Sinkholes in Pennsylvania

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES
BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY
COMMONWEALTH OF PENNSYLVANIA
Edward G. Rendell, Governor

DEPARTMENT OF
CONSERVATION AND NATURAL RESOURCES
Michael DiBerardinis, Secretary

OFFICE OF CONSERVATION AND ENGINEERING SERVICES
Larry G. Williamson, Deputy Secretary

BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY
Jay B. Parrish, Director
INTRODUCTION

What are sinkholes? A farmer may view them as naturally forming holes that occasionally open up in the fields. Some people see sinkholes as sites for dumping trash. In urban areas, the sudden appearance of a sinkhole is a hazard that can disrupt utility services, hamper transportation, and cause severe damage to nearby structures. In anyone’s backyard, a sinkhole is a safety risk to the curious who may find it exciting to explore this new “cave.”

Information about sinkholes in Pennsylvania is pertinent to planning for future land development and for the protection of private and public property. It also provides a fascinating story for those who are interested in learning more about geologic conditions and earth processes.

The first 18 pages of this booklet contain an explanation of how sinkholes develop. In order to tell the sinkhole story, it is important to discuss a number of related geologic disciplines. The words used to describe sinkholes and these disciplines may be a bit unfamiliar. However, general explanations are given throughout the booklet to help clarify their meanings. Key words are printed in bold type for emphasis. The more important ones are defined in a Glossary that begins on page 29.

The remaining sections, starting with “Sinkholes in the Urban Environment” (page 18), deal with sinkholes and their impact on our environment. This includes recognition of subsidence features and sinkhole repair.

As you read, keep in mind that the formation of sinkholes is part of the natural weathering process and that this process has worked on the limestone bedrock over a very long period of time.

WHAT ARE SINKHOLES?

A sinkhole is a subsidence feature. Subsidence is the downward movement of surface material; it involves little or no horizontal movement. Subsidence occurs naturally due to the physical and chemical weathering of certain types of bedrock. Subsidence can also occur as a result of underground mining, excessive pumping of groundwater, or subsurface erosion due to the failure of existing utility lines. All of these examples of subsidence can produce surface features that appear similar, but not all are naturally occurring. Some are solely the result of human activities.
Subsidence and the Old Farmhouse

Subsidence usually occurs slowly over a relatively long period of time. Imagine an old, abandoned, two-story, wooden farmhouse. Over a period of time, the wooden crossbeams and joists that support the house dry and begin to deteriorate. As time goes on, the framework that supports the floors loses its integrity, and as support is lost, the floors sag. If this process is allowed to continue, the house eventually collapses due to the removal of the wooden supports. Although the actual subsidence process may have taken a long time, the final collapse of the structure can occur very rapidly.

Sinkhole development is comparable to the subsidence process just described. In the case of a sinkhole, the support for the land surface is gradually removed over a period of time, causing the land surface to sag and finally collapse, leaving a hole or cavity as a result. Overlying surface materials then move downward into the hole.

The mechanism of subsidence can help define a sinkhole. A sinkhole can be defined as a subsidence feature that can form rapidly and that is characterized by a distinct break in the land surface and the downward movement of surface materials into the resulting hole or cavity.

New questions now arise. What causes the underlying support for the land surface to be removed? Where does it go? Do sinkholes occur everywhere?

Case histories of sinkhole occurrence reveal that sinkholes occur only in certain parts of Pennsylvania. By examining these records, we learn that sinkholes are found in areas underlain by carbonate bedrock. Large areas of central and eastern Pennsylvania are underlain by this type of bedrock (Figure 1).

We can now add this information to the definition of a sinkhole. A sinkhole is a subsidence feature in an area underlain by carbonate bedrock. It can form rapidly and is characterized by a distinct break in the land surface and the downward movement of surface materials into the resulting hole or cavity.

What is Carbonate Bedrock?

Carbonate bedrock includes limestone, dolomite, and marble. Limestone and dolomite are sedimentary rocks, and marble is a metamorphic rock. Marble is present in Pennsylvania, but it is not nearly as common as limestone and dolomite. Although sinkholes are associated with all of these carbonate rock types, limestone will be used as the primary example throughout much of this booklet.
Being a sedimentary rock, limestone is composed of grains of sediment, much like the individual sand grains that make up sandstone. The difference is that the sediment grains of limestone are chemically different and are derived from a different source.

