C INSULATION - AWG COPPER WIRE SIZE **VOLTS** KW 1/2 .37 1/2 .37 3/4 .55 .75 1.5 1.1 1.5 2.2 3.7 7.5 5.5

1 Foot = .3048 Meter

7.5

Lengths in **BOLD** only meet the US National Electrical Code ampacity requirements for individual conductors 60 °C or 75 °C in free air or water, not in magnetic enclosures, conduit or direct buried.

Lengths NOT in bold meet the NEC ampacity requirements for either individual conductors or jacketed 60 °C or 75 °C cable and can be in conduit or direct buried. Flat molded and web/ribbon cable are considered jacketed cable.

If any other cable is used, the NEC and local codes should be observed.

Cable lengths in Tables 11 & 11A allow for a 5% voltage drop running at maximum nameplate amperes. If 3% voltage drop is desired, multiply Table 11 and 11A lengths by 0.6 to get maximum cable length.

The portion of the total cable length, which is between the supply and single-phase control box with a line contactor, should not exceed 25% of total maximum allowable to ensure reliable contactor operation. Single-phase control boxes without line contactors may be connected at any point in the total cable length.

Tables 11 & 11A are based on copper wire. If aluminum wire is used, it must be two sizes larger than copper wire and oxidation inhibitors must be used on connections.

EXAMPLE: If Tables 11 & 11A call for #12 copper wire, #10 aluminum wire would be required.

Contact Franklin Electric for 90 °C cable lengths.

See pages 15, 50, and 51 for applications using 230 V motors on 208 V power systems.

Two or More Different Cable Sizes Can Be Used

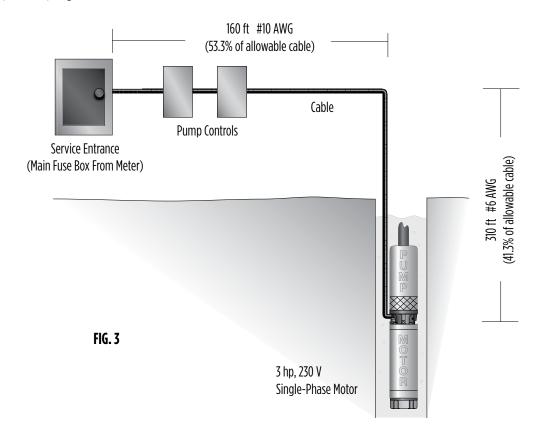
Depending on the installation, any number of combinations of cable may be used.

For example, in a replacement/upgrade installation, the well already has 160 feet of buried #10 cable between the service entrance and the wellhead. A new 3 hp, 230-volt, single-phase motor is being installed to replace a smaller motor. The question is: Since there is already 160 feet of #10 AWG installed, what size cable is required in the well with a 3 hp, 230-volt, single-phase motor setting at 310 feet?

From Tables 11 & 11A, a 3 hp motor can use up to 300 feet of #10 AWG cable.

The application has 160 feet of #10 AWG copper wire installed.

Using the formula below, 160 feet (actual) \div 300 feet (max allowable) is equal to 0.533. This means 53.3% (0.533 x 100) of the allowable voltage drop or loss, which is allowed between the service entrance and the motor, occurs in this wire. This leaves us 46.7% (1.00 - 0.533 = 0.467) of some other wire size to use in the remaining 310 feet "down hole" wire run.


The table shows #8 AWG copper wire is good for 470 feet. Using the formula again, 310 feet (used) ÷ 470 feet (allowed) = 0.660; adding this to the 0.533 determined earlier; 0.533 + 0.660 = 1.193. This combination is greater than 1.00, so the voltage drop will not meet US National Electrical Code recommendations.

Tables 11 & 11A show #6 AWG copper wire is good for 750 feet. Using the formula, $310 \div 750 = 0.413$, and using these numbers, $0.533 \div 0.413 = 0.946$, we find this is less than 1.00 and will meet the NEC recommended voltage drop.

This works for two, three or more combinations of wire and it does not matter which size wire comes first in the installation.

EXAMPLE: 3 hp, 230-Volt, Single-Phase Motor

Single-Phase Motors

APPLICATION

Table 13 Single-Phase Motor Specifications (60 Hz) 3450 rpm

TYPE	MOTOR MODEL			RATING				JLL Dad		IMUM Ad	WINDING (1) Res. In Ohms	EFFIC	IENCY %		WER OR %	LOCKED ROTOR	KVA
IIFE	PREFIX	HP	KW	VOLTS	HZ	S.F.	(2) AMPS	WATTS	(2) Amps	WATTS	M=MAIN RES. S=START RES.	S.F.	E.L.	S.F.	F.L.	AMPS	CODE
	244504	1/2	0.37	115	60	1.6	10.0	670	12.0	960	1.0-1.3	62	56	73	58	64.4	R
4" 2-WIRE	244505	1/2	0.37	230	60	1.6	5.0	670	6.0	960	4.2-5.2	62	56	73	58	32.2	R
7-N	244507	3/4	0.55	230	60	1.5	6.8	940	8.0	1310	3.0-3.6	64	59	74	62	40.7	N
4"	244508	1	0.75	230	60	1.4	8.2	1210	10.4	1600	2.2-2.7	65	62	74	63	48.7	N
	244309	1.5	1.1	230	60	1.3	10.6	1770	13.1	2280	1.5-2.1	64	63	83	76	66.2	М
	214504	1/2	0.37	115	60	1.6	Y10.0 B10.0 R0	670	Y12.0 B12.0 R0	960	M1.0-1.3 S4.1-5.1	62	56	73	58	50.5	М
WIRE	214505	1/2	0.37	230	60	1.6	Y5.0 B5.0 R0	670	Y6.0 B6.0 R0	960	M4.2-5.2 S16.7-20.5	62	56	73	58	23	М
4"3-WIRE	214507	3/4	0.55	230	60	1.5	Y6.8 B6.8 R0	940	Y8.0 B8.0 R0	1310	M3.0-3.6 S10.7-13.1	64	59	74	62	34.2	М
	214508	1	0.75	230	60	1.4	Y8.2 B8.2 R0	1210	10.4 10.4 R0	1600	M2.2-2.7 S9.9-12.1	65	62	74	63	41.8	L
8	214505	1/2	0.37	230	60	1.6	Y3.2 B3.7 R2.0	655	Y4.3 B4.0 R2.0	890	M4.2-5.2 S16.7-20.5	67	57	90	81	23	М
4" 3-WIRE W/CRC CB	214507	3/4	0.55	230	60	1.5	Y4.4 B5.0 R3.2	925	Y5.7 B5.2 R3.1	1220	M3.0-3.6 S10.7-13.1	69	60	92	84	34.2	М
4"?	214508	1	0.75	230	60	1.4	Y5.6 B5.7 R3.4	1160	Y8.1 B6.2 R3.3	1490	M2.2-2.7 S9.9-12.1	70	64	92	86	41.8	L
	214508 W/1- 1.5 CB	1	0.75	230	60	1.4	Y6.6 B6.6 R1.3	1130	Y8.0 B7.9 R1.3	1500	M2.2-2.7 S9.9-12.1	70	66	82	72	43	L
	224300	1.5	1.1	230	60	1.3	Y10.0 B9.9 R1.3	1620	Y11.5 B11.0 R1.3	2080	M1.7-2.1 S7.5-9.2	70	69	85	79	51.4	J
4"3-WIRE	224301	2	1.5	230	60	1.25	Y10.0 B9.3 R2.6	2025	Y13.2 B11.9 R2.6	2555	M1.8-2.3 S5.5-7.2	73	74	95	94	53.1	G
	224302 (3)	3	2.2	230	60	1.15	Y14.0 B11.2 R6.1	3000	Y17.0 B12.6 R6.0	3400	M1.1-1.4 S4.0-4.8	75	75	99	99	83.4	Н
	224303 (4)	5	3.7	230	60	1.15	Y23.0 B15.9 R11.0	4830	Y27.5 B19.1 R10.8	5500	M.7182 S1.8-2.2	78	77	100	100	129	G
	226110 (5)	5	3.7	230	60	1.15	Y23.0 B14.3 R10.8	4910	Y27.5 B17.4 R10.5	5570	M.5568 S1.3-1.7	77	76	100	99	99	E
9"	226111	7.5	5.5	230	60	1.15	Y36.5 B34.4 R5.5	7300	Y42.1 B40.5 R5.4	8800	M.3650 S.88-1.1	73	74	91	90	165	F
9	226112	10	7.5	230	60	1.15	Y44.0 B39.5 R9.3	9800	Y51.0 B47.5 R8.9	11300	M.2733 S.8099	76	77	96	96	204	E
	226113	15	11	230	60	1.15	Y62.0 B52.0 R17.5	13900	Y75.0 B62.5 R16.9	16200	M.1722 S.6893	79	80	97	98	303	E

- (1) Main winding yellow to black Start winding yellow to red
- (2) Y = Yellow lead line amps

13

- B = Black lead main winding amps
- R = Red lead start or auxiliary winding amps
- (3) Control Boxes date coded 02C and older have 35 MFD run capacitors. Current values should be Y14.0 @ FL and Y17.0 @ Max Load.

B12.2 B14.5 R4.7 R4.5 Control Boxes date coded 01M and older have 60 MFD run capacitors and the current values on a 4" motor will be Y23.0 @ FL - Y27.5 @ Max Load.

B19.1 B23.2 R8.0 R7.8

Control Boxes date coded 01M and older have

60 MFD run capacitors and the current values on
a 6" motor will be Y23.0 @ FL-Y27.5 @ Max Load.

B18.2 B23.2 R8.0 R7.8

Table 14 Single-Phase Motor Fuse Sizing

	July 1 mase 1		DATING		CIR	CUIT BREAKERS OR FUSE AI	MPS	CIR	CUIT BREAKERS OR FUSE AI	MPS
TYPE	MOTOR Model		RATING			(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)	
1172	PREFIX	HP	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT Time delay Fuse	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT Time Delay Fuse	CIRCUIT Breaker
	244504	1/2	0.37	115	35	20	30	30	15	30
ш	244505	1/2	0.37	230	20	10	15	15	8	15
4" 2-WIRE	244507	3/4	0.55	230	25	15	20	20	10	20
	244508	1	0.75	230	30	20	25	25	11	25
	244309	1.5	1.1	230	35	20	30	35	15	30
	214504	1/2	0.37	115	35	20	30	30	15	30
4"3-WIRE	214505	1/2	0.37	230	20	10	15	15	8	15
4"3-	214507	3/4	0.55	230	25	15	20	20	10	20
	214508	- 1	0.75	230	30	20	25	25	11	25
8	214505	1/2	0.37	230	20	10	15	15	8	15
4" 3-WIRE W/CRC CB	214507	3/4	0.55	230	25	15	20	20	10	20
4"	214508	1	0.75	230	30	20	25	25	11	25
	214508 W/ 1-1.5 CB	1	0.75	230	30	20	25	25	11	25
4" 3-WIRE	224300	1.5	1.1	230	35	20	30	30	15	30
4"3-	224301	2	1.5	230	30	20	25	30	15	25
	224302	3	2.2	230	45	30	40	45	20	40
	224303	5	3.7	230	80	45	60	70	30	60
	226110	5	3.7	230	80	45	60	70	30	60
9	226111	7.5	5.5	230	125	70	100	110	50	100
ý	226112	10	7.5	230	150	80	125	150	60	125
	226113	15	11	230	200	125	175	200	90	175

Auxiliary Running Capacitors

Added capacitors must be connected across "Red" and "Black" control box terminals, in parallel with any existing running capacitors. The additional capacitor(s) should be mounted in an auxiliary box. The values of additional running capacitors most likely to reduce noise are given below. The tabulation gives the **max.** S.F. amps normally in each lead with the added capacitor.

Although motor amps decrease when auxiliary run capacitance is added, the load on the motor does not. If a motor is overloaded with normal capacitance, it will still be overloaded with auxiliary run capacitance, even though motor amps may be within nameplate values.

Table 15 Auxiliary Capacitor Sizing

MOTOR	RATING	NORMAL RUNNING CAPACITOR(S)		AUXILIARY RUNNING Noise Rei		MAXII	MUM AMPS WITH RU	IN CAP
HP	VOLTS	MFD	MFD	MIN. VOLTS	FRANKLIN PART	YELLOW	BLACK	RED
1/2	115	0	60(1)	370	TWO 155327101	8.4	7.0	4.0
1/2		0	15(1)	370	ONE 155328101	4.2	3.5	2.0
3/4		0	20(1)	370	ONE 155328103	5.8	5.0	2.5
1		0	25(1)	370	ONE EA. 155328101 155328102	7.1	5.6	3.4
1.5		10	20	370	ONE 155328103	9.3	7.5	4.4
2	270	20	10	370	ONE 155328102	11.2	9.2	3.8
3	230	45	NONE	370		17.0	12.6	6.0
5		80	NONE	370		27.5	19.1	10.8
7.5		45	45	370	ONE EA. 155327101 155328101	37.0	32.0	11.3
10		70	30	370	ONE 155327101	49.0	42.0	13.0
15		135	NONE			75.0	62.5	16.9

⁽¹⁾ Do not add running capacitors to 1/3 through 1 hp control boxes, which use solid state switches or QD relays. Adding capacitors will cause switch failure. If the control box is converted to use a voltage relay, the specified running capacitance can be added.

Buck-Boost Transformers

When the available power supply voltage is not within the proper range, a buck-boost transformer is often used to adjust voltage to match the motor. The most common usage on submersible motors is boosting a 208 volt supply to use a standard 230 volt single-phase submersible motor and control. While tables to give a wide range of

voltage boost or buck are published by transformer manufacturers, the following table shows Franklin's recommendations. The table, based on boosting the voltage 10%, shows the minimum rated transformer kVA needed and the common standard transformer kVA.

Table 15A Buck-Boost Transformer Sizing

MOTOR HP	1/3	1/2	3/4	1	1.5	2	3	5	7.5	10	15
LOAD KVA	1.02	1.36	1.84	2.21	2.65	3.04	3.91	6.33	9.66	11.70	16.60
MINIMUM XFMR KVA	0.11	0.14	0.19	0.22	0.27	0.31	0.40	0.64	0.97	1.20	1.70
STANDARD XFMR KVA	0.25	0.25	0.25	0.25	0.50	0.50	0.50	0.75	1.00	1.50	2.00

Buck-Boost transformers are power transformers, not control transformers. They may also be used to lower voltage when the available power supply voltage is too high.

Table 16 Three-Phase 60 $^{\circ}$ C Cable, 60 Hz (Service Entrance to Motor) Maximum Length in Feet

60 °C

MOT	OR RATING						60 °C II	NSIII ATIO	I - AWG C	OPPER WI	RE SI7E						MCM	COPPER WIR	F SI7F	
VOLTS	НР	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	0.37	710	1140	1800	2840	4420				·						500			
	3/4	0.55	510	810	1280	2030	3160													
	1	0.75	430	690	1080	1710	2670	4140	5140											
	1.5	1.1	310	500	790	1260	1960	3050	3780											
200 V	2	1.5	240	390	610	970	1520	2360	2940	3610	4430	5420								
60 Hz	3	2.2	180	290	470	740	1160	1810	2250	2760	3390	4130								
Three-	5	3.7	110	170	280	440	690	1080	1350	1660	2040	2490	3050	3670	4440	5030				
Phase	7.5	5.5	0	0	200	310	490	770	960	1180	1450	1770	2170	2600	3150	3560				
3 – Lead	10	7.5	0	0	0	230	370	570	720	880	1090	1330	1640	1970	2390	2720	3100	3480	3800	4420
	15	11	0	0	0	160	250	390	490	600	740	910	1110	1340	1630	1850	2100	2350	2570	2980
	20	15	0	0	0	0	190	300	380	460	570	700	860	1050	1270	1440	1650	1850	2020	2360
	25	18.5	0	0	0	0	0	240	300	370	460	570	700	840	1030	1170	1330	1500	1640	1900
	30	22	0	0	0	0	0	0	250	310	380	470	580	700	850	970	1110	1250	1360	1590
	1/2	0.37	930	1490	2350	3700	5760	8910												
	3/4	0.55	670	1080	1700	2580	4190	6490	8060	9860										
	1	0.75	560	910	1430	2260	3520	5460	6780	8290										
	1.5	1.1	420	670	1060	1670	2610	4050	5030	6160	7530	9170								
230 V	2	1.5	320	510	810	1280	2010	3130	3890	4770	5860	7170	8780							
60 Hz	3	2.2	240	390	620	990	1540	2400	2980	3660	4480	5470	6690	8020	9680					
Three-	5	3.7	140	230	370	590	920	1430	1790	2190	2690	3290	4030	4850	5870	6650	7560	8460	9220	
Phase 3 – Lead	7.5	5.5	0	160	260	420	650	1020	1270	1560	1920	2340	2870	3440	4160	4710	5340	5970	6500	7510
3 - Leau	10	7.5	0	0	190	310	490	760	950	1170	1440	1760	2160	2610	3160	3590	4100	4600	5020	5840
	15	11	0	0	0	210	330	520	650	800	980	1200	1470	1780	2150	2440	2780	3110	3400	3940
	20	15	0	0	0	0	250	400	500	610	760	930	1140	1380	1680	1910	2180	2450	2680	3120
	25	18.5	0	0	0	0	0	320	400	500	610	750	920	1120	1360	1540	1760	1980	2160	2520
	30	22	0	0	6770	0	0	260	330	410	510	620	760	930	1130	1280	1470	1650	1800	2110
	1/2 3/4	0.37 0.55	2690 2000	4290 3190	6730 5010	7860														
)/ 4	0.75	1620	2580	4060	6390	9980													
	1.5	1.1	1230	1970	3100	4890	7630													
	2	1.5	870	1390	2180	3450	5400	8380												
	3	2.2	680	1090	1710	2690	4200	6500	8020	9830										
	5	3.7	400	640	1010	1590	2490	3870	4780	5870	7230	8830								
	7.5	5.5	270	440	690	1090	1710	2640	3260	4000	4930	6010	7290	8780						
	10	7.5	200	320	510	800	1250	1930	2380	2910	3570	4330	5230	6260	7390	8280	9340			
380 V	15	11	0	0	370	590	920	1430	1770	2170	2690	3290	4000	4840	5770	6520	7430	8250	8990	
60 Hz	20	15	0	0	0	440	700	1090	1350	1670	2060	2530	3090	3760	4500	5110	5840	6510	7120	8190
Three-	25	18.5	0	0	0	360	570	880	1100	1350	1670	2050	2510	3040	3640	4130	4720	5250	5740	6590
Phase 3 – Lead	30	22	0	0	0	0	470	730	910	1120	1380	1700	2080	2520	3020	3430	3920	4360	4770	5490
	40	30	0	0	0	0	0	530	660	820	1010	1240	1520	1840	2200	2500	2850	3170	3470	3990
	50	37	0	0	0	0	0	0	540	660	820	1000	1220	1480	1770	2010	2290	2550	2780	3190
	60	45	0	0	0	0	0	0	0	560	690	850	1030	1250	1500	1700	1940	2150	2350	2700
	75	55	0	0	0	0	0	0	0	0	570	700	860	1050	1270	1440	1660	1850	2030	2350
	100	75	0	0	0	0	0	0	0	0	0	510	630	760	910	1030	1180	1310	1430	1650
	125	93	0	0	0	0	0	0	0	0	0	0	0	620	740	840	950	1060	1160	1330
	150	110	0	0	0	0	0	0	0	0	0	0	0	0	620	700	790	880	960	1090
	175	130	0	0	0	0	0	0	0	0	0	0	0	0	0	650	750	840	920	1070
	200	150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	630	700	760	880

Table 17 Three-Phase 60 °C Cable (Continued)

60 °C

MO	TOR RATII		o c cu	``			60 °C	INSULATIO	N - AWG C	OPPER WII	RE SIZE						MCM_C	OPPER WI	RE SIZE	
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
TOLIS	1/2	0.37	3770	6020	9460	·		,		-			00	000	0000	250	300	330	400	300
	3/4	0.55	2730	4350	6850															
	1	0.75	2300	3670	5770	9070														
	1.5	1.1	1700	2710	4270	6730														
	2	1.5	1300	2070	3270	5150	8050													
	3	2.2	1000	1600	2520	3970	6200													
	5	3.7	590	950	1500	2360	3700	5750												
	7.5	5.5	420	680	1070	1690	2640	4100	5100	6260	7680									
	10	7.5	310	500	790	1250	1960	3050	3800	4680	5750	7050								
460 V	15	11	0	340	540	850	1340	2090	2600	3200	3930	4810	5900	7110						
60 Hz	20	15	0	0	410	650	1030	1610	2000	2470	3040	3730	4580	5530						
Three- Phase	25	18.5	0	0	0	530	830	1300	1620	1990	2450	3010	3700	4470	5430					
3 - Lead	30	22	0	0	0	430	680	1070	1330	1640	2030	2490	3060	3700	4500	5130	5860			
	40	30	0	0	0	0	500	790	980	1210	1490	1830	2250	2710	3290	3730	4250			
	50	37	0	0	0	0	0	640	800	980	1210	1480	1810	2190	2650	3010	3420	3830	4180	4850
	60	45	0	0	0	0	0	540	670	830	1020	1250	1540	1850	2240	2540	2890	3240	3540	4100
	75	55	0	0	0	0	0	0	0	680	840	1030	1260	1520	1850	2100	2400	2700	2950	3440
	100	75	0	0	0	0	0	0	0	0	620	760	940	1130	1380	1560	1790	2010	2190	2550
	125	93	0	0	0	0	0	0	0	0	0	0	740	890	1000	1220	1390	1560	1700	1960
	150	110	0	0	0	0	0	0	0	0	0	0	0	760	920	1050	1190	1340	1460	1690
	175	130	0	0	0	0	0	0	0	0	0	0	0	0	810	930	1060	1190	1300	1510
	200	150	0	0	0	0	0	0	0	0	0	0	0	0	0	810	920	1030	1130	1310
	1/2	0.37	5900	9410																
	3/4	0.55	4270	6810																
	1	0.75	3630	5800	9120															
	1.5	1.1	2620	4180	6580															
	2	1.5	2030	3250	5110	8060														
	3	2.2	1580	2530	3980	6270														
	5	3.7	920	1480	2330	3680	5750													
	7.5	5.5	660	1060	1680	2650	4150	4770	5040											
575 V	10	7.5	490	780	1240	1950	3060	4770	5940											
60 Hz	15	11	330	530	850	1340	2090	3260	4060	7000	4760	F070								
Three-	20	15	0	410	650	1030	1610	2520	3140	3860	4760	5830								
Phase	25	18.5	0	0	520 470	830	1300	2030	2530	3110	3840	4710 zoon	4770	5700	7070	9000				
3 – Lead	30 40	22 30	0	0	430	680 500	1070 790	1670 1240	2080	2560 1900	3160 2330	3880 2860	4770 3510	5780 4230	7030 5140	8000 5830				
	50	37	0	0	0	0	640	1000	1250	1540	1890	2310	2840	3420	4140	4700	5340	5990	6530	7580
	60	45	0	0	0	0	040	850	1060	1300	1600	1960	2400	2890	3500	3970	4520	5070	5530	6410
	75	55	0	0	0	0	0	690	860	1060	1310	1600	1970	2380	2890	3290	3750	5220	4610	5370
	100	75	0	0	0	0	0	0	0	790	970	1190	1460	1770	2150	2440	2790	3140	3430	3990
	125	93	0	0	0	0	0	0	0	0	770	950	1160	1400	1690	1920	2180	2440	2650	3070
	150	110	0	0	0	0	0	0	0	0	0	800	990	1190	1440	1630	1860	2080	2270	2640
	175	130	0	0	0	0	0	0	0	0	0	0	870	1050	1270	1450	1650	1860	2030	2360
	200	150	0	0	0	0	0	0	0	0	0	0	0	920	1110	1260	1440	1620	1760	2050
	200	IDU	U	U	U	U	U	U	U	U	U	U	U	320	1110	1200	1440	1020	1/00	2000

Table 18 Three-Phase 60 °C Cable (Continued)

60 °C

Idule 10				ubic (Jonana	cuj	60.00	NCIII ATIO	N AWCC	ODDED WII	DE CIZE						MCM C	ADDED WII	DE CIZE	
VOLTS	OR RATING	KW	14	12	10	8			N – AWG C 3	i	(E SIZE	0	00	000	0000	250	300	OPPER WI	400	500
	HP 5	3.7	160	250	420	660	6 1030	4 1620	2020	2400	7060	3730	4570	5500	6660	7540	300	350	400	500
200 V	7.5	5.5	110	180	300	460	730	1150	1440	2490 1770	3060 2170	2650	3250	3900	4720	5340				
60 Hz	10	7.5	80	130	210	340	550	850	1080	1320	1630	1990	2460	2950	3580	4080	4650	5220	5700	6630
Three-	15	11	0	0	140	240	370	580	730	900	1110	1360	1660	2010	2440	2770	3150	3520	3850	4470
Phase	20	15	0	0	0	170	280	450	570	690	850	1050	1290	1570	1900	2160	2470	2770	3030	3540
6 – Lead	25	18.5	0	0	0	140	220	360	450	550	690	850	1050	1260	1540	1750	1990	2250	2460	2850
Y-D	30	22	0	0	Ö	0	180	294	370	460	570	700	870	1050	1270	1450	1660	1870	2040	2380
270 V	5	3.7	210	340	550	880	1380	2140	2680	3280	4030	4930	6040	7270	8800	9970	1000	10.0	20.0	2500
230 V	7.5	5.5	150	240	390	630	970	1530	1900	2340	2880	3510	4300	5160	6240	7060	8010	8950	9750	
60 Hz	10	7.5	110	180	280	460	730	1140	1420	1750	2160	2640	3240	3910	4740	5380	6150	6900	7530	8760
Three-	15	11	0	0	190	310	490	780	970	1200	1470	1800	2200	2670	3220	3660	4170	4660	5100	5910
Phase	20	15	0	0	140	230	370	600	750	910	1140	1390	1710	2070	2520	2860	3270	3670	4020	4680
6 – Lead Y–D	25	18.5	0	0	0	190	300	480	600	750	910	1120	1380	1680	2040	2310	2640	2970	3240	3780
ע־ז	30	22	0	0	0	150	240	390	490	610	760	930	1140	1390	1690	1920	2200	2470	2700	3160
	5	3.7	600	960	1510	2380	3730	5800	7170	8800										
	7.5	5.5	400	660	1030	1630	2560	3960	4890	6000	7390	9010								
	10	7.5	300	480	760	1200	1870	2890	3570	4360	5350	6490	7840	9390						
	15	11	210	340	550	880	1380	2140	2650	3250	4030	4930	6000	7260	8650	9780	1200	0700		
700 V	20	15	160	260	410	660	1050	1630	2020	2500	3090	3790	4630	5640	6750	7660	4260	9760	0.010	0000
380 V	25	18.5	0	210	330	540	850	1320	1650	2020	2500	3070	3760	4560	5460	6190	7080	7870	8610	9880
60 Hz	30 40	22 30	0	0	270	430	700	1090	1360	1680	2070	2550	3120	3780	4530	5140	5880	6540	7150	8230
Three-	50	37	0	0	0	320 250	510 400	790 630	990 810	1230 990	1510 1230	1860 1500	2280 1830	2760 2220	3300 2650	3750 3010	4270 3430	4750 3820	5200 4170	5980 4780
Phase 6 – Lead	60	45	0	0	0	0	340	540	660	840	1030	1270	1540	1870	2250	2550	2910	3220	3520	4050
Y-D	75	55	0	0	0	0	0	450	550	690	855	1050	1290	1570	1900	2160	2490	2770	3040	3520
ע-ז	100	75	0	0	0	0	0	0	420	520	640	760	940	1140	1360	1540	1770	1960	2140	2470
	125	93	0	0	0	0	0	0	0	400	490	600	730	930	1110	1260	1420	1590	1740	1990
	150	110	0	0	Ö	0	0	0	0	0	420	510	620	750	930	1050	1180	1320	1440	1630
	175	130	0	0	0	0	0	0	Ö	Ö	360	440	540	660	780	970	1120	1260	1380	1600
	200	150	0	0	0	0	0	0	0	0	0	0	480	580	690	790	940	1050	1140	1320
	5	3.7	880	1420	2250	3540	5550	8620					ĺ							
	7.5	5.5	630	1020	1600	2530	3960	6150	7650	9390										
	10	7.5	460	750	1180	1870	2940	4570	5700	7020	8620									
	15	11	310	510	810	1270	2010	3130	3900	4800	5890	7210	8850							
	20	15	230	380	610	970	1540	2410	3000	3700	4560	5590	6870	8290						
460 V	25	18.5	190	310	490	790	1240	1950	2430	2980	3670	4510	5550	6700	8140					
60 Hz	30	22	0	250	410	640	1020	1600	1990	2460	3040	3730	4590	5550	6750	7690	8790			
Three-	40	30	0	0	300	480	750	1180	1470	1810	2230	2740	3370	4060	4930	5590	6370	57.40	6270	7270
Phase	50	37	0	0	0	370	590	960	1200	1470	1810	2220	2710	3280	3970	4510	5130	5740	6270	7270
6 – Lead	60 75	45	0	0	0	320	500	810	1000	1240	1530	1870	2310	2770	3360	3810	4330	4860	5310	6150
Y-D	100	55 75	0	0	0	0	420 0	660 500	810	1020	1260 930	1540 1140	1890	2280 1690	2770 2070	3150 2340	3600	4050 3010	4420 3280	5160 3820
	125	93	0	0	0	0	0	0	610 470	760 590	730	880	1410 1110	1330	1500	1830	2680	2340	2550	2940
	150	110	0	0	0	0	0	0	0	510	630	770	950	1140	1380	1570	1790	2000	2180	2530
	175	130	0	0	ő	0	0	0	0	0	550	680	830	1000	1220	1390	1580	1780	1950	2270
	200	150	0	0	0	0	0	0	0	0	0	590	730	880	1070	1210	1380	1550	1690	1970
	5	3.7	1380	2220	3490	5520	8620													
	7.5	5.5	990	1590	2520	3970	6220													
	10	7.5	730	1170	1860	2920	4590	7150	8910											
	15	11	490	790	1270	2010	3130	4890	6090											
	20	15	370	610	970	1540	2410	3780	4710	5790	7140	8740								
575 V	25	18.5	300	490	780	1240	1950	3040	3790	4660	5760	7060		0.5==						
60 Hz	30	22	240	400	645	1020	1600	2500	3120	3840	4740	5820	7150	8670	7740	07.10				
Three-	40	30	0	300	480	750	1180	1860	2310	2850	3490	4290	5260	6340	7710	8740	0010	0000	0700	
Phase	50 60	37 AE	0	0	380	590	960 700	1500	1870	2310	2830	3460	4260	5130	6210	7050	8010	8980	9790	0610
6 - Lead	60	45	0	0	0	500 420	790 660	1270	1590	1950	2400	2940	3600	4330	5250	5950 4930	6780	7600	8290	9610
Y-D	75 100	55 75	0	0	0	420 0	660 400	1030 780	1290 960	1590 1180	1960 1450	2400 1780	2950 2190	3570 2650	4330 3220	3660	5620 4180	6330 4710	6910 5140	8050 5980
	125	93	0	0	0	0	0	600	740	920	1150	1420	1740	2100	2530	2880	3270	3660	3970	4600
	150	110	0	0	0	0	0	0	650	800	990	1210	1480	1780	2160	2450	2790	3120	3410	3950
	175	130	0	0	0	0	0	0	0	700	860	1060	1300	1570	1910	2170	2480	2780	3040	3540
	200	150	0	0	0	0	0	0	0	0	760	930	1140	1370	1670	1890	2160	2420	2640	3070
					, ,					, ,			,	, ,,,,,	,	.000		,	,	

Table 19 Three-Phase 75 °C Cable. 60 Hz (Service Entrance to Motor) Maximum Length in Feet

lable 19			15 00	ubic, o	0 112 (3	CIVICC				OPPER WIF		Jen 111 1	CCL				MCM C	ODDED W	DE CITE	
	OR RATIN		-14	12	10								00	000	0000	250	1	OPPER WI		500
VOLTS	HP	KW	14	12	1000	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	0.37	710	1140	1800	2840	4420													
	3/4	0.55	510	810	1280	2030	3160	4140	F140											
	1	0.75	430	690	1080	1710	2670	4140	5140											
	1.5	1.1	310	500	790	1260	1960	3050	3780	7010	4.470	F 420								
200 V	2	1.5	240	390	610	970	1520	2360	2940	3610	4430	5420								
60 Hz	3	2.2	180	290	470	740	1160	1810	2250	2760	3390	4130	7050	7670	4440	F070				
Three- Phase	5	3.7	110	170	280	440	690	1080	1350	1660	2040	2490	3050	3670	4440	5030				
3 – Lead	7.5 10	5.5 7.5	0	0	200	310	490	770	960	1180	1450	1770	2170	2600	3150	3560	7100	7400	7000	4420
			0	0	150	230	370	570	720	880	1090	1330	1640	1970	2390	2720	3100	3480	3800	
	15 20	11 15	0	0	0	160	250	390 700	490	600	740	910	1110	1340	1630	1850	2100	2350	2570	2980
			0	0	0	0	190	300	380	460	570	700	860	1050	1270	1440	1650	1850	2020	2360
	25	18.5	0	0	0	0	0	240	300	370	460	570	700	840	1030	1170	1330	1500	1640	1900
	30	0.37	930	0 1490	2350	3700	5760	200	250	310	380	470	580	700	850	970	1110	1250	1360	1590
	1/2 3/4	0.57	930 670	1080	1700	3700 2580	4190	8910 6490	8060	9860										
	3/4 1	0.75	560	910	1430	2260	3520	5460	6780	8290										
	1.5	1.1	420	670	1060	1670	2610	4050	5030	6160	7530	9170								
	2	1.5	320	510	810	1280	2010	3130	3890	4770	5860	7170	8780							
230 V	3	2.2	240	390	620	990	1540	2400	2980	3660	4480	5470	6690	8020	9680					
60 Hz Three-	5	3.7	140	230	370	590	920	1430	1790	2190	2690	3290	4030	4850	5870	6650	7560	8460	9220	
Phase	7.5	5.5	0	160	260	420	650	1020	1270	1560	1920	2340	2870	3440	4160	4710	5340	5970	6500	7510
3 – Lead	10	7.5	0	0	190	310	490	760	950	1170	1440	1760	2160	2610	3160	3590	4100	4600	5020	5840
	15	11	0	0	0	210	330	520	650	800	980	1200	1470	1780	2150	2440	2780	3110	3400	3940
	20	15	0	0	0	160	250	400	500	610	760	930	1140	1380	1680	1910	2180	2450	2680	3120
	25	18.5	0	0	0	0	200	320	400	500	610	750	920	1120	1360	1540	1760	1980	2160	2520
	30	22	0	0	0	0	0	260	330	410	510	620	760	930	1130	1280	1470	1650	1800	2110
	1/2	0.37	2690	4290	6730	-	_													
	3/4	0.55	2000	3190	5010	7860														
	1	0.75	1620	2580	4060	6390	9980													
	1.5	1.1	1230	1970	3100	4890	7630													
	2	1.5	870	1390	2180	3450	5400	8380												
	3	2.2	680	1090	1710	2690	4200	6500	8020	9830										
	5	3.7	400	640	1010	1590	2490	3870	4780	5870	7230	8830								
	7.5	5.5	270	440	690	1090	1710	2640	3260	4000	4930	6010	7290	8780						
	10	7.5	200	320	510	800	1250	1930	2380	2910	3570	4330	5230	6260	7390	8280	9340			
380 V	15	11	0	0	370	590	920	1430	1770	2170	2690	3290	4000	4840	5770	6520	7430	8250	8990	
60 Hz Three-	20	15	0	0	280	440	700	1090	1350	1670	2060	2530	3090	3760	4500	5110	2840	6510	7120	8190
Phase	25	18.5	0	0	0	360	570	880	1100	1350	1670	2050	2510	3040	3640	4130	4720	5250	5740	6590
3 – Lead	30	22	0	0	0	290	470	730	910	1120	1380	1700	2080	2520	3020	3430	3920	4360	4770	5490
	40	30	0	0	0	0	0	530	660	820	1010	1240	1520	1840	2200	2500	2850	3170	3470	3990
	50	37	0	0	0	0	0	440	540	660	820	1000	1220	1480	1770	2010	2290	2550	2780	3190
	60	45	0	0	0	0	0	370	460	560	690	850	1030	1250	1500	1700	1940	2150	2350	2700
	75	55	0	0	0	0	0	0	0	460	570	700	860	1050	1270	1440	1660	1850	2030	2350
	100	75	0	0	0	0	0	0	0	0	420	510	630	760	910	1030	1180	1310	1430	1650
	125	93	0	0	0	0	0	0	0	0	0	0	510	620	740	840	950	1060	1160	1330
	150	110	0	0	0	0	0	0	0	0	0	0	0	520	620	700	790	880	960	1090
	175	130	0	0	0	0	0	0	0	0	0	0	0	0	560	650	750	840	920	1070
	200	150	0	0	0	0	0	0	0	0	0	0	0	0	0	550	630	700	760	880

Table 20 Three-Phase 75 °C Cable (Continued)

MO'	TOR RATIN	IG					75 °C I	NSULATION	I - AWG C	OPPER WIR	RE SIZE						MCM C	OPPER WI	RE SIZE	
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
	1/2	0.37	3770	6020	9460															
	3/4	0.55	2730	4350	6850															
	1	0.75	2300	3670	5770	9070														
	1.5	1.1	1700	2710	4270	6730														
	2	1.5	1300	2070	3270	5150	8050													
	3	2.2	1000	1600	2520	3970	6200													
	5	3.7	590	950	1500	2360	3700	5750												
	7.5	5.5	420	680	1070	1690	2640	4100	5100	6260	7680									
	10	7.5	310	500	790	1250	1960	3050	3800	4680	5750	7050								
460 V	15	11	0	340	540	850	1340	2090	2600	3200	3930	4810	5900	7110						
60 Hz	20	15	0	0	410	650	1030	1610	2000	2470	3040	3730	4580	5530						
Three-	25	18.5	0	0	330	530	830	1300	1620	1990	2450	3010	3700	4470	5430					
Phase 3 – Lead	30	22	0	0	270	430	680	1070	1330	1640	2030	2490	3060	3700	4500	5130	5860			
- 5 EGUU	40	30	0	0	0	320	500	790	980	1210	1490	1830	2250	2710	3290	3730	4250			
	50	37	0	0	0	0	410	640	800	980	1210	1480	1810	2190	2650	3010	3420	3830	4180	4850
	60	45	0	0	0	0	0	540	670	830	1020	1250	1540	1850	2240	2540	2890	3240	3540	4100
	75	55	0	0	0	0	0	440	550	680	840	1030	1260	1520	1850	2100	2400	2700	2950	3440
	100	75	0	0	0	0	0	0	0	500	620	760	940	1130	1380	1560	1790	2010	2190	2550
	125	93	0	0	0	0	0	0	0	0	0	600	740	890	1000	1220	1390	1560	1700	1960
	150	110	0	0	0	0	0	0	0	0	0	0	630	760	920	1050	1190	1340	1460	1690
	175	130	0	0	0	0	0	0	0	0	0	0	0	670	810	930	1060	1190	1300	1510
	200	150	0	0	0	0	0	0	0	0	0	0	0	590	710	810	920	1030	1130	1310
	1/2	0.37	5900	9410																
	3/4	0.55	4270	6810																
	1	0.75	3630	5800	9120															
	1.5	1.1	2620	4180	6580															
	2	1.5	2030	3250	5110	8060														
	3	2.2	1580	2530	3980	6270														
	5	3.7	920	1480	2330	3680	5750													
	7.5	5.5	660	1060	1680	2650	4150													
	10	7.5	490	780	1240	1950	3060	4770	5940											
575 V 60 Hz	15	11	330	530	850	1340	2090	3260	4060											
Three-	20	15	0	410	650	1030	1610	2520	3140	3860	4760	5830								
Phase	25	18.5	0	0	520	830	1300	2030	2530	3110	3840	4710								
3 – Lead	30	22	0	0	430	680	1070	1670	2080	2560	3160	3880	4770	5780	7030	8000				
	40	30	0	0	0	500	790	1240	1540	1900	2330	2860	3510	4230	5140	5830				
	50	37	0	0	0	410	640	1000	1250	1540	1890	2310	2840	3420	4140	4700	5340	5990	6530	7580
	60	45	0	0	0	0	540	850	1060	1300	1600	1960	2400	2890	3500	3970	4520	5070	5530	6410
	75	55	0	0	0	0	0	690	860	1060	1310	1600	1970	2380	2890	3290	3750	5220	4610	5370
	100	75	0	0	0	0	0	0	640	790	970	1190	1460	1770	2150	2440	2790	3140	3430	3990
	125	93	0	0	0	0	0	0	0	630	770	950	1160	1400	1690	1920	2180	2440	2650	3070
	150	110	0	0	0	0	0	0	0	0	660	800	990	1190	1440	1630	1860	2080	2270	2640
	175	130	0	0	0	0	0	0	0	0	0	700	870	1050	1270	1450	1650	1860	2030	2360
	200	150	0	0	0	0	0	0	0	0	0	0	760	920	1110	1260	1440	1620	1760	2050

Table 21 Three-Phase 75 °C Cable

			75 °C C	apie																
	TOR RATING						. — —			OPPER WIF								OPPER WI		
VOLTS	HP	KW	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
200 V	5	3.7	160	250	420	660	1030	1620	2020	2490	3060	3730	4570	5500	6660	7540				
60 Hz	7.5	5.5	110	180	300	460	730	1150	1440	1770	2170	2650	3250	3900	4720	5340				
Three-	10	7.5	80	130	210	340	550	850	1080	1320	1630	1990	2460	2950	3580	4080	4650	5220	5700	6630
Phase	15	11	0	0	140	240	370	580	730	900	1110	1360	1660	2010	2440	2770	3150	3520	3850	4470
6 - Lead	20	15	0	0	120	170	280	450	570	690	850	1050	1290	1570	1900	2160	2470	2770	3030	3540
	25	18.5	0	0	0	140	220	360	450	550	690	850	1050	1260	1540	1750	1990	2250	2460	2850
Y-D	30	22	0	0	0	120	180	294	370	460	570	700	870	1050	1270	1450	1660	1870	2040	2380
230 V	5	3.7	210	340	550	880	1380	2140	2680	3280	4030	4930	6040	7270	8800	9970				
60 Hz	7.5	5.5	150	240	390	630	970	1530	1900	2340	2880	3510	4300	5160	6240	7060	8010	8950	9750	
	10	7.5	110	180	280	460	730	1140	1420	1750	2160	2640	3240	3910	4740	5380	6150	6900	7530	8760
Three-	15	11	0	130	190	310	490	780	970	1200	1470	1800	2200	2670	3220	3660	4170	4660	5100	5910
Phase	20	15	0	0	140	230	370	600	750	910	1140	1390	1710	2070	2520	2860	3270	3670	4020	4680
6 – Lead	25	18.5	0	0	120	190	300	480	600	750	910	1120	1380	1680	2040	2310	2640	2970	3240	3780
Y-D	30	22	0	0	0	150	240	390	490	610	760	930	1140	1390	1690	1920	2200	2470	2700	3160
	5	3.7	600	960	1510	2380	3730	5800	7170	8800										
	7.5	5.5	400	660	1030	1630	2560	3960	4890	6000	7390	9010								
	10	7.5	300	480	760	1200	1870	2890	3570	4360	5350	6490	7840	9390						
	15	11	210	340	550	880	1380	2140	2650	3250	4030	4930	6000	7260	8650	9780				
	20	15	160	260	410	660	1050	1630	2020	2500	3090	3790	4630	5640	6750	7660	4260	9760		
380 V	25	18.5	0	210	330	540	850	1320	1650	2020	2500	3070	3760	4560	5460	6190	7080	7870	8610	9880
60 Hz	30	22	0	0	270	430	700	1090	1360	1680	2070	2550	3120	3780	4530	5140	5880	6540	7150	8230
Three-	40	30	0	0	210	320	510	790	990	1230	1510	1860	2280	2760	3300	3750	4270	4750	5200	5980
Phase	50	37	0	0	0	250	400	630	810	990	1230	1500	1830	2220	2650	3010	3430	3820	4170	4780
	60	45	0	0	0	0	340	540	660	840	1030	1270	1540	1870	2250	2550	2910	3220	3520	4050
6 - Lead	75	55	0	0	0			450							1900				3040	
Y-D	100	75	-			0	290		550	690	855	1050	1290	1570		2160	2490	2770		3520
	125		0	0	0	0	0	340	420	520	640	760	940	1140	1360	1540	1770	1960	2140	2470
		93	0	0	0	0	0	0	340	400	490	600	730	930	1110	1260	1420	1590	1740	1990
	150	110	0	0	0	0	0	0	0	350	420	510	620	750	930	1050	1180	1320	1440	1630
	175	130	0	0	0	0	0	0	0	0	360	440	540	660	780	970	1120	1260	1380	1600
	200	150	0	0	0	0	0	0	0	0	0	410	480	580	690	790	940	1050	1140	1320
	5	3.7	880	1420	2250	3540	5550	8620	7.50											
	7.5	5.5	630	1020	1600	2530	3960	6150	7650	9390										
	10	7.5	460	750	1180	1870	2940	4570	5700	7020	8620									
	15	11	310	510	810	1270	2010	3130	3900	4800	5890	7210	8850							
	20	15	230	380	610	970	1540	2410	3000	3700	4560	5590	6870	8290						
460 V	25	18.5	190	310	490	790	1240	1950	2430	2980	3670	4510	5550	6700	8140					
60 Hz	30	22	0	250	410	640	1020	1600	1990	2460	3040	3730	4590	5550	6750	7690	8790			
Three-	40	30	0	0	300	480	750	1180	1470	1810	2230	2740	3370	4060	4930	5590	6370			
Phase	50	37	0	0	250	370	590	960	1200	1470	1810	2220	2710	3280	3970	4510	5130	5740	6270	7270
6 - Lead	60	45	0	0	0	320	500	810	1000	1240	1530	1870	2310	2770	3360	3810	4330	4860	5310	6150
Y-D	75	55	0	0	0	0	420	660	810	1020	1260	1540	1890	2280	2770	3150	3600	4050	4420	5160
	100	75	0	0	0	0	310	500	610	760	930	1140	1410	1690	2070	2340	2680	3010	3280	3820
	125	93	0	0	0	0	0	390	470	590	730	880	1110	1330	1500	1830	2080	2340	2550	2940
	150	110	0	0	0	0	0	0	420	510	630	770	950	1140	1380	1570	1790	2000	2180	2530
	175	130	0	0	0	0	0	0	0	450	550	680	830	1000	1220	1390	1580	1780	1950	2270
	200	150	0	0	0	0	0	0	0	0	480	590	730	880	1070	1210	1380	1550	1690	1970
	5	3.7	1380	2220	3490	5520	8620													
	7.5	5.5	990	1590	2520	3970	6220													
	10	7.5	730	1170	1860	2920	4590	7150	8910											
	15	11	490	790	1270	2010	3130	4890	6090											
	20	15	370	610	970	1540	2410	3780	4710	5790	7140	8740								
575 V	25	18.5	300	490	780	1240	1950	3040	3790	4660	5760	7060								
60 Hz	30	22	240	400	645	1020	1600	2500	3120	3840	4740	5820	7150	8670						
Three-	40	30	0	300	480	750	1180	1860	2310	2850	3490	4290	5260	6340	7710	8740				
Phase	50	37	0	0	380	590	960	1500	1870	2310	2830	3460	4260	5130	6210	7050	8010	8980	9790	
	60	45	0	0	330	500	790	1270	1590	1950	2400	2940	3600	4330	5250	5950	6780	7600	8290	9610
6 - Lead	75	55	0	0	0	420	660	1030	1290	1590	1960	2400	2950	3570	4330	4930	5620	6330	6910	8050
Y-D	100																			
		75 07	0	0	0	0	400	780	960	1180	1450	1780	2190	2650	3220	3660	4180	4710	5140	5980
	125	93	0	0	0	0	0	600	740	920	1150	1420	1740	2100	2530	2880	3270	3660	3970	4600
	150	110	0	0	0	0	0	520	650	800	990	1210	1480	1780	2160	2450	2790	3120	3410	3950
	175	130 150	0	0	0	0	0	0	570	700	860	1060	1300	1570	1910	2170	2480	2780	3040	3540
	200				0	0	0	0	500	610	760	930	1140	1370	1670	1890	2160	2420	2640	3070

Table 22 Three-Phase Motor Specifications (60 Hz) 3450 rpm

TYPE	MOTOR Model			RATING			FULL	LOAD	MAX LO	IMUM Ad	LINE TO LINE RESISTANCE	EFFICI	ENCY %	LOCKED	KVA
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	WATTS	AMPS	WATTS	OHMS	S.F.	F.L.	ROTOR AMPS	CODE
	234501			200	60	1.6	2.8	585	3.4	860	6.6-8.4	70	64	17.5	N
4"	234511			230	60	1.6	2.4	585	2.9	860	9.5-10.9	70	64	15.2	N
	234541	1/2	0.37	380	60	1.6	1.4	585	2.1	860	23.2-28.6	70	64	9.2	N
	234521			460	60	1.6	1.2	585	1.5	860	38.4-44.1	70	64	7.6	N
	234531			575	60	1.6	1.0	585	1.2	860	58.0-71.0	70	64	6.1	N
	234502			200	60	1.5	3.6	810	4.4	1150	4.6-5.9	73	69	24.6	N
	234512			230	60	1.5	3.1	810	3.8	1150	6.8-7.8	73	69	21.4	N
	234542	3/4	0.55	380	60	1.5	1.9	810	2.5	1150	16.6-20.3	73	69	13	N
	234522			460	60	1.5	1.6	810	1.9	1150	27.2-30.9	73	69	10.7	N
	234532			575	60	1.5	1.3	810	1.6	1150	41.5-50.7	73	69	8.6	N
	234503			200	60	1.4	4.5	1070	5.4	1440	3.8-4.5	72	70	30.9	М
	234513			230	60	1.4	3.9	1070	4.7	1440	4.9-5.6	72	70	26.9	М
	234543	- 1	0.75	380	60	1.4	2.3	1070	2.8	1440	12.2-14.9	72	70	16.3	М
	234523			460	60	1.4	2	1070	2.4	1440	19.9-23.0	72	70	13.5	М
	234533			575	60	1.4	1.6	1070	1.9	1440	30.1-36.7	72	70	10.8	М
	234504			200	60	1.3	5.8	1460	6.8	1890	2.5-3.0	76	76	38.2	K
	234514			230	60	1.3	5	1460	5.9	1890	3.2-4.0	76	76	33.2	K
	234544	1.5	1.1	380	60	1.3	3	1460	3.6	1890	8.5-10.4	76	76	20.1	K
	234524			460	60	1.3	2.5	1460	3.1	1890	13.0-16.0	76	76	16.6	K
	234534			575	60	1.3	2	1460	2.4	1890	20.3-25.0	76	76	13.3	K
	234305			200	60	1.25	7.7	1960	9.3	2430	1.8-2.4	76	76	50.3	K
	234315			230	60	1.25	6.7	1960	8.1	2430	2.3-3.0	76	76	45.0	K
	234345	2	1.5	380	60	1.25	4.1	1960	4.9	2430	6.6-8.2	76	76	26.6	K
	234325			460	60	1.25	3.4	1960	4.1	2430	9.2-12.0	76	76	22.5	K
	234335			575	60	1.25	2.7	1960	3.2	2430	14.6-18.7	76	76	17.8	K
	234306			200	60	1.15	10.9	2920	12.5	3360	1.3-1.7	77	77	69.5	K
	234316			230	60	1.15	9.5	2920	10.9	3360	1.8-2.2	77	77	60.3	K
	234346	3	2.2	380	60	1.15	5.8	2920	6.6	3360	4.7-6.0	77	77	37.5	K
	234326			460	60	1.15	4.8	2920	5.5	3360	7.2-8.8	77	77	31.0	K
	234336			575	60	1.15	3.8	2920	4.4	3360	11.4-13.9	77	77	25.1	K
	234307			200	60	1.15	18.3	4800	20.5	5500	.6883	78	78	116	K
	234317			230	60	1.15	15.9	4800	17.8	5500	.91-1.1	78	78	102	K
	234347	5	3.7	380	60	1.15	9.6	4800	10.8	5500	2.6-3.2	78	78	60.2	K
	234327			460	60	1.15	8.0	4800	8.9	5500	3.6-4.4	78	78	53.7	K
	234337			575	60	1.15	6.4	4800	7.1	5500	5.6-6.9	78	78	41.8	K
	234308			200	60	1.15	26.5	7150	30.5	8200	.4353	78	78	177	K
	234318			230	60	1.15	23.0	7150	26.4	8200	.6073	78	78	152	K
	234348	7.5	5.5	380	60	1.15	13.9	7150	16.0	8200	1.6-2.0	78	78	92.7	K
	234328			460	60	1.15	11.5	7150	13.2	8200	2.3-2.8	78	78	83.8	K
	234338			575	60	1.15	9.2	7150	10.6	8200	3.6-4.5	78	78	64.6	K .
	234549			380	60	1.15	19.3	10000	21.0	11400	1.2-1.6	75	75	140	L
	234595	10	7.5	460	60	1.15	15.9	10000	17.3	11400	1.8-2.3	75	75	116.0	L
	234598			575	60	1.15	12.5	10000	13.6	11400	2.8-3.5	75	75	92.8	L
	234646			380	60	1.15	27.6	14600	31.2	16800	.86-1.1	77	76	178	J
	234626	15	11	460	60	1.15	22.8	14600	25.8	16800	1.2-1.5	77	76	147	J
	234636			575	60	1.15	18.2	14600	20.7	16800	1.9-2.4	77	76	118	J