Limestone is composed of carbonate sediment. Carbonate sediment is commonly found in relatively shallow subtropical and tropical oceans around the world. A good example of a carbonate environment is a coral reef, such as the reefs that lie east of the Florida Keys, or the Great Barrier Reef of Australia.

Ocean-dwelling organisms such as corals, clams, and algae use the various elements within seawater to form a hard, rigid skeleton composed of the carbonate mineral calcite. When these organisms die, their skeletons accumulate on the ocean floor as sediment. Movement of this sediment by wave action and ocean currents breaks the sediment into smaller pieces and transports it from one place to another.

The sediment can be further reduced in size by the action of burrowing and grazing organisms. The sediment is ingested by these organisms, available nutrients are removed, and the undigested portion of the sediment is returned to the ocean floor.

Figure 1. Location of areas where carbonate bedrock occurs in central and eastern Pennsylvania.
How Does Carbonate Sediment Become Rock?

When building a brick wall, one needs some type of cement, such as mortar or concrete, to hold the bricks together. Similarly, loose, unconsolidated sediment needs something to hold the grains together in order for it to become rock. Limestone is the result of carbonate sediment being cemented together, generally by the mineral calcite. This cement can be produced by chemical reactions that take place in the fluids that move through the pore spaces of the sediment after deposition. Cementation is likely to occur when fresh water, as opposed to ocean water, moves through the sediment.

Look at Figure 1 again, and note that there are many places in Pennsylvania where limestone is at the surface. You can see limestone in outcrops along the highway, in fields, or in quarries. How did the limestone get there if it was formed in the ocean?

The answer is that during the earth’s history, the continents and the oceans have changed in shape and location. Shallow seas covered all of Pennsylvania in past geologic time and produced layer upon layer of carbonate sediments. These sediments were lithified (turned to rock), and the layers were later uplifted, tilted, fractured, folded, and twisted by the forces unleashed during the formation of the Appalachian Mountains. Erosion has worn away most of the ancient mountains, leaving the landscape as we see it today, including exposures of carbonate rock.

Chemical Composition of Carbonate Bedrock

The chief constituent of limestone is the mineral calcite. The chemical composition of calcite is calcium carbonate (CaCO₃). The rock dolomite is similar to limestone but has dolomite as the dominant mineral. Note that the term “dolomite” is used for both a rock and a mineral. The chemical composition of the mineral dolomite is calcium magnesium carbonate [CaMg(CO₃)₂]. Also note that the minerals calcite and dolomite have CO₃ as part of their chemical formulas. The CO₃ represents the carbonate ion.

Limestone and dolomite rocks are generally not pure calcite or dolomite. In addition to these minerals, they contain minor amounts of impurities, typically noncarbonate minerals. Among the more common noncarbonate minerals are clay, quartz, and pyrite.

Acids, Bases, and Limestone

Carbonate rocks have a shared chemical property; they can be dissolved by certain acids. When dilute hydrochloric acid (HCl) is placed in contact with limestone, it fizzes. The HCl reacts with the calcium carbon-
ate, breaking it down into ionic form and releasing a gas, carbon dioxide (CO₂). This release of carbon dioxide is what is observed when the limestone fizzes.

Chemically, limestone is considered a base. A base is the chemical opposite of an acid. If an acid is added to a base, the two chemicals will counteract one another. If an acid is added to limestone, the limestone will react until the acid has been neutralized by the limestone. An example of a common acid is household vinegar, which contains 4 percent acetic acid. Acetic acid reacts with limestone the same way as dilute hydrochloric acid but at a much slower rate. The fizz produced by the release of CO₂ may not even be noticeable at first. The chemical reaction rate is slower because the vinegar is a weaker acid.

Acids react differently when placed in contact with limestone and dolomite. If we place an acid of similar strength on samples of both limestone and dolomite, we observe that the limestone reacts more vigorously than the dolomite. Remembering that limestone is mostly calcium carbonate, we can deduce that the more calcium carbonate in a rock, the greater its reaction will be with certain acids.