Table 23 Three-Phase Motor Fuse Sizing

	r mase motor				CI	Rcuit Breakers or Fuse Am	IPS	CI	RCUIT BREAKERS OR FUSE AM	PS
	MOTOR		RATI	NG		(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)	
ТҮРЕ	MODEL Prefix	НР	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	234501			200	10	5	8	10	4	15
4"	234511			230	8	4.5	6	8	4	15
	234541	1/2	0.37	380	5	2.5	4	5	2	15
	234521			460	4	2.25	3	4	2	15
	234531			575	3	1.8	3	3	1.4	15
	234502			200	15	7	10	12	5	15
	234512			230	10	5.6	8	10	5	15
	234542	3/4	0.55	380	6	3.5	5	6	3	15
	234522			460	5	2.8	4	5	3	15
	234532			575	4	2.5	4	4	1.8	15
	234503			200	15	8	15	15	6	15
	234513			230	15	7	10	12	6	15
	234543	1	0.75	380	8	4.5	8	8	4	15
	234523			460	6	3.5	5	6	3	15
	234533			575	5	2.8	4	5	2.5	15
	234504			200	20	12	15	20	8	15
	234514			230	15	9	15	15	8	15
	234544	1.5	1.1	380	10	5.6	8	10	4	15
	234524			460	8	4.5	8	8	4	15
	234534			575	6	3.5	5	6	3	15
	234305			200	25	15	20	25	11	20
	234315			230	25	12	20	25	10	20
	234345	2	1.5	380	15	8	15	15	6	15
	234325			460	15	6	10	11	5	15
	234335			575	10	5	8	10	4	15
	234306			200	35	20	30	35	15	30
	234316			230	30	17.5	25	30	12	25
	234346	3	2.2	380	20	12	15	20	8	15
	234326			460	15	9	15	15	6	15
	234336			575	15	7	10	11	5	15
	234307			200	60	35	50	60	25	50
	234317			230	50	30	40	45	20	40
	234347	5	3.7	380	30	17.5	25	30	12	25
	234327			460	25	15	20	25	10	20
	234337			575	20	12	20	20	8	20
	234308			200	90	50	70	80	35	70
	234318			230	80	45	60	70	30	60
	234348	7.5	5.5	380	45	25	40	40	20	40
	234328			460	40	25	30	35	15	30
	234338			575	30	17.5	25	30	12	25
	234349			380	70	40	60	60	25	60
	234329			460	60	30	45	50	25	45
	234339	10	7.5	575	45	25	35	40	20	35
	234549	10		380	70	35	60	60	25	60
	234595			460	60	30	45	50	25	45
	234598			575	45	25	35	40	20	35
	234646			380	90	50	70	80	35	70
	234626	15	11	460	80	45	60	70	30	60
27	234636			575	60	35	50	60	25	50

Table 24 Three-Phase Motor Specifications (60 Hz) 3450 rpm

ТҮРЕ	MOTOR MODEL PREFIX			RATING			FULI	LOAD		(IMUM Dad	LINE TO LINE RESISTANCE	EFFICII	NCY %	LOCKED ROTOR	KVA CODE
	PKEFIA	HP	KW	VOLTS	HZ	S.F.	AMPS	WATTS	AMPS	WATTS	OHMS	S.F.	F.L.	AMPS	LUDE
	236650			200	60	1.15	17.5	4700	20.0	5400	.7793	79	79	99	Н
	236600			230	60	1.15	15	4700	17.6	5400	1.0-1.2	79	79	86	Н
7	236660	5	3.7	380	60	1.15	9.1	4700	10.7	5400	2.6-3.2	79	79	52	Н
).	236610			460	60	1.15	7.5	4700	8.8	5400	3.9-4.8	79	79	43	Н
-	236620			575	60	1.15	6	4700	7.1	5400	6.3-7.7	79	79	34	Н
	236651			200	60	1.15	25.1	7000	28.3	8000	.4353	80	80	150	Н
	236601			230	60	1.15	21.8	7000	24.6	8000	.6478	80	80	130	Н
	236661	7.5	5.5	380	60	1.15	13.4	7000	15	8000	1.6-2.1	80	80	79	Н
	236611			460	60	1.15	10.9	7000	12.3	8000	2.4-2.9	80	80	65	Н
	236621			575	60	1.15	8.7	7000	9.8	8000	3.7-4.6	80	80	52	Н
	236652			200	60	1.15	32.7	9400	37	10800	.3745	79	79	198	Н
	236602			230	60	1.15	28.4	9400	32.2	10800	.4757	79	79	172	Н
	236662	10	7.5	380	60	1.15	17.6	9400	19.6	10800	1.2-1.5	79	79	104	Н
	236612			460	60	1.15	14.2	9400	16.1	10800	1.9-2.4	79	79	86	Н
	236622			575	60	1.15	11.4	9400	12.9	10800	3.0-3.7	79	79	69	Н
	236653			200	60	1.15	47.8	13700	54.4	15800	.2429	81	81	306	Н
	236603			230	60	1.15	41.6	13700	47.4	15800	.2835	81	81	266	Н
	236663	15	11	380	60	1.15	25.8	13700	28.9	15800	.7795	81	81	161	Н
	236613			460	60	1.15	20.8	13700	23.7	15800	1.1-1.4	81	81	133	Н
	236623			575	60	1.15	16.6	13700	19	15800	1.8-2.3	81	81	106	H
	236654			200	60	1.15	61.9	18100	69.7	20900	.1620	82	82	416	J
	236604			230	60	1.15	53.8	18100	60.6	20900	.2226	82	82	362	J
	236664	20	15	380	60	1.15	33	18100	37.3	20900	.5568	82	82	219	J
	236614			460	60	1.15	26.9	18100	30.3	20900	.8-1.0	82	82	181	J
	236624			575	60	1.15	21.5	18100	24.2	20900	1.3-1.6	82	82	145	J
	236655			200	60	1.15	77.1	22500	86.3	25700	.1215	83	83	552	J
	236605	25	10.5	230	60	1.15	67	22500	76.4	25700	.1519	83	83	480	J
	236665	25	18.5	380	60	1.15	41	22500	46	25700	.4656	83	83	291	J
	236615			460	60	1.15	33.5	22500	38.2	25700	.6377	83	83	240	J
	236625			575	60	1.15	26.8	22500	30	25700	1.0-1.3	83	83	192	J
	236656			200	60	1.15	90.9	26900	104	31100	.0911	83	83	653	J
	236606 236666	30	22	230	60	1.15	79 48.8	26900 26900	90.4 55.4	31100	.1417	83 83	83 83	568 317	J
	236616	30	"	380 460	60 60	1.15	39.5	26900	45.2	31100 31100	.3543 .5264	83	83	284	J H
	236626			575	60	1.15	31.6	26900	36.2	31100	.7895	83	83	204	J
	236667			380	60	1.15	66.5	35600	74.6	42400	.2633	83	83	481	J
	236617	40	30	460	60	1.15	54.9	35600	61.6	42400	.3442	83	83	397	J
	236627	40	JU	575	60	1.15	42.8	35600	49.6	42400	.5264	83	83	318	Н
	236668			380	60	1.15	83.5	45100	95	52200	.2125	82	83	501	H
	236618			460	60	1.15	67.7	45100	77	52200	.2532	82	83	414	H
	236628			575	60	1.15	54.2	45100	61.6	52200	.4049	82	83	331	H
	276668	50	37	380	60	1.15	82.4	45100	94.5	52200	.2125	82	83	501	Н
	276618			460	60	1.15	68.1	45100	78.1	52200	.2532	82	83	414	H
	276628			575	60	1.15	54.5	45100	62.5	52200	.4049	82	83	331	Н
	276029			380	60	1.15	98.1	53500	111.8	61700	.1518	84	84	627	H
	276009	60/50	37/45	460	60	1.15	81.0	53500	92.3	61700	.2227	84	84	518	Н
	276059	60/50 37/45	575	60	1.15	64.8	53500	73.9	61700	.3539	84	84	414	H	
	236669			380	60	1.15	98.7	53500	111	61700	.1518	84	84	627	" H
	236619			460	60	1.15	80.5	53500	91	61700	.2227	84	84	518	H
	236629			575	60	1.15	64.4	53500	72.8	61700	.3539	84	84	414	H
	276669	60	45	380	60	1.15	98.1	53500	111.8	61700	.5559	84	84	627	H
	276619			460	60	1.15	81.0	53500	92.3	61700	.2227	84	84	518	H
	276629			575	60	1.15	64.8	53500	73.9	61700	.3539	84	84	414	Н

Table 25 6" Three-Phase Motor Specifications (60 Hz) 3450 rpm

TYPE	MOTOR MODEL PREFIX			RATING			FULI	. LOAD		(IMUM)AD	LINE TO LINE RESISTANCE	EFFICIE	ENCY %	LOCKED ROTOR	KVA CODE
	PREFIA	HP	KW	VOLTS	HZ	S.F.	AMPS	WATTS	AMPS	WATTS	OHMS	S.F.	F.L.	AMPS	CODE
	276650			200	60	1.15	17.2	5200	19.8	5800	.5365	73	72	124	K
6"	276600			230	60	1.15	15.0	5200	17.2	5800	.6884	73	72	108	K
	276660	5	3.7	380	60	1.15	9.1	5200	10.4	5800	2.0 - 2.4	73	72	66.0	K
HI-TEMP	276610			460	60	1.15	7.5	5200	8.6	5800	2.8 - 3.4	73	72	54.0	K
	276620			575	60	1.15	6.0	5200	6.9	5800	4.7 - 5.7	73	72	43.0	K
90 ℃	276651			200	60	1.15	24.8	7400	28.3	8400	.3037	77	76	193	K
	276601			230	60	1.15	21.6	7400	24.6	8400	.4150	77	76	168	K
	276661	7.5	5.5	380	60	1.15	13.1	7400	14.9	8400	1.1 - 1.4	77	76	102	K
	276611			460	60	1.15	10.8	7400	12.3	8400	1.7 - 2.0	77	76	84.0	K
	276621			575	60	1.15	8.6	7400	9.9	8400	2.6 - 3.2	77	76	67.0	K
	276652			200	60	1.15	32.0	9400	36.3	10700	.2126	80	79	274	L
	276602			230	60	1.15	27.8	9400	31.6	10700	.2835	80	79	238	L
	276662	10	7.5	380	60	1.15	16.8	9400	19.2	10700	.8098	80	79	144	L
	276612			460	60	1.15	13.9	9400	15.8	10700	1.2 - 1.4	80	79	119	L
	276622			575	60	1.15	11.1	9400	12.7	10700	1.8 - 2.2	80	79	95.0	L
	276653			200	60	1.15	48.5	14000	54.5	15900	.1519	81	80	407	L
	276603			230	60	1.15	42.2	14000	47.4	15900	.1924	81	80	354	L
	276663	15	11	380	60	1.15	25.5	14000	28.7	15900	.5265	81	80	214	L
	276613			460	60	1.15	21.1	14000	23.7	15900	.7896	81	80	177	L
	276623			575	60	1.15	16.9	14000	19.0	15900	1.2 - 1.4	81	80	142	L
	276654			200	60	1.15	64.9	18600	73.6	21300	.1012	80	80	481	K
	276604			230	60	1.15	56.4	18600	64.0	21300	.1418	80	80	418	K
	276664	20	15	380	60	1.15	34.1	18600	38.8	21300	.4151	80	80	253	K
	276614			460	60	1.15	28.2	18600	32.0	21300	.5872	80	80	209	K
	276624			575	60	1.15	22.6	18600	25.6	21300	.93 - 1.15	80	80	167	K
	276655			200	60	1.15	80.0	22600	90.6	25800	.0911	83	82	665	L
	276605			230	60	1.15	69.6	22600	78.8	25800	.1114	83	82	578	L
	276665	25	18.5	380	60	1.15	42.1	22600	47.7	25800	.2734	83	82	350	L
	276615			460	60	1.15	34.8	22600	39.4	25800	.4151	83	82	289	L
	276625			575	60	1.15	27.8	22600	31.6	25800	.7086	83	82	231	L
	276656			200	60	1.15	95.0	28000	108.6	31900	.0709	81	80	736	K
	276606			230	60	1.15	82.6	28000	94.4	31900	.0912	81	80	640	K
	276666	30	22	380	60	1.15	50.0	28000	57.2	31900	.2329	81	80	387	K
	276616			460	60	1.15	41.3	28000	47.2	31900	.3442	81	80	320	K
	276626			575	60	1.15	33.0	28000	37.8	31900	.5265	81	80	256	K
	276667			380	60	1.15	67.2	35900	76.0	42400	.1823	84	83	545	L
	276617	40	30	460	60	1.15	55.4	35900	62.8	42400	.2329	84	83	450	L
	276627			575	60	1.15	45.2	35900	50.2	42400	.3443	84	83	360	L

Model numbers above are for three-lead motors. Six-lead motors with different model numbers have the same running performance, but when Wye connected for starting have locked rotor amps 33% of the values shown. Six-lead individual phase resistance = table X 1.5.

Table 26 Three-Phase Motor Fuse Sizing

		TOR				CI	RCUIT BREAKERS OR FUSE AN	MPS	CI	RCUIT BREAKERS OR FUSE AN	IPS .
TYPE	MO Pre	DEL Efix		RATING	i		(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)	
11172	STD	HI-TEMP	HP	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	236650	276650			200	60	35	45	50	25	45
6"	236600	276600			230	45	30	40	45	20	40
U	236660	276660	5	3.7	380	30	17.5	25	30	12	25
STD. &	236610	276610			460	25	15	20	25	10	20
	236620	276620			575	20	12	15	20	8	15
HI-TEMP	236651	276651			200	80	45	70	80	35	70
	236601	276601			230	70	40	60	70	30	60
	236661	276661	7.5	5.5	380	45	25	35	40	20	35
	236611	276611			460	35	20	30	35	15	30
	236621	276621			575	30	17.5	25	25	11	25
	236652	276652			200	100	60	90	100	45	90
	236602	276602			230	90	50	80	90	40	80
	236662	276662	10	7.5	380	60	35	45	50	25	45
	236612	276612			460	45	25	40	45	20	40
	236622	276622			575	35	20	30	35	15	30
	236653	276653			200	150	90	125	150	60	125
	236603	276603			230	150	80	110	125	60	110
	236663	276663	15	11	380	80	50	70	80	35	70
	236613	276613			460	70	40	60	60	30	60
	236623	276623			575	60	30	45	50	25	45
	236654	276654			200	200	110	175	175	80	175
	236604	276604			230	175	100	150	175	70	150
	236664	276664	20	15	380	100	60	90	100	45	90
	236614	276614			460	90	50	70	80	35	70
	236624	276624			575	70	40	60	70	30	60
	236655	276655			200	250	150	200	225	100	200
	236605	276605			230	225	125	175	200	90	175
	236665	276665	25	18.5	380	125	80	110	125	50	110
	236615	276615			460	110	60	90	100	45	90
	236625	276625			575	90	50	70	80	35	70
	236656	276656			200	300	175	250	300	125	250
	236606	276606			230	250	150	225	250	100	200
	236666	276666	30	22	380	150	90	125	150	60	125
	236616	276616			460	125	70	110	125	50	100
	236626	276626			575	100	60	90	100	40	80
	236667	276667			380	200	125	175	200	90	175
	236617	276617	40	30	460	175	100	150	175	70	150
	236627	276627			575	150	80	110	125	60	110
	236668	276668			380	250	150	225	250	110	225
	236618	276618	50	37	460	225	125	175	200	90	175
	236628	276628			575	175	100	150	175	70	150
	236669	276669			380	300	175	250	300	125	250
	236619	276619	60	45	460	250	150	225	250	100	225
	236629	276629			575	200	125	175	200	80	175

Table 27 Three-Phase Motor Specifications (60 Hz) 3525 rpm

ТҮРЕ	MOTOR Model			RATING			FUL	L LOAD	M	IAXIMUM Load	LINE TO LINE RESISTANCE	EFFIC	CIENCY %	LOCKED ROTOR	KVA CODE
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	KILOWATTS	AMPS	KILOWATTS	OHMS	S.F.	F.L.	AMPS	CODE
	239660			380	60	1.15	64	35	72	40	.1620	86	86	479	J
8′′	239600	40	30	460	60	1.15	53	35	60	40	.2430	86	86	396	J
0	239610			575	60	1.15	42	35	48	40	.3949	86	86	317	J
455	239661			380	60	1.15	79	43	88	49	.1216	87	87	656	K
STD.	239601	50	37	460	60	1.15	64	43	73	49	.1822	87	87	542	K
	239611			575	60	1.15	51	43	59	49	.2834	87	87	434	K
	239662			380	60	1.15	92	52	104	60	.0911	88	87	797	K
	239602	60	45	460	60	1.15	76	52	86	60	.1417	88	87	658	K
	239612			575	60	1.15	61	52	69	60	.2228	88	87	526	K
	239663			380	60	1.15	114	64	130	73.5	.0609	88	88	1046	L
	239603	75	55	460	60	1.15	94	64	107	73.5	.1013	88	88	864	L
	239613			575	60	1.15	76	64	86	73.5	.1621	88	88	691	L
	239664			380	60	1.15	153	85	172	97.5	.0506	89	89	1466	L
	239604	100	75	460	60	1.15	126	85	142	97.5	.0709	89	89	1211	L
	239614			575	60	1.15	101	85	114	97.5	.1113	89	89	969	L
	239165			380	60	1.15	202	109	228	125	.0304	87	86	1596	K
	239105	125	93	460	60	1.15	167	109	188	125	.0507	87	86	1318	K
	239115			575	60	1.15	134	109	151	125	.0811	87	86	1054	K
	239166			380	60	1.15	235	128	266	146	.0203	88	87	1961	K
	239106	150	110	460	60	1.15	194	128	219	146	.0405	88	87	1620	K
	239116			575	60	1.15	164	128	182	146	.0608	88	87	1296	K
	239167			380	60	1.15	265	150	302	173	.0204	88	88	1991	J
	239107	175	130	460	60	1.15	219	150	249	173	.0405	88	88	1645	J
	239117			575	60	1.15	175	150	200	173	.0608	88	88	1316	J
	239168			380	60	1.15	298	169	342	194	.0203	88	88	2270	J
	239108	200	150	460	60	1.15	246	169	282	194	.0305	88	88	1875	J
	239118			575	60	1.15	197	169	226	194	.0507	88	88	1500	J

Table 27A 8" Three-Phase Motor Specifications (60 Hz) 3525 rpm

TYPE	MOTOR MODEL			RATING			FUL	L LOAD	M	IAXIMUM Load	LINE TO LINE RESISTANCE	EFFIC	CIENCY %	LOCKED ROTOR	KVA CODE
	PREFIX	HP	KW	VOLTS	HZ	S.F.	AMPS	KILOWATTS	AMPS	KILOWATTS	OHMS	S.F.	F.L.	AMPS	CODE
	279160			380	60	1.15	69.6	38	78.7	43	.1114	79	78	616	М
QII	279100	40	30	460	60	1.15	57.5	38	65.0	43	.1619	79	78	509	М
0	279110			575	60	1.15	46.0	38	52.0	43	.2531	79	78	407	М
	279161			380	60	1.15	84.3	47	95.4	53	.0709	81	80	832	М
HI-TEMP	279101	50	37	460	60	1.15	69.6	47	78.8	53	.1114	81	80	687	М
	279111			575	60	1.15	55.7	47	63.0	53	.1822	81	80	550	М
	279162			380	60	1.15	98.4	55	112	62	.0607	83	82	1081	N
	279102	60	45	460	60	1.15	81.3	55	92.1	62	.0911	83	82	893	N
	279112			575	60	1.15	65.0	55	73.7	62	.1316	83	82	715	N
	279163			380	60	1.15	125	68	141	77	.0506	83	82	1175	L
	279103	75	56	460	60	1.15	100	68	114	77	.0709	83	82	922	L
	279113			575	60	1.15	80	68	92	77	.1114	83	82	738	L
	279164			380	60	1.15	159	88	181	100	.0405	86	85	1508	М
	279104	100	75	460	60	1.15	131	88	149	100	.0507	86	85	1246	М
	279114			575	60	1.15	105	88	119	100	.0810	86	85	997	М
	279165			380	60	1.15	195	109	223	125	.0304	86	85	1793	L
	279105	125	93	460	60	1.15	161	109	184	125	.0406	86	85	1481	L
	279115			575	60	1.15	129	109	148	125	.0709	86	85	1185	L
	279166			380	60	1.15	235	133	269	151	.0203	85	84	2012	K
	279106	150	110	460	60	1.15	194	133	222	151	.0305	85	84	1662	K
	279116			575	60	1.15	155	133	178	151	.0507	85	84	1330	K

Model numbers above are for three-lead motors. Six-lead motors with different model numbers have the same running performance, but when Wye connected for starting have locked rotor amps 33% of the values shown. Six-lead individual phase resistance = table X 1.5.

Table 28 Three-Phase Motor Fuse Sizing

	Mazan		RATING		CIF	CUIT BREAKERS OR FUSE AM	PS	a	RCUIT BREAKERS OR FUSE AM	PS
TYPE	MOTOR Model		KATING			(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)	
1172	PREFIX	HP	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME Delay Fuse	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	239660			380	200	125	175	200	80	175
8′′	239600	40	30	460	175	100	150	175	70	150
O	239610			575	150	80	110	125	60	110
CTD	239661			380	250	150	200	225	100	200
STD.	239601	50	37	460	200	125	175	200	80	175
	239611			575	175	90	150	150	70	150
	239662			380	300	175	250	300	125	250
	239602	60	45	460	250	150	200	225	100	200
	239612			575	200	110	175	175	80	175
	239663			380	350	200	300	350	150	300
	239603	75	55	460	300	175	250	300	125	250
	239613			575	250	150	200	225	100	200
	239664			380	500	275	400	450	200	400
	239604	100	75	460	400	225	350	400	175	350
	239614			575	350	200	300	300	125	300
	239165			380	700	400	600	600	250	600
	239105	125	93	460	500	300	450	500	225	450
	239115			575	450	250	350	400	175	350
	239166			380	800	450	600	700	300	600
	239106	150	110	460	600	350	500	600	250	500
	239116			575	500	300	400	450	200	400
	239167			380	800	500	700	800	350	700
	239107	175	130	460	700	400	600	700	300	600
	239117			575	600	350	450	600	225	450
	239168			380	1000	600	800	1000	400	800
	239108	200	150	460	800	450	700	800	350	700
	239118			575	600	350	500	600	250	500

Table 28A 8" Three-Phase Motor Fuse Sizing

	MOTOR		RATING		CI	RCUIT BREAKERS OR FUSE AI	MPS	a	RCUIT BREAKERS OR FUSE AM	PS
TYPE	MOTOR Model		KAIINO			(MAXIMUM PER NEC)			(TYPICAL SUBMERSIBLE)	
	PREFIX	HP	KW	VOLTS	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker	STANDARD FUSE	DUAL ELEMENT TIME DELAY FUSE	CIRCUIT Breaker
	279160			380	225	125	175	200	90	175
8′′	279100	40	30	460	175	110	150	175	70	150
0	279110			575	150	90	125	125	60	125
II TEMB	279161			380	250	150	225	225	110	225
II-TEMP	279101	50	37	460	200	125	175	200	90	175
	279111			575	175	100	150	150	70	150
	279162			380	300	175	250	300	125	250
	279102	60	45	460	275	150	225	250	100	225
	279112			575	200	125	175	175	80	175
	279163			380	400	200	350	350	150	350
	279103	75	56	460	300	175	275	300	125	275
	279113			575	275	150	225	225	100	225
	279164			380	500	300	450	450	200	450
	279104	100	75	460	400	250	350	400	175	350
	279114			575	350	200	300	300	125	300
	279165			380	700	400	600	600	250	600
	279105	125	93	460	500	300	450	500	225	450
	279115			575	450	250	350	400	175	350
	279166			380	800	450	600	700	300	600
	279106	150	110	460	600	350	500	600	250	500
	279116			575	500	300	400	450	200	400

Overload Protection of Three-Phase Submersible Motors Class 10 Protection Required

The characteristics of submersible motors are different than standard motors and special overload protection is required.

If the motor is locked, the overload protection must trip within 10 seconds to protect the motor windings. Subtrol/SubMonitor, a Franklin-approved adjustable overload relay, or a Franklin-approved fixed heater must be used.

Fixed heater overloads must be the ambient-compensated quick-trip type to maintain protection at high and low air temperatures.

All heaters and amp settings shown are based on total line amps. When determining amperage settings or making heater selections for a six-lead motor with a Wye-Delta starter, divide motor amps by 1.732.

Pages 29, 30 and 31 list the correct selection and settings for some manufacturers. Approval for other manufacturers' types not listed may be requested by calling Franklin's Technical Service Hotline at 800-348-2420.

Refer to notes on page 30.

Table 29 - 60 Hz 4" Motors

	1011	VOLES	NEMA		RS FOR Ad relays	ADJUS Rela	
HP	KW	VOLTS	STARTER Size	FURNAS	G.E.	(NOT	
				(NOTE 1)	(NOTE 2)	SET	MAX.
		200	00	K31	L380A	3.2	3.4
		230	00	K28	L343A	2.7	2.9
1/2	0.37	380	00	K22	L211A	1.7	1.8
		460	00	-	L174A	1.4	1.5
		575	00	-	-	1.2	1.3
		200	00	K34	L510A	4.1	4.4
		230	00	K32	L420A	3.5	3.8
3/4	0.55	380	00	K27	L282A	2.3	2.5
		460	00	K23	L211A	1.8	1.9
		575	00	K21	L193A	1.5	1.6
		200	00	K37	L618A	5.0	5.4
		230	00	K36	L561A	4.4	4.7
1	0.75	380	00	K28	L310A	2.6	2.8
		460	00	K26	L282A	2.2	2.4
		575	00	K23	L211A	1.8	1.9
		200	00	K42	L750A	6.3	6.8
		230	00	K39	L680A	5.5	5.9
1.5	1.1	380	00	K32	L420A	3.3	3.6
		460	00	K29	L343A	2.8	3.0
		575	00	K26	L282A	2.2	2.4
		200	0	K50	L111B	8.6	9.3
		230	0	K49	L910A	7.5	8.1
2	1.5	380	0	K36	L561A	4.6	4.9
		460	00	K33	L463A	3.8	4.1
		575	00	K29	L380A	3.0	3.2
		200	0	K55	L147B	11.6	12.5
		230	0	K52	L122B	10.1	10.9
3	2.2	380	0	K41	L750A	6.1	6.6
		460	0	K37	L618A	5.1	5.5
		575	0	K34	L510A	4.1	4.4
		200	1	K62	L241B	19.1	20.5
		230	1	K61	L199B	16.6	17.8
5	3.7	380	0	K52	L122B	10.0	10.8
		460	0	K49	L100B	8.3	8.9
		575	0	K42	L825A	6.6	7.1
		200	1	K68	L322B	28.4	30.5
		230	1	K67	L293B	24.6	26.4
7.5	5.5	380	1	K58	L181B	14.9	16.0
		460	1	K55	L147B	12.3	13.2
		575	1	K52	L122B	9.9	10.6
		380	1	K62	L241B	19.5	21.0
10	7.5	460	1	K60	L199B	16.1	17.3
		575	1	K56	L165B	12.9	13.6
		380	2 (1)	K70	L322B	29	31.2
15	11	460	2 (1)	K67	L265B	24.0	25.8
		575	2 (1)	K62	L220B	19.3	20.7

Three-Phase Motors

APPLICATION

Table 30 - 60 Hz 6" Standard & Hi-Temp Motors

HP	KW	VOLTS	NEMA Starter		RS FOR D relays	REL	TABLE Ays
		10213	SIZE	FURNAS (NOTE 1)	G.E. (NOTE 2)	SET (NO	TE 3) MAX.
		200	1	K61	L220B	17.6	19.1
		230	1	K61	L199B	15.4	16.6
5	3.7	380	0	K52	L122B	9.4	10.1
		460	0	K49	L100B	7.7	8.3
		575	0	K42	L825A	6.1	6.6
		200	1	K67	L322B	26.3	28.3
		230	1	K64	L293B	22.9	24.6
7.5	5.5	380	1	K57	L165B	13.9	14.9
		460	1	K54	L147B	11.4	12.3
		575	1	K52	L111B	9.1	9.8
		200	2(1)	K72	L426B	34.4	37.0
		230	2(1)	K70	L390B	29.9	32.2
10	7.5	380	1	K61	L220B	18.1	19.5
		460	1	K58	L181B	15.0	16.1
		575	1	K55	L147B	12.0	12.9
		200	3(1)	K76	L650B	50.7	54.5
		230	2	K75	L520B	44.1	47.4
15	11	380	2(1)	K68	L322B	26.7	28.7
		460	2(1)	K64	L265B	22.0	23.7
		575	2(1)	K61	L220B	17.7	19.0
		200	3	K78	L787B	64.8	69.7
		230	3(1)	K77	L710B	56.4	60.6
20	15	380	2	K72	L426B	34.1	36.7
		460	2	K69	L352B	28.2	30.3
		575	2	K64	L393B	22.7	24.4
		200	3	K86	L107C	80.3	86.3
		230	3	K83	L866B	69.8	75.0
25	18.5	380	2	K74	L520B	42.2	45.4
		460	2	K72	L426B	34.9	37.5
		575	2	K69	L352B	27.9	30.0
		200	4(1)	K88	L126C	96.7	104.0
		230	3	K87	L107C	84.1	90.4
30	22	380	3(1)	K76	L650B	50.9	54.7
		460	3(1)	K74	L520B	42.0	45.2
		575	3(1)	K72	L390B	33.7	36.2
		380	3	K83	L866B	69.8	75.0
40	30	460	3	K77	L710B	57.7	62.0
		575	3	K74	L593B	46.1	49.6
		380	3	K87	L107C	86.7	93.2
50	37	460	3	K83	L950B	71.6	77.0
		575	3	K77	L710B	57.3	61.6
		380	4(1)	K89	L126C	102.5	110.2
60	45	460	4(1)	K87	L107C	84.6	91.0
		575	4(1)	K78	L866B	67.7	72.8

Footnotes for Tables 29, 30, 31, and 31A

NOTE 1: Furnas intermediate sizes between NEMA starter sizes apply where (1) is shown in tables, size 1.75 replacing 2, 2.5 replacing 3, 3.5 replacing 4, and 4.5 replacing 5. Heaters were selected from Catalog 294, table 332 and table 632 (starter size 00, size B). Size 4 starters are heater type 4 (JG). Starters using these heater tables include classes 14, 17, and 18 (inNOVA), classes 36 and 37 (reduced voltage), and classes 87, 88, and 89 (pump and motor control centers). Overload relay adjustments should be set no higher than 100% unless necessary to stop nuisance tripping with measured amps in all lines below nameplate maximum. Heater selections for class 16 starters (Magnetic Definite Purpose) will be furnished upon request.

NOTE 2: General Electric heaters are type CR123 usable only on type CR124 overload relays and were selected from Catalog GEP-1260J, page 184. Adjustment should be set no higher than 100%, unless necessary to stop nuisance tripping with measured amps in all lines below nameplate maximum.

NOTE 3: Adjustable overload relay amp settings apply to approved types listed. Relay adjustment should be set at the specified SET amps. Only if tripping occurs with amps in all lines measured to be within nameplate maximum amps should the setting be increased, not to exceed the MAX value shown.

NOTE 4: Heaters shown for ratings requiring NEMA size 5 or 6 starters are all used with current transformers per manufacturer standards. Adjustable relays may or may not use current transformers depending on design.

Three-Phase Motors

APPLICATION

Table 31 - 60 Hz 8" Motors

MOTOR	ш	I/M	VOLTE	NEMA		RS FOR D relays	ADJUS Rel	TABLE Ays
MODEL Prefix	HP	KW	VOLTS	STARTER Size	FURNAS	G.E.	(NO	E 3)
PREFIA				SILE	(NOTE 1)	(NOTE 2)	SET	MAX.
239660			380	3	K78	L866B	68	73
239600	40	30	460	3	K77	L710B	56	60
239610			575	3	K73	L520B	45	48
239661			380	3	K86	L107C	81	87
239601	50	37	460	3	K78	L866B	68	73
239611			575	3	K77	L710B	56	60
239662			380	4(1)	K89	L126C	101	108
239602	60	45	460	4(1)	K86	L107C	83	89
239612			575	4(1)	K78	L787B	64	69
239663			380	4	K92	L142C	121	130
239603	75	55	460	4(1)	K89	L126C	100	107
239613			575	4(1)	K85	L950C	79	85
239664			380	5(1)	K28	L100B	168	181
239604	100	75	460	4	K92	L155C	134	144
239614			575	4	K90	L142C	108	116
239165			380	5	K32	L135B	207	223
239105	125	93	460	5(1)	K29	L111B	176	189
239115			575	5(1)	K26	L825A	140	150
239166			380	5	-	L147B	248	267
239106	150	110	460	5(1)	K32	L122B	206	221
239116			575	5(1)	K28	L100B	169	182
239167			380	6	K26	-	270	290
239107	175	130	460	5	K33	L147B	233	250
239117			575	5	K31	L111B	186	200
239168			380	6	K27	-	316	340
239108	200	150	460	5	K33	L165B	266	286
239118			575	5	K32	L135B	213	229

Recommended Adjustable Overload Relays

Advance Controls: MDR3 Overload **AEG Series:** B17S, B27S, B27-2

ABB Type: RVH 40, RVH65, RVP160, T25DU, T25CT, TA25DU

AGUT: MTO3, R1K1, R1L0, R1L3, TE set Class 5

Allen Bradley: Bulletin 193, SMP-Class 10 only

Automatic Switch Types: DQ, LR1-D, LR1-F, LR2 Class 10

Benshaw: RSD6 (Class 10) Soft Start Bharita C-H: MC 305 ANA 3 Clipsal: 6CTR, 6MTR

Cutler-Hammer: C316F, C316P, C316S, C310-set at 6 sec max, Advantage Class10

Fanal Types: K7 or K7D through K400

 $\textbf{Franklin Electric:} \ \textbf{Subtrol-Plus, SubMonitor, IPS, SSP, IPS-RV, and SPS-RV}$

Fuji Types: TR-OQ, TR-OQH, TR-2NQ, TR-3NQ, TR-4NQ, TR-6NQ, RCa 3737-ICQ & ICQH Furnas Types: US15 48AG & 48BG, 958L, ESP100-Class 10 only, 3RB10-Class 10 General Electric: CR4G, CR7G, RT*1, RT*2, RTF3, RT*4, CR324X-Class 10 only Kasuga: RU Set Operating Time Code = 10 & time setting 6 sec max Klockner-Moeller Types: ZOO, Z1, Z4, PKZM1, PKZM3 & PKZ2

Table 31A - 60 Hz 8" Hi-Temp 75°C Motors

MOTOR MODEL	НР	KW	VOLTS	NEMA Starter		RS FOR D RELAYS		TABLE Ays
	NY	VAA	AOTI2		FURNAS	G.E.	(NO	TE 3)
PREFIX				SIZE	(NOTE 1)	(NOTE 2)	SET	MAX.
279160			380	3	K83	L866B	73	79
279100	40	30	460	3	K77	L710B	60	65
279110			575	3	K74	L593B	48	52
279161			380	3	K87	L107C	89	95
279101	50	37	460	3	K83	L866B	73	79
279111			575	3	K77	L710B	59	63
279162			380	4(1)	K89	L126C	104	112
279102	60	45	460	4(1)	K87	L107C	86	92
279112			575	4(1)	K78	L866B	69	74
279163			380	4	K92	L155C	131	141
279103	75	56	460	4(1)	K89	L126C	106	114
279113			575	4(1)	K87	L950C	86	92
279164			380	5(1)	K28	L100B	168	181
279104	100	75	460	5(1)	K26	L825A	139	149
279114			575	4	K90	L142C	111	119
279165			380	5	K32	L135B	207	223
279105	125	93	460	5(1)	K29	L111B	171	184
279115			575	5(1)	K26	L825A	138	148
279166			380	5	-	L147B	250	269
279106	150	110	460	5(1)	K32	L122B	206	222
279116			575	5(1)	K28	L100B	166	178

Note: Other relay types from these and other manufacturers may or may not provide acceptable protection, and they should not be used without approval of Franklin Electric.

Some approved types may only be available for part of the listed motor ratings. When relays are used with current transformers, relay setting is the specified amps divided by the transformer ratio.

Lovato: RC9, RC22, RC80, RF9, RF25 & RF95

Matsushita: FKT-15N, 15GN, 15E, 15GE, FT-15N, FHT-15N

Mitsubishi: ET, TH-K12ABKP, TH-K2OKF, TH-K2OKP, TH-K2OTAKF, TH-K6OKF, TH-K6OTAKF

Omron: K2CM Set Operating Timing Code = 10 & time setting 6 sec max, SE-KP24E time setting

6 sec max

Riken: PM1. PM3

Samwha: EOCRS Set for Class 5, EOCR-ST, EOCR-SE, EOCR-AT time setting 6 sec max

Siemens Types: 3UA50, -52, -54, -55, -58, -59, -60, -61, -62, -66, -68, -70, 3VUI3, 3VE, 3UB (Class 5) **Sprecher and Schuh Types:** CT, CT1, CTA 1, CT3K, CT3-12 thru CT3-42, KTA3, CEF1 & CET3 set at 6 sec

max, CEP 7 Class 10, CT4, 6, & 7, CT3, KT7

Square D/Telemecanique: Class 9065 Types: TD, TE, TF, TG, TJ, TK, TR, TJE &TJF (Class 10), LR1-D, LR1-F, LR2 Class 10, Types 18A, 32A, SS-Class 10, SR-Class 10 and 63-A-LB Series. Integral 18,32,63, GV2-L, GV2-M, GV2-P, GV3-M (1.6-10 amp only) LR9D, SF Class 10, ST Class 10, LT6

(Class 5 or 10), LRD (Class 10), Motor Logic (Class10)

Toshiba Type: 2E RC820, set at 8 sec max.

WEG: RW2

Westinghouse Types: FT13, FT23, FT33, FT43, K7D, K27D, K67D, Advantage (Class 10), MOR, IQ500

(Class 5)

Westmaster: OLWROO and OLWTOO suffix D thru P

INFORMATION SUPPLEMENT

1.0 MOTOR

- 1.1 Verify motor nameplate data meets the application hp, voltage, phase, and Hertz.
- 1.2 Check that the motor shaft rotates freely by hand on the second of two complete rotations. (On large motors, this usually requires a motor coupling with a cheater handle welded to it.)
- 1.3 Check that the motor lead assembly is not damaged.
- 1.4 Measure insulation resistance to ground at 500 volts BEFORE SUBMERGED. It should be a minimum of 200 megohms or 200,000,000 ohms.
- 1.5 Measure insulation resistance to ground at 500 volts AFTER SUBMERGED. It should be a minimum of 0.5 megohms or 500,000 ohms.
- 1.6 Verify the system is operating within the ±10% of nameplate voltage requirement.
- 1.7 Verify the system will not ever operate in excess of the maximum amps indicated on the nameplate.
- 1.8 Verify the system is operating at 5% or less current unbalance.

Notice:

- If current unbalance exceeds 5%, the maximum operating amps must be derated to the nameplate Full Load Amps.
- Warning System current unbalance can not exceed 10% without causing heating and mechanical wear issues.
- The submersible motor amperage % unbalance is typically 6x greater than its voltage % unbalance.
- Thus, 0.8% voltage unbalance = greater than 5% current unbalance, and 1.7% voltage unbalance = greater than 10% current unbalance.

2.0 PUMP

- 2.1 Verify the pump nameplate and curve data meets the application hp, rpm, and flow/TDH requirements.
- 2.2 Verify the pump NPSH requirement will be met at all times.
- 2.3 Check that the pump shaft rotates freely by hand before installation.
- 2.4 Check that the pump shaft moves up about ¼ inch when it is coupled to the motor.
- 2.5 Check that the pump guard is not pinching the motor leads, especially where it enters and exits the guard.

Notice:

- Pumps and motors 5 hp and above should be assembled in a vertical position to ensure correct alignment.
- A motor-pump assembly 5 hp and above should never be lifted from a non-vertical position by the pump discharge because it can bend the shaft in one or both of the products.

3.0 POWER SUPPLY (3-PHASE)

- 3.1 Verify the transformer kVA rating is adequate for the motor per the Franklin Application (AIM) manual requirement.
- 3.2 Verify that all transformers have the same kVA rating.
- 3.3 Verify the 3-Ph pump panel fuses or its circuit breaker are correctly sized per the Franklin Application (AIM) manual requirement.
- 3.4 Verify the 3-Ph pump panel motor contactor is correctly sized per the Franklin Application (AIM) manual requirement.
- 3.5 Verify the 3-Ph pump panel motor overload is ambient compensated.
- 3.6 Verify the 3-Ph pump panel motor overload has a NEMA Class 10 trip curve.
- 3.7 Verify the 3-Ph pump panel motor overload heaters or its dial setting are correctly selected based on the system's operating point and not just arbitrarily set at the maximum motor operating amps.
- 3.8 At no time should the system operating amps or the motor overload system running point setting be higher than the motor nameplate maximum amp rating.

Notice:

- Electronic overloads should be set at the normal system operation point.
- Electronic overloads have a built-in multiplier of 115-125% times the input amps to determine the overload trip point.

4.0 POWER SUPPLY (1-PHASE)

4.1 Verify the transformer kVA rating is adequate for the motor per the Franklin Application (AIM) manual requirement.

- 4.2 Verify the motor control box and the motor are made by the same manufacturer.
- 4.3 Verify the motor control box hp rating and its voltage match the motor rating exactly. If not, a premature failure of the control box or motor should be expected.

5.0 HIGH SURGE PROTECTION

- 5.1 Verify the submersible motor has a dedicated surge arrestor.
 - All submersible motors require a dedicated surge arrestor.
 - Motors 5 hp and smaller marked "Equipped with Lightning Arrestors", have a built-in surge arrestor.
- 5.2 Verify the surge arrestor is mounted as close to the motor as practical.
 - The location is usually in the pump panel, but sometimes it is placed at the well head in a separate electrical box.
- 5.3 Verify the surge arrestor is grounded below the lowest drawdown water level.
 - This is usually accomplished by attaching the drop cable ground wire to the motor lead or the motor ground lug.
- 5.4 Verify the ground conductor size meets the minimum requirements of the National Electric Code and all other relevant national, state, regional and local codes.
- 5.5 Verify the motor is connected to both the electrical system ground and the motor.

6.0 ELECTRICAL DROP CABLE

- 6.1 Verify the temperature rating of the drop cable typically 60 °C, 75 °C, 90 °C or 125 °C.
- 6.2 Verify if the cable is single conductor or jacketed conductor. Web cable is considered jacketed cable by regulating agencies.
- 6.3 Verify the conductor size typically AWG, MCM or mm².
- 6.4 Verify if the conductor material is copper; if not, determine the material and contact the factory for acceptability.
- 6.5 Verify the drop cable meets or exceeds the requirements of the Franklin Application (AIM) manual.

Notice:

If the service entrance to pump panel or the pump panel to motor cable is not a copper material, contact the factory for the correct length derating factors.

7.0 MOTOR COOLING

- 7.1 Verify that the well water temperature does not exceed the maximum ambient temperature indicated on the nameplate of the motor.
- 7.2 Verify there is a minimum of 10 feet of clear water between the bottom of the motor and the bottom of the well.
- 7.3 Verify that all water entering the well is coming from below the lowest part of the motor.
- 7.4 Verify the system pumping rate will never deliver less flow than is required by the Franklin Application (AIM) manual to flow by-and-around the full length of the motor for cooling purposes.
- 7.5 Verify that 3-phase motors above 7.5 hp in a vertical potable water well should not exceed 100 starts in 24 hours and each start should include a minimum of 3 minutes ON and 10 minutes OFF.

Notice:

If any water is entering the well above the lowest part of the motor, a flow sleeve is required.

8.0 MOTOR-PUMP INSTALLATION

- 8.1 Verify that the drop cable is supported to the drop pipe every 10 feet.
- 8.2 Verify at least one spring loaded (non-drilled) check valve is in the drop pipe.
 - Preferably, the first check valve should be located at the top of the first pipe joint above the pump discharge (-20 feet) if the pump does not have a check built in to its discharge.
- 8.3 Verify all pipe joints are as tight as practical.
 - The minimum torque should never be less than 10 foot-pounds times the motor nameplate hp rating.
- 8.4 Verify the rotation of the pump is correct.
 - It is preferable to do this by checking the flow and current in both directions on 3-phase motors.
 - This can be done by having the electrician swap any two leads.
 - This is considered "best practice" since pumps under some conditions can supply amp readings and a visual flow observation that can be extremely misleading.

Form 2207 - Page 1

SUBMERSIBLE MOTORS INSTALLATION RECORD

Form 220	/			
SUBMERSIBLE MOTORS INSTA			RMA Number	
	KEY DEALER #			
DISTRIBUTOR	INSTALLER	END USER		
Name:	Name:	Name:		
City:	City:	City:		
State: Zip:	State: Zip:	State:	Zip:	
Well ID or GPS:		Water Temperature:	F °C	
Application/Water Use (e.g. potable water, irrigation, munici	pal, fountain, etc.):			
Date Installed (mm/yy): Date Failed (m	ım/yy): Motor Position	Shaft-Up: Yes No		
Operating Cycle: ON Time Per Start Hrs Hrs.	lins. Time OFF Between Stop & Restart	Hrs Mins.		
MOTOR				
Model: Serial Number:	Date	e Code (if updated):		
MOTOR OVERLOAD				
System Typical Operating Current: An	nps @Volts			
Overload: FE SubMonitor Input Amps	D3 Attached Yes No Fault Set	ttings Attached Yes No		
Other Manufacturer Model:	Dial Set at:	or Heater#		
NEMA Class: 10 20 30	Ambient Compensated: Yes No			
Power to Motor by: Full Volt Starter VFD So	ft Starter VFD or Soft Starter Mfr. & Model: _			
PUMP	WELL DATA (All I	measurements from well head down.)		
Manufacturer:		Casing Diameter	in	
odel: Drop Pipe Diameter				
Stages: Drop Pipe Material PVC Steel Poly				
Design Rating:gpm @ft TDH Number of Sticks of Drop Pipe				
Horsepower Required by Pump End:			ft	
Actual Pump Delivery: gpm @ psi		Spring Assist Check Valves:	Levelft	

Manufacturer: Model: Stages: Design Rating: gpm @ ft TDH Horsepower Required by Pump End: Actual Pump Delivery: gpm @ psi	WELL DATA
Model: Stages: Design Rating: gpm @ ft TDH Horsepower Required by Pump End:	
Stages: gpm @ ft TDH Horsepower Required by Pump End:	$\prod_{i=1}^{n}$
Design Rating: gpm @ ft TDH Horsepower Required by Pump End:	
Horsepower Required by Pump End:	
Actual Pumn Delivery anm @ nsi	
Account amp benter) gpin @ psi	
What Controls When System Runs & Stops:	
(e.g. pressure, level, flow, manual on/off, timer, time clock etc.)	

β	Casing Diameter	in
	— Drop Pipe Diameter	in
	Drop Pipe Material PVC Steel Poly	Other
	Number of Sticks of Drop Pipe	
	Static Water Level	ft
	> Drawdown (pumping) Water Level	ft
	Spring Assist Check Valves: (Measured from Well Head Down)	
	#1 #2 #3 #4 ft	
	Solid Drilled Poppet Break-Off Plug	
	> Pump Inlet Setting	ft
	Flow Sleeve No Yes, Dia.	in
	Case Ends	ft
	Well Screen Perforated Casing	
	- #1 fromtoft & #2 fromtoft	
	— Well Depth	ft

YOUR NAME / DATE

Form 2207 – Page 2 SUBMERSIBLE MOTORS INSTALLATION RECORD

RMA Number

IR	MANSFORMERS
Nι	umber of Transformers: Two Three Transformers Supply Motor Only: Yes No Unsure
Tra	ansformer #1: kVA Transformer #2: kVA Transformer #3: kVA
D/	ONED CLDI ECO COOLIND MIDE
PC	DWER CABLES & GROUND WIRE
	Service Entrance to Pump Control Panel:
1	Length:ft. & Gauge:AWG/MCM Materials Copper Alsonium Constructions Legislated Individual Conductors Web Truited
	Material: Copper Aluminum Construction: Jacketed Individual Conductors Web Twisted Temperature Rating of Cable: 60C 75C 90C 125C or Insulation Type: (e.g. THHN)
	Pump Control Panel to Motor: Length: ft. & Gauge: AWG/MCM
2	Material: Copper Aluminum Construction: Jacketed Individual Conductors Web Twisted
	Temperature Rating of Cable: 60C 75C 90C 125C or Insulation Type: (e.g. THHN)
	Ground Wire Size: From Control Panel to Motor: AWG/MCM
3	Control Grounded to (mark all that apply):
	Well Head Metal Casing Motor Driven Rod Power Supply
II.	COMING VOLTAGE RUNNING AMPS & CURRENT BALANCE
No	D Load L1-L2 L2-L3 L1-L3 Full Load L1 L2 L3
Fu	Load L1-L2 L2-L3 L1-L3
CO	ONTROL PANEL
_ 1	Pump Panel Manufacturer/Fabricator:
	Short Circuit Protection - Fuses or Circuit Breaker
	Option #1 - Fuse
	Manufacturer: Model: Rating: Amps
2	Type: Time-Delay Standard
	Option #2 - Circuit Breaker
	Manufacturer: Model: Rating: Amps Setting:
	Starter - Full Voltage, Reduced Voltage, Soft-Starter or VFD (Variable Frequency Drive)
	Option #1 - Full Voltage
	Manufacturer: Model: Size: Contacts: NEMA IEC
	Option #2 - Reduced Voltage
	Manufacturer: Model: Ramp Time to Full Voltage: sec.
3	Option #3 - Soft-Starter or VFD
	Manufacturer: Model: Max. Continuous Amp Output Rating:
	Min. Setting: Hz & GPM: Max. Setting: Hz & GPM:
	Start Ramp Time to 30 Hz: sec. Stop Mode: Power Off Coast 30-0 Hz Ramp sec.
	Special Output Filter Purchased: Yes No
	Output Filter Manufacturer:
4	Surge Arrestor: No Yes, Manufacturer: Model: Model:

SODITIENSIDEE IT	IOTOIN	

Date/	Filled In By					
INSTALLATION						
Owner/User		Telep	ohone () _			_
Installation Site, If Different						_
						_
System Application						_
System Manufactured By		Model	Serial No.			_
System Supplied By						
Is this a "HERO" system (10.0 - 10.5						_
MOTOR	<u> </u>					
Model No.	Sorial No		Data Coda			
Horsepower Vo						
Slinger Removed? Yes N			use bidiffeter	""		
Motor Fill Solution Standard).	Date (Code	
						_
PUMP						
Manufacturer	Model	Serial No				
Stages Diameter	Flow Rate Of	gpm AtTDH				
Booster Case Internal Diameter	Material					
CONTROLS AND PROTECTIVE	DEVICES					
SubMonitor? Yes No	If Yes. Warranty Registrati	on No				
	_	Yes No S				_
	•	Yes No Set A				_
VFD or Reduced Voltage Starter? [_
		Setting				
Pump Panel? Yes No If	Yes, Mfr	Siz	e			_
Magnetic Starter/Contactor Mfr		Model	Siz	e		_
Heaters Mfr	No	If Adjustable Set At				_
Fuses Mfr	Size T	ype				_
Surge Arrestor Mfr.						_
Controls Are Grounded to		Wire				
Inlet Pressure Control		1fr Model			Delay	
Inlet Flow Control		/fr Model			Delay	
Outlet Pressure Control		1fr Model			Delay	
Outlet Flow Control		/fr Model			Delay	
Water Temperature Control	_	/frModel			Delay	sec
	Set At °F	or °C Located				

RMA Number

INSULATION CHECK

Initial Megs: Motor & Lead	Only	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)	
Installed Megs: Motor, Lea	d, & Cable	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)	
VOLTAGE TO MOTOR					
Non-Operating:		B-Y (T1/U1 - T2/V1)	Y-R (T2/V1 - T3/W1)	R-B (T3/W1 - T1/U1)	
At Rated Flow of	gpm	B-Y (T1/U1 - T2/V1)	Y-R (T2/V1 - T3/W1)	R-B (T3/W1 - T1/U1)	
At Open Flow	gpm	B-Y (T1/U1 - T2/V1)	Y-R (T2/V1 - T3/W1)	R-B (T3/W1 - T1/U1)	
AMPS TO MOTOR					
At Rated Flow of	gpm	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)	
At Open Flow	gpm	Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)	
At Shut-Off*		Black (T1/U1)	Yellow (T2/V1)	Red (T3/W1)	
*Do NOT run at Shut-Off n	nore than two (2) min	nutes.			
Inlet Pressure	psi	Outlet Pressure	psi Water Temperati	ure °F or °C	
DIEACE CUETCH THE	CVCTEM				
PLEASE SKETCH THE	SYSTEM				

SubMonitor Three-Phase Protection

Applications

SubMonitor is designed to protect 3-phase pumps/motors with service factor amp ratings (SFA) from 5 to 350 A (approx. 3 to 200 hp). Current, voltage, and motor temperature are monitored using all three legs and allows the user to set up the SubMonitor quickly and easily.

Protects Against

- Under/Overload
- Under/Overvoltage
- Current Unbalance
- Overheated Motor (if equipped with Subtrol Heat Sensor)
- False Start (Chattering)
- Phase Reversal

This product is lead free.

Power Factor Correction

In some installations, power supply limitations make it necessary or desirable to increase the power factor of a submersible motor. Table 32 lists the capacitive kVAR required to increase the power factor of large Franklin three-phase submersible motors to the approximate values shown at maximum input loading.

Capacitors must be connected on the line side of the overload relay, or overload protection will be lost.

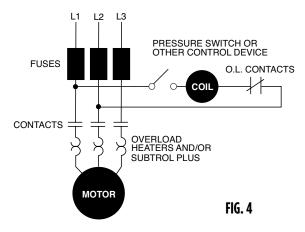
Table 32 kVAR Required 60 Hz

MO	TOR	KVAR REQUIRED FOR PF OF:			
HP	KW	0.90	0.95	1.00	
5	3.7	1.2	2.1	4.0	
7.5	5.5	1.7	3.1	6.0	
10	7.5	1.5	3.3	7.0	
15	11	2.2	4.7	10.0	
20	15	1.7	5.0	12.0	
25	18.5	2.1	6.2	15.0	
30	22	2.5	7.4	18.0	
40	30	4.5	11.0	24.0	
50	37	7.1	15.0	32.0	
60	45	8.4	18.0	38.0	
75	55	6.3	18.0	43.0	
100	75	11.0	27.0	60.0	
125	93	17.0	36.0	77.0	
150	110	20.0	42.0	90.0	
175	130	9.6	36.0	93.0	
200	150	16.0	46.0	110.0	

Values listed are total required (not per phase).

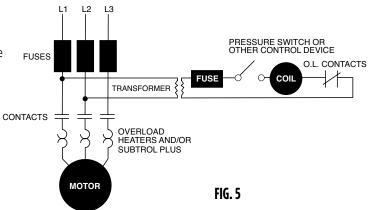
Three-Phase Starter Diagrams

Three-phase combination magnetic starters have two distinct circuits: a power circuit and a control circuit.

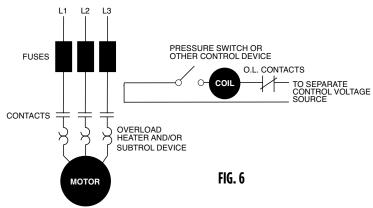

The power circuit consists of a circuit breaker or fused line switch, contacts, and overload heaters connecting incoming power lines L1, L2, L3 and the three-phase motor.

The control circuit consists of the magnetic coil, overload contacts, and a control device

such as a pressure switch. When the control device contacts are closed, current flows through the magnetic contactor coil, the contacts close, and power is applied to the motor. Hand-Off-Auto switches, start timers, level controls, and other control devices may also be in series in the control circuit.

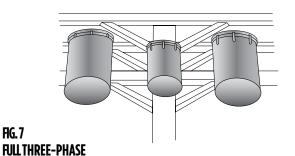

Line Voltage Control

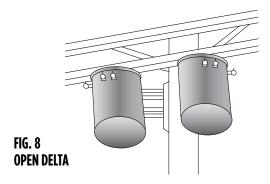
This is the most common type of control encountered. Since the coil is connected directly across the power lines L1 and L2, the coil must match the line voltage.


Low Voltage Transformer Control

This control is used when it is desirable to operate push buttons or other control devices at some voltage lower than the motor voltage. The transformer primary must match the line voltage and the coil voltage must match the secondary voltage of the transformer.

External Voltage Controls


Control of a power circuit by a lower circuit voltage can also be obtained by connecting to a separate control voltage source. The coil rating must match the control voltage source, such as 115 or 24 volts.



Three-Phase Power Unbalance

A full three-phase supply is recommended for all three-phase motors, consisting of three individual transformers or one three-phase transformer. So-called "open" Delta or Wye connections using only two transformers can be used, but are more likely to cause problems, such as poor performance, overload tripping or early motor failure due to current unbalance.

Transformer rating should be no smaller than listed in Table 4 for supply power to the motor alone.

Checking and Correcting Rotation and Current Unbalance

- Establish correct motor rotation by running the motor in both directions. Normal rotation is CCW viewing the shaft end. Rotation can be changed by interchanging any two of the three motor leads. The rotation that gives the most water flow is typically the correct rotation.
- After correct rotation has been established, check the current in each of the three motor leads and calculate the current unbalance as explained in 3 below.

If the current unbalance is 2% or less, leave the leads as connected.

If the current unbalance is more than 2%, current readings should be checked on each leg using each of three possible hook-ups. Roll the motor leads across the starter in the same direction to prevent motor reversal.

To calculate percent of current unbalance:

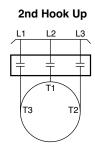
FIG.7

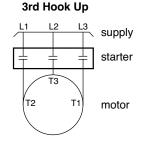
- A. Add the three line amps values together
- Divide the sum by three, yielding average current
- Pick the amp value which is furthest from the average current (either high or low)
- Determine the difference between this amp value(furthest from average)
- Divide the difference by the average. Multiply the result by 100 to determine percent of unbalance

Current unbalance should not exceed 5% at max amp load or 10% at rated input load. If the unbalance cannot be corrected by rolling leads, the source of the unbalance must be located and corrected. If, on the three possible hookups, the leg farthest from the average stays on the same power lead, most of the unbalance is coming from the "power side" of the system. If the reading farthest from average moves with the same motor lead, the primary source of unbalance is on the "motor side" of the starter. In this instance, consider a damaged cable, leaking splice, poor connection, or faulty motor winding.

Phase designation of leads for CCW rotation viewing shaft end.

To reverse rotation, interchange any two leads.


Phase 1 or "A" - Black, T1, or U1


Phase 2 or "B" - Yellow, T2, or V1

Phase 3 or "C" - Red, T3, or W1

NOTICE: Phase 1, 2, and 3 may not be L1, L2, and L3.

1st Hook Up

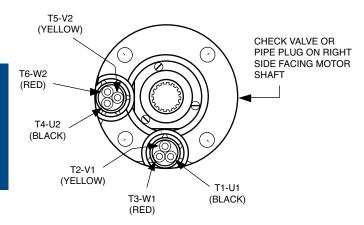
EXAMPLE:

T1 = 51 amps amps
 T3 = 50 amps
 T2 = 50 ampsT2 = 46

 amps amps + amps
 T1 = 49 amps
 T3 = 48 ampsT3 = 53

 + amps Total = 150 amps
 + T2 = 51 amps
 + T1 = 52 amps

 Total = 150 amps
 Total = 150 amps
 Total = 150 amps



$$\frac{150}{3}$$
 = 50 amps
 = 50 amps

$$\frac{150}{3}$$
 = 50 amps

$$50 - 46 = 4$$
 amps

$$50 - 49 = 1$$
 amp

$$50 - 48 = 2$$
 amps

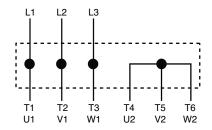
$$\frac{4}{50}$$
 = 0.08 or 8%

$$\frac{1}{50}$$
 = 0.02 or 2%

$$\frac{2}{50}$$
 = 0.04 or 4%

Line Connections — Six-Lead Motors

WARNING: When installing 6-lead motors extra care must be used to ensure lead identification at the surface. Leads must be marked and connected per diagram. Motor leads are not connected red to red, yellow to yellow, etc.



LEADS LOCATED HERE ONLY FOR 3 LEAD (DOL) MOTORS

90° Lead Spacing

Connections for across-the-line starting, running, and any reduced voltage starting except WYE-DELTA type starters.

 WYE-DELTA starters connect the motor as shown below during starting, then change to the running connection shown at the left.

Each motor lead is numbered with two markers, one near each end. To reverse rotation, interchange any two line connections.

Phase Converters

There are a number of different types of phase converters available. Each generates three-phase power from a single-phase power line.

In all phase converters, the voltage balance is critical to current balance. Although some phase converters may be well balanced at one point on the system-operating curve, submersible pumping systems often operate at differing points on the curve as water levels and operating pressures fluctuate. Other converters may be well balanced at varying loads, but their output may vary widely with fluctuations in the input voltage.

The following guidelines have been established for submersible installations to be warrantable when used with a phase converter.

- 1. Limit pump loading to rated horsepower. Do not load into motor service factor.
- 2. Maintain at least 3 ft/s flow past the motor. Use a flow sleeve when necessary.
- 3. Use time delay fuses or circuit breakers in pump panel. Standard fuses or circuit breakers do not provide secondary motor protection.
- SubMonitor will not work with electronic solid state or electro mechanical phase converters.
- 5. Current unbalance must not exceed 10%.

Reduced Voltage Starters

All Franklin three-phase submersible motors are suitable for full-voltage starting. Under this condition the motor speed goes from zero to full speed within a half second or less. The motor current goes from zero to locked rotor amps, then drops to running amps at full speed. This may dim lights, cause momentary voltage dips to other electrical equipment, and shock power distribution transformers.

In some cases the power companies may require reduced-voltage starters to limit this voltage dip. There are also times when reduced-voltage starters may be desirable to reduce motor starting torque thus reducing the stress on shafts, couplings, and discharge piping. Reduced-voltage starters also slow the rapid acceleration of the water on start-up to help control upthrust and water hammer.

Reduced-voltage starters may not be required if the maximum recommended cable length is used. With maximum recommended cable length there is a 5% voltage drop in the cable at running amps, resulting in about 20% reduction in starting current and about 36% reduction in starting torque compared to having rated voltage at the motor. This may be enough reduction in starting current so that reduced-voltage starters are not required.

Three-Lead Motors: Autotransformer or solid-state reduced-voltage starters may be used for soft-starting standard three-phase motors.

When autotransformer starters are used, the motor should be supplied with at least 55% of rated voltage to ensure adequate starting torque. Most autotransformer starters have 65% and 80% taps. Setting the taps on these starters depends on the percentage of the maximum allowable cable length used in the system. If the cable length is less than 50% of the maximum allowable, either the 65% or the 80% taps may be used. When the cable length is more than 50% of allowable, the 80% tap should be used.

Six-Lead Motors: Wve-Delta starters are used with six-lead Wve-Delta motors. All

Franklin 6" and 8" three-phase motors are available in six-lead Wye-Delta construction. Consult the factory for details and availability. Part winding starters are not compatible with Franklin Electric submersible motors and should not be used.

Wye-Delta starters of the open-transition type, which momentarily interrupt power during the starting cycle, are not recommended. Closed-transition starters have no interruption of power during the start cycle and can be used with satisfactory results.

Reduced-voltage starters have adjustable settings for acceleration ramp time, typically preset at 30 seconds. They must be adjusted so the motor is at full voltage within THREE SECONDS MAXIMUM to prevent excessive radial and thrust bearing wear.

If Subtrol-Plus or SubMonitor is used the acceleration time must be set to TWO SECONDS MAXIMUM due to the 3 second reaction time of the Subtrol-Plus or SubMonitor.

Solid-state starters AKA soft starts may not be compatible with Subtrol-Plus/ SubMonitor. However, in some cases a bypass contactor has been used. Consult the factory for details.

During shutdown, Franklin Electric's recommendation is for the power to be removed, allowing the pump/motor to coast down. Stopping the motor by ramping down the voltage is possible, but should be limited to three (3) seconds maximum.

Inline Booster Pump Systems

Franklin Electric offers three different types of motors for non-vertical applications.

- The Booster motors are specifically designed for booster applications. They are
 the "Best Choice" for sealed Reverse Osmosis applications. These motors are
 the result of two years of focused development and bring additional value and
 durability to booster module systems. These motors are only available to OEMs or
 Distributors who have demonstrated capability in Booster Module systems design
 and operation and adhere to Franklin's Application Manual requirements.
- The Hi-Temp motors have many of the internal design features of the Booster motor. It's additional length allows for higher temperature handling and the Sand Fighter sealing system provides greater abrasion resistance. One or both of these conditions are often experienced in open atmosphere applications such as lakes, ponds, etc.
- The Standard Vertical Water Well (40-125 hp) motors can be adapted to nonvertical applications when applied per the below guidelines. However, they will be more sensitive to application variances than the other two designs.

All of the above motors must be applied per the guidelines listed below. In addition, for all applications where the motor is applied in a sealed system, a Submersible Motor Booster Installation Record (Form 3655) or its equivalent must be completed at start-up and received by Franklin Electric within 60 days. A sealed system is one where the motor and pump intake are mounted in a sleeve and the water feeding the pump intake is not open to the atmosphere.

Inline Booster Pump Systems (Continued)

Design And Operational Requirements

- Non-Vertical Operation: Vertical Shaft-up (0°) to Horizontal (90°) operation is acceptable as long as the pump transmits "down-thrust" to the motor within 3 seconds after start-up and continuously during operation. However, it is best practice to provide a positive slope whenever it is possible, even if it is only a few degrees.
- Motor, Sleeve, and Pump Support System: The booster sleeve ID must be sized
 according to the motor cooling and pump NPSHR requirements. The support system
 must support the motor's weight, prevent motor rotation, and keep the motor and
 pump aligned. The support system must also allow for thermal axial expansion of
 the motor without creating binding forces.
- 3. Motor Support Points: A minimum of two support points are required on the motor. One in the motor/pump flange connection area and one in the bottom end of the motor area. The motor castings, not the shell area, are recommended as support points. If the support is a full length support and/or has bands in the shell area, they must not restrict heat transfer or deform the shell.
- 4. Motor Support Material and Design: The support system shall not create any areas of cavitation or other areas of reduced flow less than the minimum rate required by this manual. They should also be designed to minimize turbulence and vibration and provide stable alignment. The support materials and locations must not inhibit the heat transfer away from the motor.
- 5. Motor and Pump Alignment: The maximum allowable misalignment between the motor, pump, and pump discharge is 0.025 inch per 12 inches of length (2 mm per 1000 mm of length). This must be measured in both directions along the assembly using the motor/pump flange connection as the starting point. The booster sleeve and support system must be rigid enough to maintain this alignment during assembly, shipping, operation, and maintenance.
- 6. Lubrication and Heat Resistance: The best motor lubrication and heat resistance is obtained with the factory based propylene glycol fill solution. Only when an application MUST HAVE deionized (DI) water should the factory fill solution be replaced. When a deionized water fill is required, the motor must be derated as indicated on the below chart. The exchange of the motor fill solution to DI water must be done by an approved Franklin service shop or representative using a vacuum fill system per Franklin's Motor Service Manual instruction. The motor shell then must be permanently stamped with a D closely behind the Serial Number.

The maximum pressure that can be applied to the motor internal components during the removal of the factory fill solution is 7 psi (0.5 bar.)

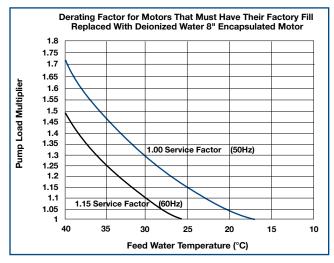


FIG. 9

- **First:** Determine maximum Feed Water Temperature that will be experienced in this application. If the feed water exceeds the maximum ambient of the motor, both the DI water derating and a hot water application derating must be applied.
- Second: Determine the Pump Load Multiplier from the appropriate Service Factor curve. (Typical 1.15 Service Factor is for 60 Hz ratings & 1.00 Service Factor for 50 Hz ratings).

Third: Multiply the Pump Load Requirement times the pump load multiplier number indicated on the vertical axis to determine the Minimum Motor Nameplate Rating.

Fourth: Select a motor with a nameplate equal or higher than the above calculated value.

- Motor Alterations Sand Slinger & Check Valve Plug: On 6" and 8" motors, the rubber sand slinger located on the shaft must be removed. If a pipe plug is covering the check valve, it must be removed. The special Booster motor already has these modifications.
- Frequency of Starts: Fewer than 10 starts per 24-hour period are recommended.
 Allow at least 20 minutes between shutdown and start-up of the motor.
- 9. Controls-Soft Starters and VFDs: Reduced voltage starters and variable speed drives (inverter drives) may be used with Franklin three-phase submersible motors to reduce starting current, upthrust, and mechanical stress during start-up. The guidelines for their use with submersible motors are different than with normal air cooled motor applications. Refer to the Franklin Electric Application, Installation, and Maintenance (AIM) manual Reduced Voltage Starters section or Variable Speed Submersible Pump Operation, Inverter Drives sections for specific details including required filtering.

Inline Booster Pump Systems (Continued)

- 10. Motor Overload Protection: Submersible motors require properly sized ambient compensated Class 10 quick-trip overloads per Franklin's AIM manual guidelines to protect the motor. Class 20 or higher overloads are NOT acceptable. Franklin's SubMonitor is strongly recommended for all large submersibles since it is capable of sensing motor heat without any additional wiring to the motor. Applications using Soft Starters with a SubMonitor require a start-up bypass consult the factory for details. SubMonitor can not be used in applications using a VFD control.
- 11. **Motor Surge Protection:** Properly sized, grounded and dedicated motor surge arrestors must be installed in the supply line of the booster module as close to the motor as possible. This is required on all systems including those using soft-starters and variable speed drives (inverter drives).
- Wiring: Franklin's lead assemblies are only sized for submerged operation in water to the motor nameplate maximum ambient temperature and may overheat and cause failure or serious injury if operated in air. Any wiring not submerged must meet applicable national and local wiring codes and Franklin Cable Chart Tables 16-21. (Notice: wire size, wire rating, and insulation temperature rating must be known when determining its suitability to operate in air or conduit. Typically, for a given size and rating, as the insulation temperature rating increases its ability to operate in air or conduit also increases.)
- Check Valves: Spring-loaded check valves must be used on start-up to minimize motor upthrusting, water hammer, or in multiple booster (parallel) applications to prevent reverse flow.

- 14. Pressure Relief Valves: A pressure relief valve is required and must be selected to ensure that, as the pump approaches shut-off, it never reaches the point that the motor will not have adequate cooling flow past it.
- 15. System Purge (Can Flooding): An air bleeder valve must be installed on the booster sleeve so that flooding may be accomplished prior to booster start-up. Once flooding is complete, the booster should be started and brought up to operating pressure as quickly as possible to minimize the duration of an upthrust condition. At no time should air be allowed to gather in the booster sleeve because this will prevent proper cooling of the motor and permanently damage it.
- 16. System Flush Must Not Spin Pump: Applications may utilize a low flow flushing operation. Flow through the booster sleeve must not spin the pump impellers and the motor shaft. If spinning takes place, the bearing system will be permanently damaged and the motor life shortened. Consult the booster pump manufacturer for maximum flow rate through the pump when the motor is not energized.
- 17. Open Atmosphere Booster Pump Systems: When an open booster is placed in a lake, tank, etc. that is open to atmospheric pressure, the water level must provide sufficient head pressure to allow the pump to operate above its NPSHR requirement at all times and all seasons. Adequate inlet pressure must be provided prior to booster start-up.

Table 38 Franklin Cable chart (See item 12 Wiring above)

	and to a same time (con its in a same)										
CABLE TEMP.	MOTOR	#10 AWG		#8 AWG		#6 AWG		#4 AWG		#2 AWG	
RATING (°C)	NAMEPLATE RATED AMPS FULL LOAD	IN AIR	IN CONDUIT	IN AIR	IN Conduit	IN AIR	IN CONDUIT	IN AIR	IN CONDUIT	IN AIR	IN CONDUIT
75	3-LEAD (DOL)	40A	28A	56A	40A	76A	52A	100A	68A	136A	92A
13	6-LEAD (Y-△)	69A	48A	97A	69A	132A	90A	173A	118A	236A	159A
90	3-LEAD (DOL)	44A	32A	64A	44A	84A	60A	112A	76A	152A	104A
90	6-LEAD (Y-△)	76A	55A	111A	76A	145A	104A	194A	132A	263A	180A
125	3-LEAD (DOL)	66A	46A	77A	53A	109A	75A	153A	105A	195A	134A
1/25	6-LEAD (Y-∆)	114A	80A	133A	91A	188A	130A	265A	181A	337A	232A

Based on 30 °C maximum ambient with cable length of 100 feet or less.

Inline Booster Pump Systems (Continued)

Four Continuous Monitoring System Requirements for Sealed Booster Systems.

- Water Temperature: Feed water on each booster must be continuously
 monitored and not allowed to exceed the motor nameplate maximum
 ambient temperature at any time. IF THE INLET TEMPERATURE EXCEEDS THE
 MOTOR NAMEPLATE MAXIMUM AMBIENT TEMPERATURE, THE SYSTEM MUST
 SHUTDOWN IMMEDIATELY TO PREVENT PERMANENT MOTOR DAMAGE. If feed water
 temperatures are expected to be above the allowable temperature, the motor
 must be derated. See Franklin's AIM manual Hot Water Applications section for
 derating guidelines. (The high temperature feed water derating is in addition
 to the exchange to DI water derating if the motor factory fill solution was
 exchanged to DI water.)
- 2. Inlet Pressure: The inlet pressure on each booster module must be continuously monitored. It must always be positive and higher than the NPSHR (Net Positive Suction Head Requirement) of the pump. A minimum of 20 PSIG (1.38 Bar) is required at all times, except for 10 seconds or less when the motor is starting and the system is coming up to pressure. Even during these 10 seconds the pressure must remain positive and be higher than the NPSHR (Net Positive Suction Head Requirement) of the pump.

PSIG is the actual value displayed on a pressure gauge in the system piping. PSIG is the pressure above the atmospheric conditions. If at any time these pressure requirements are not being met, the motor must be de-energized immediately to prevent permanent damage to the motor. Once the motor is damaged, it is usually not immediately noticeable, but progresses and results in a premature motor failure weeks or months after the damage occurred.

Motors that will be exposed to pressure in excess of 500 psi (34.47 Bar) must undergo special high pressure testing. Consult factory for details and availability.

- Discharge Flow: The flow rate for each pump must not be allowed to drop below the motor minimum cooling flow requirement. IF THE MOTOR MINIMUM COOLING FLOW REQUIREMENT IS NOT BEING MET FOR MORE THAN 10 SECONDS, THE SYSTEM MUST BE SHUT DOWN IMMEDIATELY TO PREVENT PERMANENT MOTOR DAMAGE.
- 4. Discharge Pressure: The discharge pressure must be monitored to ensure that a downthrust load toward the motor is present within 3 seconds after start-up and continuously during operation. IF THE MOTOR DISCHARGE PRESSURE IS NOT ADEQUATE TO MEET THIS REQUIREMENT, THE SYSTEM MUST BE SHUT DOWN IMMEDIATELY TO PREVENT PERMANENT MOTOR DAMAGE.

Variable Frequency Drive Submersible Motor Requirements

Franklin Electric's three-phase, encapsulated submersible motors can be used with variable frequency drives (VFD) when applied within the guidelines below.

All three-phase, encapsulated submersible motors must have the VFD sized based on the motor's nameplate maximum amps, not horsepower. The continuous rated amps of the VFD must be equal to or greater than the motor's nameplate maximum amps or warranty will be void.

Franklin Electric's single-phase, 2- and 3-wire, encapsulated submersible motors can only be used with the appropriate Franklin constant pressure controller.

Franklin Electric's submersible motor Application, Installation, Maintenance (AIM) manual should be checked for the latest guidelines and can be found online at www. franklin-electric.com.

WARNING: There is a potential shock hazard from contact with and/or touching the insulated cables connected to the variable frequency drive output anytime the motor has energy applied.

Output Filter Requirement Test:

NOTICE: An incoming power supply or line-side filter for the drive does not replace the need for additional output filters.

An output filter is required if the answer is yes to one or both of the items below:

#1 - Does the peak voltage at the motor terminals exceed 1000-volts or is the rise time of the VFD's voltage less than 2 micro-seconds? Per NEMA MG 1-2011, the rise time is defined as the time between 10% and 90% of the steady-state voltage (i.e., DC bus voltage).

#2 - Is the motor nameplate voltage more than 379 Volts and is the cable from drive-to-motor more than 50 ft (15.2 m)?

NOTICE:

More than 99% of the drives applied on water well submersible motors will require the purchase of additional output filtering based on question #1.

Output filters can be expensive. However, when needed, it is required for the motor to be considered for warranty. Make sure this item is not overlooked when quoting a job.

PWM dV/dt value can be defined as: the rate at which voltage is changing with time or how fast the voltage is accelerating. This information can be supplied by the drive manufacturer or the manufacturer's drive specification sheet. The dV/dt value cannot be measured with typical field equipment, even when using a true-RMS voltage/amperage multi-meter.

Franklin Electric has a line of VFDs that are specifically designed for Franklin application systems. These VFDs are used in the MonoDrive and SubDrive constant pressure systems. Franklin drive systems have the required additional output filtering installed; however, the SubDrive HPX does not.

Types of Output Filters:

A resistor-inductor-capacitor (RLC) filter has both a high pass filter & a low pass filter section and are considered the best practice, but a high pass reactor filter is also acceptable.

Filters should be recommended by the drive manufacturer; for the correct recommendations provide them with answers to all five of the items below.

REQUIRED ITEMS FOR PROPER VFD FILTER SIZING:

(1) VFD model (2) Carrier frequency setting (3) Motor nameplate voltage (4) Motor nameplate max amps (5) Cable length from the drive output terminals to the motor

Input Current & Motor Overload Protection:

- Motor input current should be set at the system's typical operating current when running at nameplate rated voltage and frequency (Hz).
- Motor overload protection should be set to trip at 115% of the system's typical operating current.
- Motor overload protection must trip equal to or faster than NEMA Class 10 motor overload curve requirements.

Motor Maximum Load Limits:

- The system must never operate in excess of the motor nameplate maximum amps.
- On 50 Hz motors, nameplate amps are maximum amps as these motors have a 1.0 service factor.

Variable Frequency Drive Submersible Motor Requirements (Continued)

Motor Operating Hertz, Cooling Requirements, and Underload Settings:

- Standard practice for large VFD installations is to limit the operation to 60 Hz max.
 Operating at greater than 60 Hz requires special system design considerations.
- The motor must never operate below 30 Hz. This is the minimum speed required to
 provide correct bearing lubrication.
- The motor's operating speed must always operate so the minimum water flow requirements of 0.5 ft/sec for 6-inch & 8-inch motors and 0.25 ft/sec for 4-inch motors is supplied.
- The motor underload protection is normally set to trip at 80% of the system's typical
 operating current. However, the underload trip point must be selected so that
 minimum flow requirements are always met.

Starting and Stopping Ramp Settings:

- The motor must reach or pass the 30 Hz operating speed within 1 second of the motor being energized. If this does not occur, the motor bearings will be damaged and the motor life reduced.
- The best stopping method is to turn power off followed by a natural coast to stop.
- A controlled stop from 30 Hz to 0 Hz is allowed if the time does not exceed 1 second.

Drive Carrier Frequency:

- The carrier frequency is set in the field. The drive typically has a selectable range between 2k and 12k Hz. The higher the carrier wave frequency setting, the greater the voltage spikes; the lower the carrier wave frequency setting, the rougher/poorer the shape of the power curve.
- The carrier frequency should be set within the range of 4k to 5k Hz for encapsulated submersible motors.

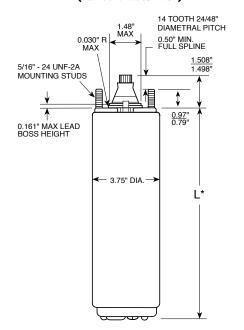
Application Function Setting:

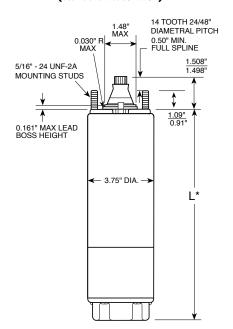
- If the VFD has a setting of centrifugal pump or propeller fan it should be used.
- Centrifugal pumps and fans have similar load characteristics.

VFD Frequency of Starts:

Keeping the starts per day within the recommended numbers shown in the
frequency of starts section of the AIM manual provides the best system life.
However, since in-rush current is typically reduced when used with a properly
configured VFD, large 3-phase submersible motors can be started more
frequently. In all cases a minimum of 7 minutes must be allowed between a power
off and the next restart attempt or consecutive restart attempts.

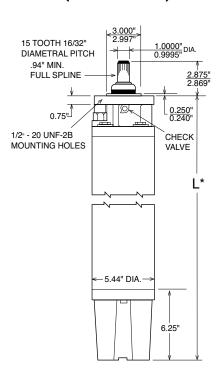
NEMA MG1 Above Ground Motor Standard Comments:

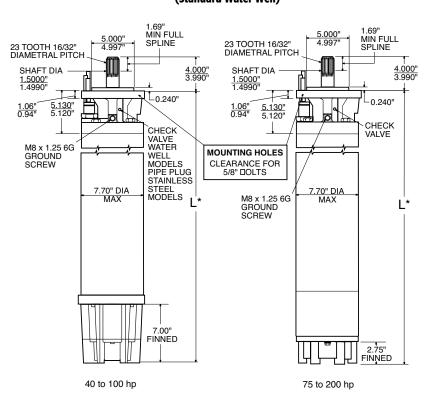

- Franklin Electric encapsulated submersible motors are not declared inverter duty motors by NEMA MG1 standards. The reason is NEMA MG1 standard part 31 does not include a section covering encapsulated winding designs.
- Franklin submersible motors can be used with VFDs without problems or warranty concerns providing Franklin's Application, Installation, Maintenance (AIM) manual guidelines are followed. See Franklin's on-line AIM manual for the latest guidelines.


4" Super Stainless — Dimensions

4" High Thrust — Dimensions

(Standard Water Well)


(Standard Water Well)


6" — Dimensions

8" — Dimensions

(Standard Water Well)

(Standard Water Well)

Motor lengths and shipping weights are available on Franklin Electric's web site (www.franklin-electric.com) or by calling Franklin's Technical Service Hotline (800-348-2420).

Tightening Motor Lead Connector Jam Nut

4" Motors with Jam Nut:

15 to 20 ft-lb (20 to 27 Nm)

4" Motors with 2 Screw Clamp Plate:

35 to 45 in-lb (40 to 51 Nm)

6" Motors:

40 to 50 ft-lb (54 to 68 Nm)

8" Motors with 1-3/16" to 1-5/8" Jam Nut:

50 to 60 ft-lb (68 to 81 Nm)

8" Motors with 4 Screw Clamp Plate:

Apply increasing torque to the screws equally in a criss-cross pattern until 80 to 90 in-lb (9.0 to 10.2 Nm) is reached.

Jam nut tightening torques recommended for field assembly are shown. Rubber compression set within the first few hours after assembly may reduce the jam nut torque. This is a normal condition which does not indicate reduced seal effectiveness. Retightening is not required, but is permissible and recommended if original torque was questionable.

A motor lead assembly should not be reused. A new lead assembly should be used whenever one is removed from the motor, because rubber set and possible damage from removal may prevent proper resealing of the old lead.

All motors returned for warranty consideration must have the lead returned with the motor.

Pump to Motor Coupling

Assemble coupling with non-toxic FDA approved waterproof grease such as Mobile FM222, Texaco CYGNUS2661, or approved equivalent. This prevents abrasives from entering the spline area and prolongs spline life.

Pump to Motor Assembly

After assembling the motor to the pump, torque mounting fasteners to the following:

4" Pump and Motor: 10 lb-ft (14 Nm)

6" Pump and Motor: 50 lb-ft (68 Nm)

8" Pump and Motor: 120 lb-ft (163 Nm)

Shaft Height and Free End Play

Table 43

MOTOR	NOR	MAL	LL DIMENSI		FREE END PLAY	
MOTOR	SHAFT HEIGHT		SHAFT	SHAFT HEIGHT		MAX.
4"	11/2"	38.1 mm	1.508" 1.498"	38.30 mm 38.05	0.010" 0.25 mm	0.045" 1.14 mm
6"	2 7/8"	73.0 mm	2.875" 2.869"	73.02 mm 72.88	0.030" 0.76 mm	0.050" 1.27 mm
8" TYPE 1	4"	101.6 mm	4.000" 3.990"	101.60 mm	0.008" 0.20 mm	0.032" 0.81 mm
8" TYPE 2.1	4"	101.6 mm	4.000" 3.990"	101.60 mm	0.030" 0.76 mm	0.080" 2.03 mm

If the height, measured from the pump-mounting surface of the motor, is low and/or end play exceeds the limit, the motor thrust bearing is possibly damaged, and should be replaced.

Submersible Leads and Cables

A common question is why motor leads are smaller than specified in Franklin's cable charts.

The leads are considered a part of the motor and actually are a connection between the large supply wire and the motor winding. The motor leads are short and there is virtually no voltage drop across the lead.

In addition, the lead assemblies **operate under water**, while at least part of the supply cable must **operate in air.** Lead assemblies running under water operate cooler.

CAUTION: Lead assemblies on submersible motors are suitable only for use in water and may overheat and cause failure if operated in air.

System Troubleshooting

Motor Does Not Start

POSSIBLE CAUSE	CHECKING PROCEDURES	CORRECTIVE ACTION
A. No power or incorrect voltage	Check voltage at line terminals. The voltage must be ± 10% of rated voltage.	Contact power company if voltage is incorrect.
B. Fuses blown or circuit breakers tripped	Check fuses for recommended size and check for loose, dirty or corroded connections in fuse receptacle. Check for tripped circuit breakers.	Replace with proper fuse or reset circuit breakers.
C. Defective pressure switch	Check voltage at contact points. Improper contact of switch points can cause voltage less than line voltage.	Replace pressure switch or clean points.
D. Control box malfunction	For detailed procedure, see pages 48-57.	Repair or replace.
E. Defective wiring	Check for loose or corroded connections or defective wiring.	Correct faulty wiring or connections.
F. Bound pump	Check for misalignment between pump and motor or a sand bound pump. Amp readings will be 3 to 6 times higher than normal until the overload trips.	Pull pump and correct problem. Run new installation until the water clears.
G . Defective cable or motor	For detailed procedure, see pages 46 & 47.	Repair or replace.

Motor Starts Too Often

A. Pressure switch	Check setting on pressure switch and examine for defects.	Reset limit or replace switch.
B . Check valve - stuck open	Damaged or defective check valve will not hold pressure.	Replace if defective.
C. Waterlogged tank	Check air charge.	Clean or replace.
D. Leak in system	Check system for leaks.	Replace damaged pipes or repair leaks.

System Troubleshooting

Motor Runs Continuously

POSSIBLE CAUSE	CHECKING PROCEDURES	CORRECTIVE ACTION
A. Pressure switch	Check switch for welded contacts. Check switch adjustments.	Clean contacts, replace switch, or adjust setting.
B. Low water level in well	Pump may exceed well capacity. Shut off pump, wait for well to recover. Check static and drawdown level from well head.	Throttle pump output or reset pump to lower level. Do not lower if sand may clog pump.
C. Leak in system	Check system for leaks.	Replace damaged pipes or repair leaks.
D . Worn pump	Symptoms of worn pump are similar to those of drop pipe leak or low water level in well. Reduce pressure switch setting, if pump shuts off worn parts may be the fault.	Pull pump and replace worn parts.
E. Loose coupling or broken motor shaft	Check for loose coupling or damaged shaft.	Replace worn or damaged parts.
F. Pump screen blocked	Check for clogged intake screen.	Clean screen and reset pump depth.
G . Check valve stuck closed	Check operation of check valve.	Replace if defective.
H. Control box malfunction	See pages 48-57 for single-phase.	Repair or replace.

Motor Runs But Overload Protector Trips

A. Incorrect voltage	Using voltmeter, check the line terminals. Voltage must be within \pm 10% of rated voltage.	Contact power company if voltage is incorrect.
B. Overheated protectors	Direct sunlight or other heat source can raise control box temperature causing protectors to trip. The box must not be hot to touch.	Shade box, provide ventilation or move box away from source.
C. Defective control box	For detailed procedures, see pages 48-57.	Repair or replace.
D . Defective motor or cable	For detailed procedures, see pages 45 & 46.	Repair or replace.
E. Worn pump or motor	Check running current, see tables 13, 22, 24, 25, & 27.	Replace pump and/or motor.

Table 46 Preliminary Tests - All Sizes Single- and Three-Phase

TEST	PROCEDURE	WHAT IT MEANS
Insulation Resistance (Fig. 10)	 Open master breaker and disconnect all leads from control box or pressure switch (QD type control, remove lid) to avoid electric shock hazard and damage to the meter. Use a megohmmeter set to 1000-volt (500-volt minimum). If using an ohmmeter, set to R X 100k. Zero the meter. Connect one meter lead to any one of the motor leads and the other lead to the metal drop pipe. If the drop pipe is plastic, connect the meter lead to ground. 	If the ohms value is normal (Table 47), the motor is not grounded and the cable insulation is not damaged. If the ohms value is below normal, either the windings are grounded or the cable insulation is damaged. Check the cable at the well seal as the insulation is sometimes damaged by being pinched.
Winding Resistance (Fig 11.)	 Open master breaker and disconnect all leads from control box or pressure switch (QD type control, remove lid) to avoid electric shock hazard and damage to the meter. Use a multi-meter set to 20 ohms or an ohmmeter set to R X I for values under 10 ohms. Use next scale up for values over 10 ohms. Zero the meter. On 3-wire motors measure the resistance of yellow to black (main winding) and yellow to red (start winding). On 2-wire motors: measure the resistance from line-to-line. Three-phase motors: measure the resistance line-to-line for all three combinations. 	 If all ohms values are normal (Tables 13, 22, 24, 25, & 27), the motor windings are neither shorted nor open, and the cable colors are correct If any one value is less than normal, the motor is shorted. If any one ohm value is greater than normal, the winding or the cable is open, or there is a poor cable joint or connection. If some ohms values are greater than normal and some less on single-phase motors, the leads are mixed. See page 48 to verify cable colors.

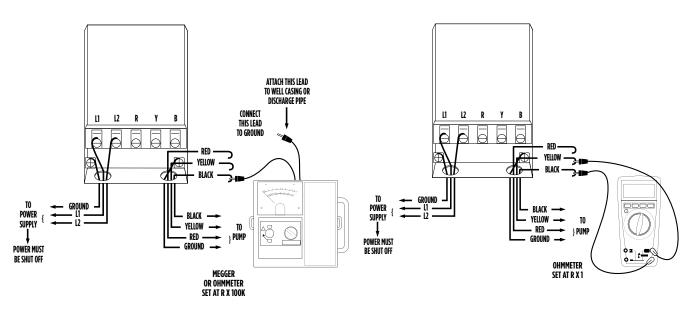


FIG. 10 FIG. 11

Insulation Resistance Readings

Table 47 Normal ohm and Megohm Values Between All Leads and Ground

CONDITION OF MOTOR AND LEADS	MEGOHM VALUE	OHMS VALUE	
A new motor (without drop cable)	200.0 (or more)	200,000,000 (or more)	
A used motor which can be reinstalled in well	10.0 (or more)	10,000,000 (or more)	
MOTOR IN WELL. READINGS ARE FOR DROP CABLE PLUS MOTOR.			
New motor	2.0 (or more)	2,000,000 (or more)	
Motor in good condition	0.50 - 2.0	500,000 - 2,000,000	
Insulation damage, locate and repair	Less than .50	Less than 500,000	

Insulation resistance varies very little with rating. Motors of all hp, voltage, and phase rating have similar values of insulation resistance. The table above is based on readings taken with a megohm meter with a 500 VDC output. Readings may vary using a lower voltage ohmmeter; consult Franklin Electric if readings are in question.

Resistance of Drop Cable (ohms)

The values below are for copper conductors. If aluminum conductor drop cable is used, the resistance will be higher. To determine the actual resistance of the aluminum drop cable, divide the ohm readings from this chart by 0.61. This chart shows total resistance of cable from control to motor and back.

Winding Resistance Measuring

The winding resistance measured at the motor should fall within the values in Tables 13, 22, 24, 25, & 27. When measured through the drop cable, the resistance of the drop cable must be subtracted from the ohmmeter readings to get the winding resistance of the motor. See table below.

Table 47A DC Resistance in ohms per 100 ft of Wire (Two conductors) @ 50 °F

	AWG OR MCM WI	RE SIZE (COPPER)		14	12	10	8	6	4	3	2
	OH	MS		0.544	0.338	0.214	0.135	0.082	0.052	0.041	0.032
1	1/0	2/0	3/0	4/0	250	300	350	400	500	600	700
0.026	0.021	0.017	0.013	0.010	0.0088	0.0073	0.0063	0.0056	0.0044	0.0037	0.0032

Identification Of Cables When Color Code Is Unknown (Single-Phase 3-Wire Units)

If the colors on the individual drop cables cannot be found with an ohmmeter, measure:

Cable 1 to Cable 2 Cable 2 to Cable 3 Cable 3 to Cable 1

Find the highest resistance reading.

The lead not used in the highest reading is the yellow lead.

Use the yellow lead and each of the other two leads to get two readings:

Highest is the red lead. Lowest is the black lead.

EXAMPLE:

The ohmmeter readings were:

Cable 1 to Cable 2 - 6 ohms Cable 2 to Cable 3 - 2 ohms Cable 3 to Cable 1 - 4 ohms

The lead not used in the highest reading (6 ohms) was

Cable 3—Yellow

From the yellow lead, the highest reading (4 ohms) was

To Cable 1—Red

From the yellow lead, the lowest reading (2 ohms) was

To Cable 2—Black

Single-Phase Control Boxes

Checking and Repairing Procedures (Power On)

WARNING: Power must be on for these tests. Do not touch any live parts.

A. VOLTAGE MEASUREMENTS

Step 1. Motor Off

- 1. Measure voltage at L1 and L2 of pressure switch or line contactor.
- 2. Voltage Reading: Should be ± 10% of motor rating.

Step 2. Motor Running

- Measure voltage at load side of pressure switch or line contactor with pump running.
- Voltage Reading: Should remain the same except for slight dip on starting. Excessive voltage drop can be caused by loose connections, bad contacts, ground faults, or inadequate power supply.
- 3. Relay chatter is caused by low voltage or ground faults.

B. CURRENT (AMP) MEASUREMENTS

- Measure current on all motor leads.
- Amp Reading: Current in red lead should momentarily be high, then drop within one second to values in Table 13. This verifies relay or solid state relay operation. Current in black and yellow leads should not exceed values in Table 13.
- Relay or switch failures will cause red lead current to remain high and overload tripping.
- Open run capacitor(s) will cause amps to be higher than normal in the black and yellow motor leads and lower than normal in the red motor lead.
- 5. A bound pump will cause locked rotor amps and overloading tripping.
- Low amps may be caused by pump running at shut-off, worn pump, or stripped splines.
- 7. Failed start capacitor or open switch/relay are indicated if the red lead current is not momentarily high at starting.

CAUTION: The tests in this manual for components such as capacitors, relays, and QD switches should be regarded as indicative and not as conclusive. For example, a capacitor may test good (not open, not shorted) but may have lost some of its capacitance and may no longer be able to perform its function.

Ohmmeter Tests

QD, Solid State Control Box (Power Off)

A. START CAPACITOR AND RUN CAPACITOR IF APPLICABLE (CRC)

- 1. Meter Setting: R x 1,000.
- 2. Connections: Capacitor terminals.
- 3. Correct meter reading: Pointer should swing toward zero, then back to infinity.

B. Q.D. (BLUE) RELAY

Step 1. Triac Test

- 1. Meter setting: R x 1,000.
- 2. Connections: Cap and B terminal.
- 3. Correct meter reading: Infinity for all models.

Step 2. Coil Test

- 1. Meter Setting: R x 1.
- 2. Connections: L1 and B.
- 3. Correct meter reading: Zero ohms for all models.

C. POTENTIAL (VOLTAGE) RELAY

Step 1. Coil Test

- 1. Meter setting: R x 1,000.
- 2. Connections: #2 & #5.
- Correct meter readings:

For 115 Volt Boxes:

0.7-1.8 (700 to 1,800 ohms).

For 230 Volt Boxes:

4.5-7.0 (4,500 to 7,000 ohms).

Step 2. Contact Test

- 1. Meter setting: R x 1.
- 2. Connections: #1 & #2.
- Correct meter reading: Zero for all models.

Ohmmeter Tests

Integral Horsepower Control Box (Power Off)

A. OVERLOADS (Push Reset Buttons to make sure contacts are closed.)

- 1. Meter Setting: R x 1.
- 2. Connections: Overload terminals.
- 3. Correct meter reading: Less than 0.5 ohms.

B. CAPACITOR (Disconnect leads from one side of each capacitor before checking.)

- 1. Meter Setting: R x 1,000.
- 2. Connections: Capacitor terminals.
- Correct meter reading: Pointer should swing toward zero, then drift back to infinity, except for capacitors with resistors which will drift back to 15,000 ohms.

C. POTENTIAL (VOLTAGE) RELAY

Step 1. Coil Test

- 1. Meter setting: R x 1,000.
- 2. Connections: #2 & #5.
- 3. Correct meter readings: 4.5-7.0 (4,500 to 7,000 ohms) for all models.

Step 2. Contact Test

- 1. Meter Setting: R x 1.
- 2. Connections: #1 & #2.
- 3. Correct meter reading: Zero ohms for all models.

D. CONTACTOR

Step 1. Coil

- 1. Meter setting: R x 100
- 2. Connections: Coil terminals
- 3. Correct meter reading: 1.8-14.0 (180 to 1,400 ohms)

Step 2. Contacts

- 1. Meter Setting: R X 1
- 2. Connections: L1 & T1 or L2 & T2
- 3. Manually close contacts
- 4. Correct meter reading: Zero ohms

CAUTION: The tests in this manual for components such as capacitors, relays, and QD switches should be regarded as indicative and not as conclusive. For example, a capacitor may test good (not open, not shorted) but may have lost some of its capacitance and may no longer be able to perform its function.

Table 50 QD Control Box Parts 60 Hz

НР	VOLTS	CONTROL BOX Model Number	QD (BLUE) RELAY	START CAPACITOR	MFD	VOLTS	RUN CAPACITOR	MFD	VOLTS
1/3	115	280 102 4915	223 415 905	275 464 125	159-191	110			
1/3	230	280 103 4915	223 415 901	275 464 126	43-53	220			
	115	280 104 4915	223 415 906	275 464 201	250-300	125			
1/2	230	280 105 4915	223 415 902	275 464 105	59-71	220			
	230	282 405 5015 (CRC)	223 415 912	275 464 126	43-53	220	156 362 101	15	370
3/4	230	280 107 4915	223 415 903	275 464 118	86-103	220			
3/4	230	282 407 5015 (CRC)	223 415 913	275 464 105	59-71	220	156 362 102	23	370
1	230	280 108 4915	223 415 904	275 464 113	105-126	220			
'	230	282 408 5015 (CRC)	223 415 914	275 464 118	86-103	220	156 362 102	23	370

Table 50A QD Capacitor Replacement Kits

CAPACITOR NUMBER	KIT
275 464 105	305 207 905
275 464 113	305 207 913
275 464 118	305 207 918
275 464 125	305 207 925
275 464 126	305 207 926
275 464 201	305 207 951
156 362 101	305 203 907
156 362 102	305 203 908

Table 50C QD Relay Replacement Kits

QD RELAY NUMBER	КІТ
223 415 901	305 101 901
223 415 902	305 101 902
223 415 903	305 101 903
223 415 904	305 101 904
223 415 905	305 101 905
223 415 906	305 101 906
223 415 912 (CRC)	305 105 901
223 415 913 (CRC)	305 105 902
223 415 914 (CRC)	305 105 903

Table 50B Overload Kits 60 Hz

HP	VOLTS	KIT (1)
1/3	115	305 100 901
1/3	230	305 100 902
1/2	115	305 100 903
1/2	230	305 100 904
3/4	230	305 100 905
1	230	305 100 906

(1) For Control Boxes with model numbers that end with 4915.

FOOTNOTES:

- (1) Control boxes supplied with QD Relays are designed to operate on 230-volt systems. For 208-volt systems or where line voltage is between 200 volts and 210 volts use the next larger cable size, or use a boost transformer to raise the voltage.
- (2) Voltage relays kits for 115-volts (305 102 901) and 230-volts (305 102 902) will replace current, voltage or QD Relays, and solid state switches.

Table 51 Integral Horsepower Control Box Parts 60 Hz

MOTOR	MOTOR	CONTROL BOX (1)	C	APACITORS			OVERLOAD (2)	RELAY (3)	CONTACTOR (2) PART
SIZE	RATING HP	MODEL NO.	PART NO. (2)	MFD.	VOLTS	QTY.	PART NO.	PART NO.	NO.
		282 300 8110 (See Note 5)	275 464 113 S 155 328 102 R	105-126 10	220 370	1 1	275 411 107	155 031 102	
4"	1 - 1.5 Standard	282 300 8110 (See Note 5)	275 464 137 S 155 328 101 R	105-126 15	220 370	1 1	275 411 114 S 275 411 113 M	155 031 102	
		282 300 8610	275 464 113 S 155 328 101 R	105-126 15	220 370	1 1	None (See Note 4)	155 031 102	
4"	2 Standard	282 301 8110	275 464 137 S 155 328 103 R	105-126 20	220 370	1 1	275 411 117 S 275 411 113 M	155 031 102	
4"	2 Deluxe	282 301 8310	275 464 137 S 155 328 103 R	105-126 20	220 370	1 1	275 411 117 S 275 411 113 M	155 031 102	155 325 102 L
4"	3 Standard	282 302 8110	275 463 123 S 155 327 109 R	208-250 45	220 370	1 1	275 411 118 S 275 411 115 M	155 031 102	
4"	3 Deluxe	282 302 8310	275 463 123 S 155 327 109 R	208-250 45	220 370	1 1	275 411 118 S 275 411 115 M	155 031 102	155 325 102 L
4" & 6"	5 Standard	282 113 8110	275 468 119 S 155 327 114 R	270-324 40	330 370	1 2	275 411 119 S 275 406 102 M	155 031 601	
4" & 6"	5 Deluxe	282 113 9310	275 468 119 S 155 327 114 R	270-324 40	330 370	1 2	275 411 119 S 275 406 102 M	155 031 601	155 326 101 L
6"	7.5 Standard	282 201 9210	275 468 119 S 275 468 118 S 155 327 109 R	270-324 216-259 45	330 330 370	1 1 1	275 411 102 S 275 406 122 M	155 031 601	
6"	7.5 Deluxe	282 201 9310	275 468 119 S 275 468 118 S 155 327 109 R	270-324 216-259 45	330 330 370	1 1 1	275 411 102 S 275 406 121 M	155 031 601	155 326 102 L
6"	10 Standard	282 202 9210	275 468 119 S 275468 120 S 155 327 102 R	270-324 350-420 35	330 330 370	1 1 2	275 406 103 S 155 409 101 M	155 031 601	
6"	10 Standard	282 202 9230	275 463 120 S 275 468 118 S 275 468 119 S 155 327 102 R	130-154 216-259 270-324 35	330 330 330 370	1 1 1 2	275 406 103 S 155 409 101 M	155 031 601	
6"	10 Deluxe	282 202 9310	275 468 119 S 275468 120 S 155 327 102 R	270-324 350-420 35	330 330 370	1 1 2	275 406 103 S 155 409 101 M	155 031 601	155 326 102 L
6"	10 Deluxe	282 202 9330	275 463 120 S 275 468 118 S 275 468 119 S 155 327 102 R	130-154 216-259 270-324 35	330 330 330 370	1 1 1 2	275 406 103 S 155 409 101 M	155 031 601	155 326 102 L
6"	15 Deluxe	282 203 9310	275 468 120 S 155 327 109 R	350-420 45	330 370	2 3	275 406 103 S 155 409 102 M	155 031 601	155 429 101 L
6"	15 Deluxe	282 203 9330	275 463 122 S 275 468 119 S 155 327 109 R	161-193 270-324 45	330 330 370	1 2 3	275 406 103 S 155 409 102 M	155 031 601	155 429 101 L
6"	15 X-large	282 203 9621	275 468 120 S 155 327 109 R	350-420 45	330 370	2 3	275 406 103 S 155 409 102 M	155 031 601 2 required	155 429 101 L

FOOTNOTES:

- (1) Surge arrestors 150 814 902 are suitable for all control boxes.
- (2) S = Start, M = Main, L = Line, R = Run Deluxe = Control box with line contactor.
- (3) For 208-volt systems or where line voltage is between 200 volts and 210 volts, a low voltage relay is required. On 3 hp and smaller control boxes use relay part 155 031 103 in place of 155 031 102 and use the next larger cable size than specified in the 230-volt table. On 5 hp and larger use relay 155 031 602 in place of 155 031 601 and next larger wire. Boost transformers per page 15 are an alternative to special relays and cable.
- (4) Control box model 282 300 8610 is designed for use with motors having internal overload protectors. If used with a 1.5 hp motor manufactured prior to date code 06H18, Overload/Capacitor Kit 305 388 901 is required.
- (5) Control box model 282 300 8110 with date code 11C19 (March 2011) and newer contain 15 MFD run capacitor and both start and run overloads. This box is designed for use with any Franklin 1.5 hp motor.

Table 52 Integral hp Capacitor Replacement Kits

CAPACITOR NUMBER	KIT
275 463 120	305 206 920
275 463 122	305 206 922
275 463 123	305 206 923
275 464 113	305 207 913
275 464 137	305 207 937
275 468 118	305 208 918
275 468 119	305 208 919
275 468 120	305 208 920
155 327 101	305 203 901
155 327 102	305 203 902
155 327 109	305 203 909
155 327 114	305 203 914
155 328 101	305 204 901
155 328 102	305 204 902
155 328 103	305 204 903

Table 52A Integral hp Overload Replacement Kits

OVERLOAD NUMBER	КІТ
275 406 102	305 214 902
275 406 103	305 214 903
275 406 121	305 214 921
275 406 122	305 214 922
275 411 102	305 215 902
275 411 107	305 215 907
275 411 108	305 215 908
275 411 113	305 215 913
275 411 114	305 215 914
275 411 115	305 215 915
275 411 117	305 215 917
275 411 118	305 215 918
275 411 119	305 215 919

Table 52B Integral hp Voltage Relay Replacement Kits

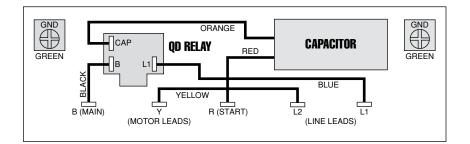
RELAY NUMBER	KIT
155 031 102	305 213 902
155 031 103	305 213 903
155 031 601	305 213 961
155 031 602	305 213 962

Table 52C Integral hp Contactor Replacement Kits

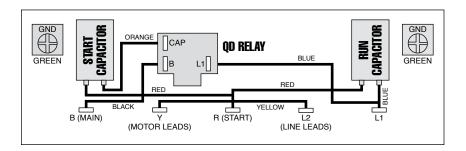
CONTACTOR	KIT
155 325 102	305 226 902
155 326 101	305 347 903
155 326 102	305 347 902
155 429 101	305 347 901

FOOTNOTES:

(1) The following kit number changes were made for number consistency purposes only. Parts in the kit did not change.

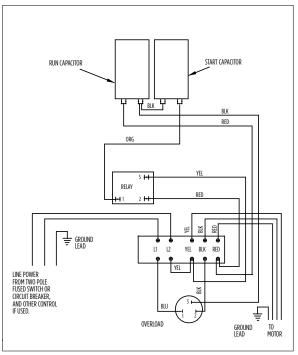

305 206 922 was 305 206 912

305 206 923 was 305 206 911

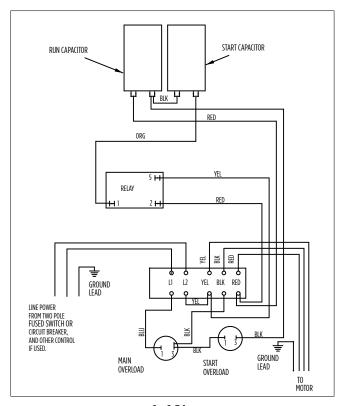

305 213 962 was 305 213 904

305 226 902 was 305 226 901

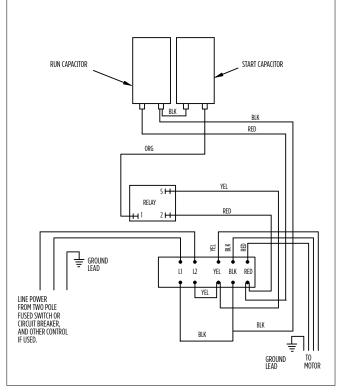
Control Box Wiring Diagrams



1/3 - 1 hp QD RELAY 280 10_ 4915 Sixth digit depends on hp

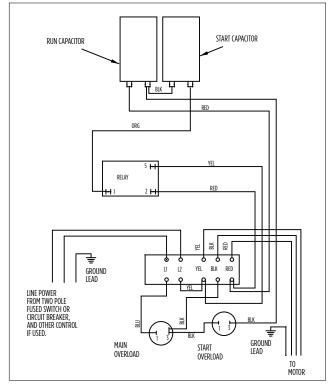


1/2 - 1 hp CRC QD RELAY 282 40_5015 Sixth digit depends on hp



1 - 1.5 hp 282 300 8110 (Date Codes 11C19 & Older)

1 - 1.5 hp 282 300 8110 (Date Codes 11C19 & Newer)



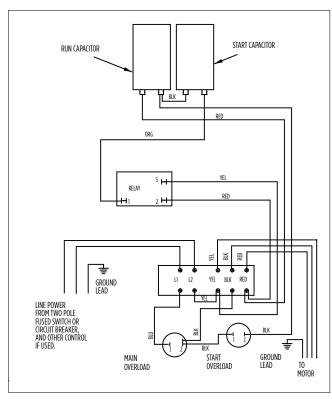
1 - 1.5 hp 282 300 8610

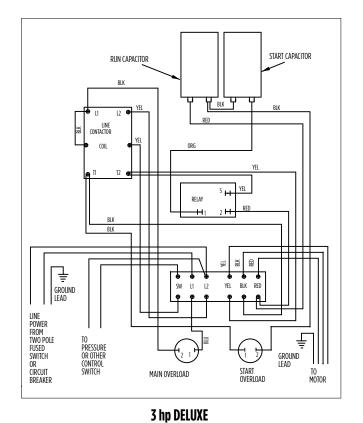
Single-Phase Motors & Controls

MAINTENANCE

RUN CAPACITOR

BLK


START CAPACITOR


STA

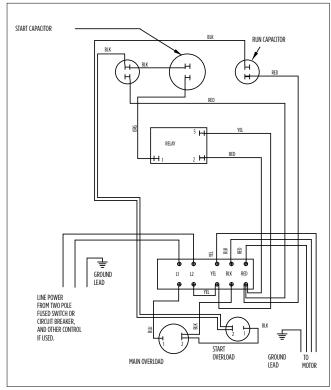
2 hp STANDARD

282 301 8110

2 hp DELUXE 282 301 8310

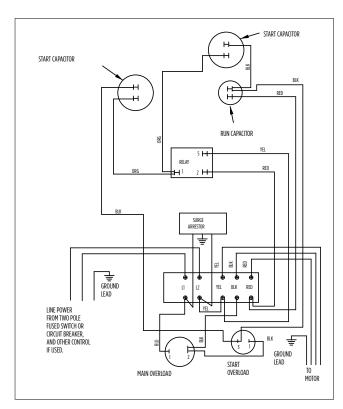
3 hp STANDARD

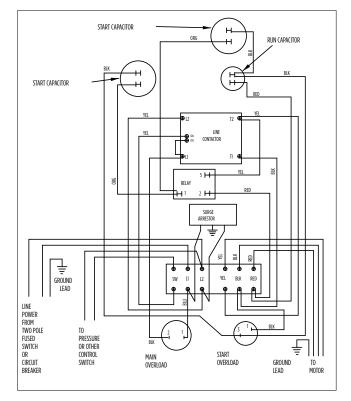
282 302 8110


282 302 8310

Single-Phase Motors & Controls

START CAPACITOR

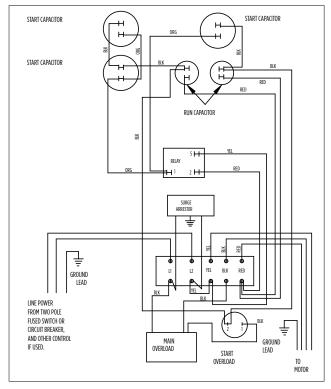

MAINTENANCE



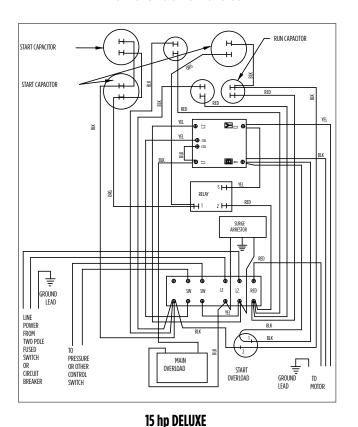
5 hp STANDARD

282 113 8110

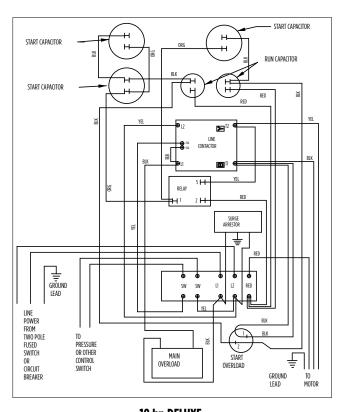
7.5 hp STANDARD

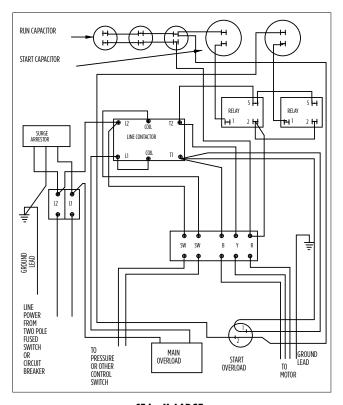

282 201 9210

7.5 hp DELUXE 282 201 9310



Single-Phase Motors & Controls


MAINTENANCE


10 hp STANDARD 282 202 9210 or 282 202 9230

282 203 9310 or 282 203 9330

10 hp DELUXE 282 202 9230 or 282 202 9330

15 hp X-LARGE 282 203 9621

SubDrives & MonoDrives

The Franklin Electric SubDrive/MonoDrive controller is a variable-speed drive that delivers water at a constant pressure. MonoDrive and MonoDriveXT are designed to convert a conventional 3-wire 1/2 hp to 2 hp pump system to a variable speed constant pressure system by simply replaceing the 3-wire control box and pressure switch. The SubDrive 3-Phase models are designed for three-phase motors to provide constant pressure with three-phase performance using single-phase input power. The SubDrive2W is designed to convert a conventional 2-wire 1/2 hp, 3/4 hp and 1 hp pump system to a variable speed constant pressure system by simply replacing the pressure switch.

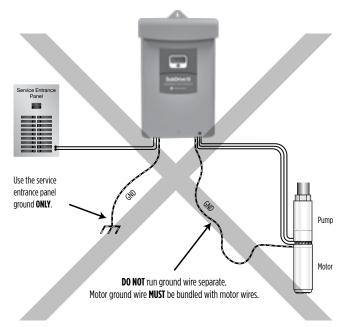
Applications

- Residential homeSchoolsFarms
- Restaurants
 Landscape irrigation system

Protects Agianst

- Surge ProtectionOpen CircuitOverheated ControllerUnderload
- Locked pump Broken pipe detection (NEMA 3R only excluding 2W)
- Short Circuits User-configurable underload off time (NEMA 3R only excluding 2W)
- Undervoltage

WARNING: Serious or fatal electrical shock may result from failure to connect the motor, SubDrive/MonoDrive Controller, metal plumbing and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires. To reduce the risk of electrical shock, disconnect power before working on or around the water system. Capacitors inside the SubDrive/MonoDrive Controller can still hold a lethal voltage even after power has been removed. Allow 10 minutes for dangerous internal voltage to discharge. Do not use motor in swimming areas.


Generator Sizing for SubDrive/MonoDrive

Basic generator sizing for the Franklin Electric SubDrive/MonoDrive system is 1.5 times maximum input Watts consumed by the drive, rounded up to the next normal sized generator.

Recommended minimum generator sizes:

MonoDrive	MonoDriveXT
1/2 hp (0.37 kW) = 2000 Watts (2 kW)	1.5 hp (1.1kW) = 4000 Watts (4 kW)
3/4 hp (0.55 kW) = 3000 Watts (3 kW)	2 hp (1.5 kW) = 5000 Watts (5 kW)
1 hp (0.75 kW) = 3500 Watts (3.5 kW)	
SubDrive15 = 3500 Watts (3.5 kW)	SubDrive75 = 3500 Watts (3.5 kW)
SubDrive20 = 5700 Watts (6 kW)	SubDrive100 = 5700 Watts (6 kW)
SubDrive30 = 7000 Watts (7 kW)	SubDrive150 = 7000 Watts (7 kW)
SubDrive2W = 6000 Watts (6 kW)	SubDrive300 = 11000 Watts (11 kW)
	SubDrive2W = 6000 Watts (6 kW)
Note: Not to be used on a Ground Fault Circ	ruit Interrunter (GECI) If using an

Note: Not to be used on a Ground Fault Circuit Interruptor (GFCI). If using an externally regulated generator, verify that the voltage and Hertz are appropriate to supply the drive.

Fuse/Circuit Breaker and Wire Sizing

The Listed fuse/Listed circuit breaker size and maximum allowable wire lengths for connection to the SubDrive/MonoDrive are given in the following tables:

Table 59: Circuit Breaker Sizing and Maximum Input Cable Lengths (in Feet) Based on a 3% voltage drop

CONTROLLED MODEL LISTED FUSE / LISTED		NOMINAL	AWG COPPER WIRE SIZES, 167° F (75° C) INSULATION UNLESS OTHERWISE NOTED										
CONTROLLER MODEL	CIRCUIT BREAKER AMPS	INPUT Voltage	14	12	10	8	6	4	3	2	1	1/0	2/0
MonoDrive	15	208	80	125	205	315	500	790	980	1290	1635	-	-
Pioliobitve	l)	230	95	150	250	385	615	970	1200	1580	2000	-	-
SubDrive15 /	15	208	70	110	185	280	450	710	880	1160	1465	-	-
SubDrive75	SubDrive75	230	85	135	225	345	550	865	1075	1415	1795	-	-
SubDrive2W	20	230	-	125	205	315	505	795	985	1295	1645	-	-
		208	-	85	140	220	345	550	680	895	1135	-	-
MonoDriveXT	20	230	-	105	175	265	425	670	835	1095	1390	-	-
SubDrive20 /	25	208	-	-	115	180	285	450	555	730	925	-	-
SubDrive100	20	230	-	85	140	220	345	550	680	895	1130	-	-
SubDrive30 /	30	208	-	-	95	145	235	370	460	605	765	-	-
SubDrive150	25	230	-	-	115	180	285	455	560	740	935	-	-
Cub Drive 700	40	208	-	-	-	-	150	235	295	385	490	610	735
วนมมาเงครบบ	SubDrive300 40	230	-	-	-	115	185	290	360	470	600	745	895

XXXX

Highlighted Numbers denote wire with 194° F (90° C) insulation only

Table 59A: Maximum Motor Cable Length (in feet)

CONTROLLED MODEL	FRANKLIN ELECTRIC	HP -	AWG COPPER WIRE SIZES, 140° F (60 °C) INSULATION						
CONTROLLER MODEL	MOTOR MODEL		14	12	10	8	6	4	
SubDrive15 / SubDrive75	234 514 xxxx	1.5 (1.1 kW)	420	670	1060	-	-	-	
SubDrive20 / SubDrive100	234 315 xxxx	2.0 (1.5 kW)	320	510	810	1000	-		
SubDrive30 / SubDrive150	234 316 xxxx	3.0 (2.2 kW)	240	390	620	990	-	-	
SubDrive300	234 317 xxxx	5.0 (3.7 kW)	-	230	370	590	920	-	
	244 505 xxxx	1/2 (.37 kW)	400	650	1000	-	-	-	
SubDrive2W	244 507 xxxx	3/4 (.55 kW)	300	480	760	1000	-	-	
	244 508 xxxx	1.0 (.75 kW)	250	400	630	990	-	-	
	214 505 xxxx	1/2 (.37 kW)	400	650	1020	-	-	-	
MonoDrive	214 507 xxxx	3/4 (.55 kW)	300	480	760	1000	-	-	
	214 508 xxxx	1.0 (.75 kW)	250	400	630	990	-	-	
	214 508 xxxx	1.0 (0.75kW)	250	400	630	990	-	-	
MonoDriveXT	224 300 xxxx	1.5 (1.1 kW)	190	310	480	770	1000	-	
	224 301 xxxx	2.0 (1.5kW)	150	250	390	620	970	-	

A 10-foot (3.05 m) section of cable is provided with the SubDrive/MonoDrive to connect the pressure sensor.

Notes:

- 1 ft = 0.305 m
- Maximum allowable wire lengths are measured between the controller and motor.
- Aluminum wires should not be used with the SubDrive/MonoDrive.
- All wiring to comply with the National Electrical Code and/or local codes.
- MonoDrive minimum breaker amps may be lower than AIM manual specifications for the motors listed due to the soft-starting characteristic of the MonoDrive controller.
- SubDrive minimum breaker amps may appear to exceed AIM manual specifications for the motors listed because SubDrive controllers are supplied from a single-phase service rather than three-phase. Amps (SFA). Motor overtemperature sensing is not provided by the drive.
- Motor Overload Portection: The drive electronics provide motor overload protection by preventing motor current from exceeding the maximum Service Factor Amps (SFA). Motor overtemperature sensing is not provided by the drive.

The SubDrive/MonoDrive needs only a small pressure tank to maintain constant pressure. (See Table X for recommended tank size.) For pumps rated 12 gpm (45.4 lpm) or more, a slightly larger tank is recommended for optimum pressure regulation. The SubDrive/MonoDrive can also use an existing tank with a much larger capacity.

Table 60: Minimum Pressure Tank Size (Total Capacity)

Pressure Tank

PUMP FLOW RATING	CONTROLLER MODEL	MINIMUM TANK SIZE
	SubDrive15, SubDrive 75 or MonoDrive	2 gallons (7.6 liters)
Less than 12 gpm (45.4 lpm)	SubDrive20 or SubDrive100	4 gallons (15.1 liters)
	SubDrive30, SubDrive150 or MonoDriveXT	4 gallons (15.1 liters)
	SubDrive300	8 gallons (30.3 liters)
	SubDrive15, SubDrive 75 or MonoDrive	4 gallons (15.1 liters)
	SubDrive20 or SubDrive100	8 gallons (30.3 liters)
12 gpm and higher (45.4 lpm)	SubDrive30, SubDrive150 or MonoDriveXT	8 gallons (30.3 liters)
	SubDrive300	20 gallons (75.7 liters)
All flows	SubDrive2W	20 gallons (75.7 liters)

Table 60A: Pressure Tank Pre-charge (PSI)

SYSTEM PRESSURE (AT PRESSURE SENSOR)	PRESSURE TANK SETTING (±2 PSI)
25	18
30	21
35	25
40	28
45	32
50 (Factory Set)	35
55	39
60	42
65	46
70	49
75	53
80	56

1 PSI = 0.068 bar

 $\textbf{Note:} \ \textbf{Check tank pre-charge regularly to maintain optimum pressure regulation}.$

Table 60B: Minimum Pipe Diameter

MAXIMUM VELOCITY 8 FT/SEC. (2.4 M/S)			
MIN PIPE DIA	MAX GPM (LPM)		
1/2"	4.9 (18.5)		
3/4"	11.0 (41.6)		
1"	19.6 (74.2)		
1-1/4"	30.6 (115.8)		
1-1/2"	44.1 (166.9)		
2"	78.3 (296.4)		
2-1/2"	176.3 (667.4)		

Pumptec-Plus is a pump/motor protection device designed to work on any 230 V single-phase induction motor (PSC, CSCR, CSIR, and split phase) ranging in size from 1/2 to 5 horsepower. Pumptec-Plus uses a micro-computer to continuously monitor motor power and line voltage to provide protection against dry well, water logged tank, high and low voltage and mud or sand clogging.

Pumptec-Plus – Troubleshooting <u>During Installation</u>

SYMPTOM	POSSIBLE CAUSE	SOLUTION
Unit Appears Dead (No Lights)	No Power to Unit	Check wiring. Power supply voltage should be applied to L1 and L2 terminals of the Pumptec-Plus. In some installations the pressure switch or other control devices is wired to the input of the Pumptec-Plus. Make sure this switch is closed.
Flashing Yellow Light	Unit Needs to Be Calibrated	Pumptec-Plus is calibrated at the factory so that it will overload on most pump systems when the unit is first installed. This overload condition is a reminder that the Pumptec-Plus unit requires calibration before use. See step 7 of the installation instructions.
	Miscalibrated	Pumptec-Plus should be calibrated on a full recovery well with the maximum water flow. Flow restrictors are not recommended.
Flashing Yellow Light During Calibration	2-Wire Motor	Step C of the calibration instructions indicate that a flashing green light condition will occur 2 to 3 seconds after taking the SNAPSHOT of the motor load. On some two-wire motors the yellow light will flash instead of the green light. Press and release the reset button. The green should start flashing.
Flashing Red and	Power Interruption	During the installation of Pumptec-Plus power may be switched on and off several times. If power is cycled more than four times within a minute Pumptec-Plus will trip on rapid cycle. Press and release the reset button to restart the unit.
Yellow Lights	Float Switch	A bobbing float switch may cause the unit to detect a rapid cycle condition on any motor or an overload condition on two-wire motors. Try to reduce water splashing or use a different switch.
	High Line Voltage	The line voltage is over 253 volts. Check line voltage. Report high line voltage to the power company.
Flashing Red Light	Unloaded Generator	If you are using a generator the line voltage may become too high when the generator unloads. Pumptec-Plus will not allow the motor to turn on again until the line voltage returns to normal. Overvoltage trips will also occur if line frequency drops too far below 60 Hz.
	Low Line Voltage	The line voltage is below 207 volts. Check line voltage.
Solid Red Light	Loose Connections	Check for loose connections which may cause voltage drops.
oonu neu Light	Loaded Generator	If you are using a generator the line voltage may become too low when the generator loads. Pumptec-Plus will trip on undervoltage if the generator voltage drops below 207 volts for more than 2.5 seconds. Undervoltage trips will also occur if the line frequency rises too far above 60 Hz.

Pumptec-Plus and Pumptec with 3-lights

Pumptec-Plus and Pumptec with 3 lights - Troubleshooting After Installation

SYMPTOM	POSSIBLE CAUSE	SOLUTION
	Dry Well	Wait for the automatic restart timer to time out. During the time out period, the well should recover and fill with water. If the automatic reset timer of the Pumptec-Plus is set to the manual position, push the reset button to reactivate the unit. If the reset timer is set to manual in the Pumptec, turn off power for 5 seconds to reset the unit.
	Blocked Intake	Clear or replace pump intake screen.
C. P. I. W. Harry D. J. A.	Blocked Discharge	Remove blockage in plumbing.
Solid Yellow Light	Check Valve Stuck	Replace check valve.
	Broken Shaft	Replace broken parts.
	Severe Rapid Cycling	Machine gun rapid cycling can cause an underload condition. See flashing red and yellow lights section below.
	Worn Pump	Replace worn pump parts and recalibrate.
	Stalled Motor	Repair or replace motor. Pump may be sand or mud locked.
Flashing Yellow Light	Float Switch	A bobbing float switch can cause two-wire motors to stall. Arrange plumbing to avoid splashing water. Replace float switch.
	Ground Fault	Check insulation resistance on motor and control box cable.
Solid Red Light	Low Line Voltage	The line voltage is below 207 volts. Pumptec and Pumptec-Plus will try to restart the motor approximately every two minutes until the line voltage is normal.
Sonu Reu Light	Loose Connections	Check for excessive voltage drops in the system electrical connections (i.e. circuit breakers, fuse clips, pressure switch, and Pumptec-Plus L1 and L2 terminals). Repair connections.
Flashing Red Light	High Line Voltage	The line voltage is over 253 volts. Check line voltage. Report high line voltage to the power company.
	Rapid Cycle	The most common cause for the rapid cycle condition is a waterlogged tank. Check for a ruptured bladder in the water tank. Check the air volume control or snifter valve for proper operation. Check setting on the pressure switch and examine for defects.
Flashing Red and	Leaky Well System	Replace damaged pipes or repair leaks.
Yellow Lights	Stuck Check Valve	Failed valve will not hold pressure. Replace valve.
	Float Switch	A bobbing float switch may cause the unit to detect a rapid cycle condition on any motor or an overload condition on 2-wire motors. To reset a Pumptec, remove power for 5 seconds. To reset a Pumptec-Plus, press and release the reset button. To eliminate float switch bounce, try to reduce water splash or use a different switch.

QD Pumptec and Pumptec with 2-lights or no lights

QD Pumptec and the old 2-light version of Pumptec are load sensing devices that monitor the load on submersible pumps/motors. If the load drops below a preset level for a minimum of 4 seconds the QD Pumptec or the Pumptec will shut off the motor.

The QD Pumptec is designed and calibrated expressly for use on Franklin Electric 230 V 3-wire motors (1/3 to 1 hp.) The QD Pumptec must be installed in QD relay boxes.

The Pumptec is designed for use on Franklin Electric 2- and 3-wire motors (1/3 to 1.5 hp) 115 and 230 V. The Pumptec is not designed for jet pumps.

QD Pumptec & Pumptec – Troubleshooting

SYMPTOM	CHECKS OR SOLUTION
	A. Is the voltage less than 90% of nameplate rating?
If the QD Pumptec or Pumptec trips in about	B. Are the pump and motor correctly matched?
4 seconds with some water delivery.	C. Is the QD Pumptec or Pumptec wired correctly? For the Pumptec check the wiring diagram and pay special attention to the positioning of the power lead (230 V or 115 V). Pre-2006 Pumptec used different wiring guidelines.
	D. For QD Pumptec is your system 230 V 60 Hz or 220 V 50 Hz?
	A. The pump may be airlocked. If there ia a check valve on top of the pump, put another section of pipe between the pump and the check valve.
If the QD Pumptec or Pumptec trips in about	B. The pump may be out of water.
4 seconds with no water delivery.	C. Check the valve settings. The pump may be dead-heading.
	D. Pump or motor shaft may be broken.
	E. Motor overload may be tripped. Check the motor current (amperage).
If the QD Pumptec or Pumptec will not timeout	A. Check switch position on side of circuit board on Pumptec. QD Pumptec check timer position on top/front of unit. Make sure the switch is not between settings.
and reset.	B. If the reset time switch is set to manual reset (position 0), QD Pumptec and Pumptec will not reset (turn power off for 5 sec. then back on to reset).
	A. Check voltage.
	B. Check wiring.
If your pump/motor will not run at all.	C. Remove the QD Pumptec from the control box. Reconnect wires in box to original state. If motor does not run the problem is not QD Pumptec . Bypass Pumptec by connecting L2 and motor lead with jumper. Motor should run. If not, the problem is not Pumptec .
	D. On Pumptec only check that Pumptec is installed between the control switch and the motor.
	A. Be sure you have a Franklin motor.
	B. Check wiring connections. On Pumptec is lead power (230 V or 115 V) connected to correct terminal? Is motor lead connected to correct terminal?
If your QD Pumptec or Pumptec will not trip	C. Check for ground fault in the motor and excessive friction in the pump.
when the pump breaks suction.	D. The well may be "gulping" enough water to keep QD Pumptec or Pumptec from tripping. It may be necessary to adjust the QD Pumptec or the Pumptec for these extreme applications. Call the Franklin Electric Service Hotline at 800-348-2420 for information.
	E. On Pumptec applications does the control box have a run capacitor? If so, Pumptec will not trip. (Except for Franklin 1.5 hp motors).
	A. Check for low voltage.
If your QD Pumptec or Pumptec chatters when running.	B. Check for waterlogged tank. Rapid cycling for any reason can cause the QD Pumptec or the Pumptec relay to chatter.
muning.	C. On Pumptec make sure the L2 and motor wires are installed correctly. If they are reversed, the unit can chatter.

SubDrive2W, 75, 100, 150, 300, MonoDrive, and MonoDrive XT

Should an application or system problem occur, built-in diagnostics will protect the system. The "FAULT" light or digital display on the front of the SubDrive/MonoDrive Controller will flash a given number of times or display a number indicating the nature of the fault. In some cases, the system will shut itself off until corrective action is taken. Fault codes and their corrective actions are listed below. See SubDrive/MonoDrive Installation Manual for installation data.

Diagnostic Fault Codes

	agnostic Fault Codes				
NUMBER OF FLASHES OR DIGITAL DISPLAY	FAULT	POSSIBLE CAUSE	CORRECTIVE ACTION		
1	MOTOR UNDERLOAD	- Overpumped well - Broken shaft or coupling - Blocked screen, worn pump - Air/gas locked pump - SubDrive not set properly for pump end	- Frequency near maximum with less than 65% of expected load, 42% if DIP #3 is "on" - System is drawing down to pump inlet (out of water) - High static, light loading pump - reset DIP switch #3 to "on" for less sensitivity if not out of water - Check pump rotation (SubDrive only) reconnect if necessary for proper rotation - Air/gas locked pump - if possible, set deeper in well to reduce - Verify DIP switches are set properly		
2	UNDERVOLTAGE	- Low line voltage - Misconnected input leads - Dragging or failed cooling fan	- Line voltage low, less than approximately 150 VAC (normal operating range = 190 to 260 VAC) - Check incoming power connection and correct or tighten if necessary correct incoming voltage - check circuit breaker of fuses, contact power company - Disconnect fan. Re-apply system power. If 2-flash goes away, replace fan. If 2-flash continues, replace controller. Check fan with 9-volt battery.		
3	LOCKED PUMP	- Motor and/or pump misalignment - Dragging motor and/or pump - Abrasives in pump - Low Insulation to Ground	 - Line voltage low, less than approximately 150 VAC (normal operating range = 190 to 260 VAC) - Amperage above max amps at 10 Hz - Remove and repair or replace as required - Check line to ground with a megohmmeter - Are output leads to motor longer than 1000 feet? 		
4 (MonoDrive & MonoDriveXT only)	INCORRECTLY WIRED	MonoDrive only Wrong resistance values on main and start	- Wrong resistance on DC test at start - Check wiring, check motor size, and DIP switch setting, adjust or repair as needed		
5	open Circuit	- Loose connection - Failed motor or drop cable - Wrong motor - Damaged controller	- Open reading on DC test at start - Check drop cable and motor resistance, tighten output connections, repair or replace as necessary, use "dry" motor to check drive functions, if drive will not run and exhibits open circuit fault, replace drive - Check ratings - Replace controller		
6	OVER CURRENT	- When fault is indicated immediately after power- up, over current is due to short circuit. Check for loose connections, defective cable, defective splice or grounded motor.	- Amperage exceeded 50 amps on DC test at start or max amps during running - Incorrect output wiring, phase to phase short, phase to ground short in wiring or motor - If fault is present after resetting and removing motor leads, replace drive		
		- When fault is indicated while motor is running, over current due to loose debris trapped in pump	- Check pump		
7	OVERHEATED DRIVE	- High ambient temperature - Direct sunlight - Obstruction of airflow	Drive heat sink has exceeded max rated temperature, needs to drop below 85 °C to restart Fan blocked or inoperable, ambient above 125 °F, direct sunlight, air flow blocked Replace fan or relocate drive as necessary		
8 (SubDrive300 only)	OVER PRESSURE	- Improper pre-charge - Valve closing too fast - Pressure setting too close to relief valve rating	 Reset the pre-charge pressure to 70% of sensor setting. Reduce pressure setting well below relief valve rating. Use next size larger pressure tank. Verify valve operation is within manufacturer's specifications. Reduce system pressure setting to a value less than pressure relief rating. 		
RAPID	INTERNAL FAULT	- A fault was found internal to drive	- Unit may require replacement. Contact your supplier.		
9 (SubDrive2W only)	OVER RANGE (Values outside normal operating range)	- Wrong hp/voltage - Internal fault	- Verify motor hp and voltage - Unit may require replacement. Contact your supplier.		

Diagnostic Fault Codes

NUMBER OF Flashes	FAULT	POSSIBLE CAUSE	CORRECTIVE ACTION
FI	MOTOR UNDERLOAD	- Overpumped well - Broken shaft or coupling - Blocked screen, worn pump - Air/gas locked pump - SubDrive not set properly for pump end - Underload Sensitivity setting incorrect	- Frequency near maximum with load less than configured underload sensitivity (Potentiometer or Wi-Fi) - System is drawing down to pump inlet (out of water) - High static, light loading pump - reset Potentiometer for less sensitivity if not out of water - Check pump rotation (SubDrive only) reconnect if necessary for proper rotation - Air/gas locked pump - if possible, set deeper in well to reduce - Verify DIP switches are set properly - Check Underload Sensitivity Setting (Potentiometer or Wi-Fi setting, whichever is applicable)
F2	UNDERVOLTAGE	- Low line voltage - Misconnected input leads - Loose connection at breaker or panel	- Line voltage low, less than approximately 150 VAC (normal operating range = 190 to 260 VAC) - Check incoming power connections and correct or tighten if necessary - Correct incoming voltage - check circuit breaker or fuses, contact power company
F3	OVERCURRENT / Locked Pump	- Motor and/or pump misalignment - Dragging motor and/or pump - Motor and/or pump locked - Abrasives in pump - Excess motor cable length	- Amperage above SFL at 30 Hz - Remove and repair or replace as required - Reduce motor cable length. Adhere to Maximum Motor Cable Length table.
F4 (MonoDrive & MonoDriveXT only)	INCORRECTLY WIRED	- MonoDrive only - Wrong resistance values on main and start	- Wrong resistance on DC test at start - Check wiring, check motor size and DIP switch setting, adjust or repair as needed
F5	OPEN PHASE	Loose connection Defective motor or drop cable Wrong motor	- Open reading on DC test at start Check drop cable and motor resistance, tighten output connections, repair or replace as necessary, use "dry" motor to check drive functions. If drive will not run and exhibits underload fault replace drive
F6	SHORT CIRCUIT	When fault is indicated immediately after power-up, short circuit due to loose connection, defective cable, splice or motor	- Amperage exceeded 25 amps on DC test at start or SF amps during running - Incorrect output wiring, phase to phase short, phase to ground short in wiring or motor - If fault is present after resetting and removing motor leads, replace drive
F7	OVERHEATED DRIVE	- High ambient temperature - Direct sunlight - Obstruction of airflow	- Drive heat sink has exceeded max rated temperature, needs to drop below 194 °F (90 °C) to restart - Fan blocked or inoperable, ambient above 122 °F (50 °C), direct sunlight, air flow blocked - Replace fan or relocate drive as necessary - Remove debris from fan intake/exhaust - Remove and clean optional air screen kit (if installed)
F9	INTERNAL PCB FAULT	- A fault was found internal to drive	- Contact your Franklin Electric Service Personnel - Unit may require replacement. Contact your supplier.
F12	OVERVOLTAGE	- High line voltage - Internal voltage too high	- Line voltage high - Check incoming power connections and correct or tighten if necessary - If line voltage is stable and measured below 260 VAC and problem persists, contact your Franklin Electric Service Personnel

Power down, disconnect leads to the motor and power up the SubDrive:

⁻ If the SubDrive does not give an "open phase" fault (F5), then there is a problem with the SubDrive.

⁻ Connect the SubDrive to a dry motor. If the motor goes through DC test and gives "underload" fault (FI), the SubDrive is working properly.

Diagnostic Fault Codes

NUMBER OF FLASHES	FAULT	POSSIBLE CAUSE	CORRECTIVE ACTION	
F14	BROKEN PIPE	Broken pipe or large leak is detected in the system Drive runs at full power for 10 minutes without reaching pressure setpoint Large water draw, such as a sprinkler system, does not allow system to reach pressure setpoint	- Check system for large leak or broken pipe - If the system contains a sprinkler system or is being used to fill a pool or cistern, disable the Broken Pipe Detection	
F15 (SD15/20/30 only)	PHASE IMBALANCE	- Motor phase currents differ by 20% or more. - Motor is worn internally - Motor cable resistance is not equal - Incorrect motor type setting (single- or three-phase)	- Check resistance of motor cable and motor windings - Verify motor type matched drive settings (single- or three-phase)	
F16	GROUND FAULT	- Motor output cable is damaged or exposed to water - Phase to ground short	- Check motor cable insulation resistance with megger (while not connected to drive). Replace motor cable if needed.	
F17	INVERTER TEMPERATURE SENSOR FAULT	- Internal temperature sensor is malfunctioning	- Contact your Franklin Electric Service Personnel - If problem persists, unit may require replacement. Contact your supplier.	
F18 (SD20/30/MDXT only)	PFC TEMPERATURE SENSOR FAULT	- Internal temperature sensor is malfunctioning	- Contact your Franklin Electric Service Personnel - If problem persists, unit may require replacement. Contact your supplier.	
F19	COMMUNICATION FAULT	- Cable connection between Display/Wi-Fi Board and Main Control Board is loose or disconnected - Internal circuit failure	- Check cable connection between Display/Wi-Fi Board and Main Control Board If problem persists, unit may require replacement. Contact your supplier.	
F22	DISPLAY/WI-FI BOARD EXPECTED FAULT	- Connection between Display/Wi-Fi Board and Main Control Board was not detected at drive start-up	- Check cable connection between Display/Wi-Fi Board and Main Control Board If problem persists, unit may require replacement. Contact your supplier.	
F23	MAIN BOARD STARTUP FAULT	- A fault was found internal to drive	- Contact your Franklin Electric Service Personnel - Unit may require replacement. Contact your supplier.	
F24	INVALID DIP SWITCH SETTING	 No DIP Switch set or more than one (1) DIP Switch set for Motor size No DIP Switch set or more than one (1) DIP Switch set for Pump size Invalid combination of DIP switches for drive type (SD or MD mode), Motor hp, and Pump hp. 	- Check DIP switch settings	

Power down, disconnect leads to the motor and power up the SubDrive:

⁻ If the SubDrive does not give an "open phase" fault (F5), then there is a problem with the SubDrive.

⁻ Connect the SubDrive to a dry motor. If the motor goes through DC test and gives "underload" fault (F1), the SubDrive is working properly.

SubDrive2W, 75, 100, 150, 300, MonoDrive, and MonoDrive XT

Troubleshooting

CONDITION	INDICATOR LIGHT	POSSIBLE CAUSE	CORRECTIVE ACTION	
	NONE	- No supply voltage present	- If correct voltage is present, replace drive	
	SOLID GREEN	- Pressure sensor circuit	- Verify water pressure is below system set point - Jumper wires together at pressure sensor, if pump starts, replace sensor - If pump doesn't start, check sensor connection at printed circuit board (PCB), if loose, repair - If pump doesn't start, jumper sensor connection at PCB, if pump starts, replace wire - If pump doesn't start with sensor PCB connection jumpered, replace drive	
NO WATER	SOLID RED OR Solid RED AND GREEN	- Power surge, bad component	- Power system down to clear fault, verify voltage, if repetitive, replace drive	
	FLASHING RED	- Fault detected	- Proceed to fault code description and remedy	
	FLASHING GREEN	- Drive and motor are operating - Loose switch or cable connection - Gulping water at pump inlet	 Frequency max, amps low, check for closed valve, or stuck check valve Frequency max, amps high, check for hole in pipe Frequency max, amps erratic, check pump operation, dragging impellers This is not a drive problem Check all connections Disconnect power and allow well to recover for short time, then retry 	
PRESSURE Fluctuations (Poor regulation)	FLASHING GREEN	 Pressure sensor placement and setting Pressure gauge placement Pressure tank size and pre-charge Leak in system Air entrainment into pump intake (lack of submergence) 	 Correct pressure and placement as necessary Tank may be too small for system flow This is not a drive problem Disconnect power and check pressure gauge for pressure drop Set deeper in the well or tank; install a flow sleeve with airtight seal around drop pipe and cable If fluctuation is only on branches before sensor, flip DIP switch #4 to "on" (07C and newer) 	
RUN ON WON'T SHUT DOWN	FLASHING GREEN	- Pressure sensor placement and setting - Tank pre-charge pressure - Impeller damage - Leaky system - Sized improperly (pump can't build enough head)	- Check frequency at low flows, pressure setting may be too close to pump max head - Verify precharge at 70% if tank size is larger than minimum, increase precharge (up to 85%) - Verify that the system will build and hold pressure	
RUNS BUT TRIPS	FLASHING RED	- Check fault code and see corrective action	- Proceed to fault code description and remedy on reverse side	
LOW PRESSURE	FLASHING GREEN	- Pressure sensor setting, pump rotation, pump sizing	Adjust pressure sensor, check pump rotation Check frequency at max flow, check max pressure	
HIGH PRESSURE	FLASHING GREEN	- Pressure sensor setting - Shorted sensor wire	Adjust pressure sensor Remove sensor wire at PCB, if drive continues to run, replace drive Verify condition of sensor wire and repair or replace if necessary	
AUDIBLE NOISE	FLASHING GREEN	- Fan, hydraulic, plumbing	- For excessive fan noise, replace fan - If fan noise is normal, drive will need to be relocated to a more remote area - If hydraulic, try raising or lowering depth of pump - Pressure tank location should be at entrance of water line into house	
NO LIGHTS	NONE	- Ribbon cable detached from LED printed circuit board	- Reattach cable - if cable is attached, replace drive	
RFI-EMI INTERFERENCE	FLASHING GREEN	- See interference troubleshooting procedure		

Troubleshooting

CONDITION	INDICATOR LIGHT	POSSIBLE CAUSE	CORRECTIVE ACTION
	NONE	- No supply voltage present	- Verify cable connection between main control board and display board
	NUNE	- Display board cable disconnected or loose	- If correct voltage is present, replace drive
			- Verify water pressure is below system set point
		- Pressure sensor circuit	- If Pressure Input Board break-away tab is removed, ensure auxiliary device is connected and closed circuit
			- If Pressure Input Board break-away tab is removed and no auxiliary device is being used, manually short-circuit "AUX IN" connections
	GREEN		- Jumper wires together at pressure sensor; if pump starts, replace sensor
	"" ON DISPLAY		- If pump doesn't start, check sensor connection at Pressure Input Board;. if loose, repair
			- If pump doesn't start, jumper sensor connection at Pressure Input Board. If pump starts, replace wire
			- If pump doesn't start with sensor Pressure Input Board connection jumpered, replace Pressure Input Board
NO WATER			- If pump doesn't start with new Pressure Input Board, replace drive
	RED Fault code on display	- Fault detected	- Proceed to fault code description and remedy
	GREEN MOTOR FREQUENCY ON DISPLAY	- Drive and motor are operating - Loose switch or cable connection - Incorrect motor or pump settings - Motor may be running backwards - Gulping water at pump inlet	- Verify Maximum Frequency setting. If this setting was reduced below maximum value, increase - Verify motor/pump ratings and match to motor/pump settings on drive (DIP switch or Wi-Fi) - Verify motor connections - Frequency max, amps low, check for closed valve, or stuck check valve - Frequency max, amps high, check for hole in pipe - Frequency max, amps erratic, check pump operation, dragging impellers - This is not a drive problem - Check all connections - Disconnect power and allow well to recover for short time, then retry
			- Correct pressure and placement as necessary
		- Pressure sensor placement and setting	- Tank may be too small for system flow
	GREEN	- Pressure gauge placement	- This is not a drive problem
PRESSURE FLUCTUATIONS		- Pressure tank size and pre-charge	- Disconnect power and check pressure gauge for pressure drop
(POOR REGULATION)	MOTOR FREQUENCY ON DISPLAY	- Leak in system	- Change tank size configuration
		- Air entrainment into pump intake (lack of submergence)	- Set deeper in the well or tank; install a flow sleeve with airtight seal around drop pipe and cable
			- If fluctuation is only on branches before sensor, enable Steady Flow
		- Pressure sensor placement and setting	- Check frequency at low flows, pressure setting may be too close to pump max head
RUN ON	GREEN Motor Frequency on Display	- Tank pre-charge pressure	- Verify precharge at 70% if tank size is larger than minimum, increase precharge (up to 85%)
WON'T SHUT DOWN		- Impeller damage	- Verify that the system will build and hold pressure
		- Leaky system	- Enable bump and/or aggressive bump
		- Sized improperly (pump can't build enough head)	- Increase minimum frequency
RUNS BUT TRIPS	FLASHING RED	- Check fault code and see corrective action	- Proceed to fault code description and remedy on reverse side

Troubleshooting

CONDITION	INDICATOR LIGHT	POSSIBLE CAUSE	CORRECTIVE ACTION
LOW PRESSURE	GREEN MOTOR FREQUENCY ON DISPLAY	- Pressure sensor setting, pump rotation, pump sizing - High temperature	Adjust pressure sensor, check pump rotation Check frequency at max flow, check max pressure High ambient and/or drive temperature will cause drive to foldback power and run with reduced performance
HIGH PRESSURE	GREEN MOTOR FREQUENCY ON DISPLAY	- Pressure sensor setting - Shorted sensor wire	Adjust pressure sensor Remove sensor wire at Pressure Input Board, if drive stops running, wire may be shorted Remove sensor wire at Pressure Input Board, if drive continues to run, replace Pressure Input Board Remove sensor wire at new Pressure Input Board, if drive continues to run, replace drive Verify condition of sensor wire and repair or replace if necessary
AUDIBLE NOISE	GREEN MOTOR FREQUENCY ON DISPLAY	- Fan, hydraulic, plumbing	- For excessive fan noise, replace fan - If fan noise is normal, drive will need to be relocated to a more remote area - If hydraulic, try raising or lowering depth of pump - Pressure tank location should be at entrance of water line into house
NO DISPLAY	NONE	- Display board cable disconnected or loose	- Verify cable connection between main control board and display board
CANNOT CONNECT TO DRIVE WI-FI		- Attempting to connect to incorrect drive - Out of Wi-Fi range of drive	- Ensure the Wi-Fi SSID (hotspot name) you are connecting to matches the drive you wish to connect to - Wi-Fi range is 100 feet line-of-site, must be closer to drive if walls or floors are between you and the drive - Wi-Fi module not responding, cycle power to drive - Cycle Wi-Fi radio on mobile device, refresh Wi-Fi connection list
	FE CONNECT LIGHT OFF	- Wi-Fi timeout expired	- If more than fifteen (15) minutes since last power cycle, cycle power to drive - If more than one (1) hour since last disconnection from Wi-Fi, cycle power to drive
RFI-EMI INTERFERENCE	GREEN Motor Frequency on Display	- Poor grounding - Wire routing	Adhere to grounding and wire routing recommendations An additional external filter may be needed. See Accessories section for ordering information

SubMonitor Troubleshooting

FAULT MESSAGE	PROBLEM/CONDITION	POSSIBLE CAUSE	
SF Amps Set Too High	SF Amps setting above 359 Amps.	Motor SF Amps not entered.	
Phase Reversal	Reversed incoming voltage phase sequence.	Incoming power problem.	
	Normal line current.	Wrong SF Max Amps setting.	
Underload	Low line current.	Over pumping well. Clogged pump intake. Closed valve. Loose pump impeller. Broken shaft or coupling. Phase loss.	
	Normal line current.	Wrong SF Max Amps setting.	
Overload	High line current.	High or low line voltage. Ground fault. Pump or motor dragging. Motor stalled or bound pump.	
Overheat	Motor temperature sensor has detected excess motor temperature.	High or low line voltage. Motor is overloaded. Excessive current unbalance. Poor motor cooling. High water temperature. Excessive electrical noise (VFD in close proximity).	
Unbalance Current difference between any two legs eyzoeds programmed setting Unbalance Unbalance		Phase loss. Unbalanced power supply. Open Delta transformer.	
Overvoltage	Line voltage exceeds programmed setting.	Unstable power supply.	
Undervoltage	Line voltage below programmed setting.	Poor connection in motor power circuit. Unstable or weak power supply.	
False Starts	Power has been interrupted too many times in a 10 second period.	Chattering contacts. Loose connections in motor power circuit. Arcing contacts.	

A	Amp or amperage	MCM	Thousand Circular Mils
AWG	American Wire Gauge	mm	Millimeter
BJT	Bipolar Junction Transistor	MOV	Metal Oxide Varister
)°	Degree Celsius	NEC	National Electrical Code
CB	Control Box	NEMA	National Electrical Manufacturer
CRC	Capacitor Run Control		Association
DI	Deionized	Nm	Newton Meter
DOL	Direct on Line	NPSH	Net Positive Suction Head
Dv/dt	Rise Time of the Voltage	OD	Outside Diameter
EFF	Efficiency	0L	Overload
٥F	Degree Fahrenheit	PF	Power Factor
FDA	Food & Drug Administration	psi	Pounds per Square Inch
FL	Full Load	PWM	Pulse Width Modulation
ft	Foot	QD	Quick Disconnect
ft-lb	Foot Pound	R	Resistance
ft/s	Feet per Second	RMA	Return Material Authorization
143	rect per second	DMC	Doot Maan Coursed

GFCI

Ground Fault Circuit Interrupter

Gallon per Minute gpm

HER0 High Efficiency Reverse Osmosis

hp Horsepower Hz Hertz ID Inside Diameter

IGBT Insulated Gate Bipolar Transistor

in Inch kVA Kilovolt Amp

Kilovolt Amp Rating kVAR kW Kilowatt (1000 watts)

Line One, Line Two, Line Three L1, L2, L3

Maximum

lb-ft Pound Feet L/min Liter per Minute mA Milliamp

RMS Root Mean Squared Revolutions per Minute rpm

SF Service Factor

SFhp Service Factor Horsepower

S/N Serial Number TDH Total Dynamic Head UNF Fine Thread ٧ Voltage

VAC Voltage Alternating Current VDC Voltage Direct Current VFD Variable Frequency Drive

W Watts **XFMR** Transformer Y-D Wye-Delta Ω ohms

max

YOU JUST GOT A LITTLE MORE HELP FROM A FRIEND.

FRANKLIN ELECTRIC TECHNICAL SERVICE HOTLINE 800-348-2420 | 260-827-5102 FAX

Option 1 - Franklin Water | Option 2 - Franklin Control System | Option 3 - Little Giant Commercial

Call Franklin's toll free TECHNICAL SERVICE HOTLINE for answers to your pump and motor installation questions. When you call, a Franklin expert will offer assistance in troubleshooting and provide immediate answers to your system application questions. Technical support is also available online.

franklinwater.com | franklin-controls.com | solar.franklin-electric.com | constantpressure.com

franklinwater.com MF1311 12-14