The pH of a substance is a general indicator of whether it is acidic or basic. A pH of 7.0 is considered neutral. A pH greater than 7.0 is considered basic, and a pH less than 7.0 is considered acidic. The pH also indicates the relative strength of an acid or base. An acid with a pH of 3.5 is ten times as acidic as an acid with a pH of 4.5. To put acid strengths into perspective, the pH value for laboratory-grade concentrated hydrochloric acid is 0.1, whereas household vinegar has a pH of about 3.0. Rainwater in Pennsylvania has an average pH of 4.5, so we see that rainwater is an acid.

What makes rainwater acidic? Within the earth’s atmosphere there is a small amount of carbon dioxide gas. The carbon dioxide gas reacts with water to form carbonic acid. Carbonic-acid production can increase as carbon dioxide gas in the soil reacts with water infiltrating through the soil (Figure 2). Carbonic acid is a weak acid and reacts with limestone and dolomite. In fact, it is the main acid that dissolves carbonate bedrock.

Beds, Bedding, and Laminae

Sedimentary rock such as limestone is arranged in distinct layers of varying thicknesses. These distinct layers are called beds, and the arrangement of these layers, one bed overlying another bed, is called bedding. Bedding can be thick or thin. Where the layers are less than 1 centimeter thick, they are called laminae.
Bedding is horizontal in rocks that have not been disturbed since they were deposited as sediment, but in central and eastern Pennsylvania, bedding is commonly tilted. The tilting of the bedrock was caused by the mountain-building forces that were active at various times during Pennsylvania’s geologic past. The strong forces have moved the beds from their original horizontal position to an angular position (Figure 3A).

Distinct breaks, or fractures, are also common within the bedrock (Figure 3A). Where individual beds meet one another, there are commonly distinct planar surfaces between them called bedding planes (Figure 3A). Bedding can be broken and displaced in a horizontal or vertical direction as

Figure 2. Water (H₂O) combines with carbon dioxide (CO₂) to form carbonic acid (H₂CO₃). This is the acid that dissolves limestone (CaCO₃).
Figure 3. A. Tilted limestone beds of various thicknesses. Note fractures (F) and bedding planes (BP). B. Tightly folded beds of limestone.
a result of faulting. Sometimes the layers of rock have been folded (Figure 3B). Folds, faults, fractures, and bedding planes are all classified as inherent weaknesses within the bedrock.

All of these natural features indicate that limestone is not necessarily a simple rock layer. It can be thick or thin, laminated, folded, faulted, fractured, or it can have various combinations of these characteristics. In addition, layers of limestone can alternate with layers of dolomite or other rock types.

Now imagine the acidic water coming into contact with limestone bedrock. What happens?

If a bed of limestone was just one flat-lying, thick layer of rock, the acidic water would react only with the topmost layer. However, this is not generally the case. Water also enters the natural breaks in the bedrock and moves downward through these fractures.

As the acidic water enters the fractures, it comes into contact with additional surfaces of the limestone and begins to dissolve them. This dissolution (dissolving away) widens the fractures. As they get wider, more water can enter. This process is repeated over and over. The acidic water continues to react with the basic limestone bedrock until it is neutralized.

Because water flows along the natural breaks within the limestone bedrock, the surfaces exposed along these breaks are preferentially dissolved. Limestone bedrock normally has many breaks as part of its structure. Fractures may cross one another and intersect laminae and bedding (Figure 4). This may result in uneven dissolution of the limestone bedrock as the acidic water follows different paths. Unusually shaped limestone bedrock may result as the bedrock is dissolved at various levels. Some portions of the carbonate bedrock can appear as abstract sculptures or can become pointed columns called pinnacles (Figure 5).

Figure 4. Intersecting fractures.
Not all of the limestone bedrock will be dissolved. Remember that there are noncarbonate minerals within limestone. Carbonic acid has a negligible effect on these minerals; thus, they are not dissolved and remain as insoluble residue. As the process of dissolution continues, these insoluble minerals accumulate on top of the limestone bedrock and become part of the soil. The insoluble minerals also fill the widened fractures and voids that are formed by the dissolution process.

Groundwater and the Plumbing Network

Imagine a plumbing system where the natural breaks in the limestone bedrock (fractures, faults, and bedding contacts) are replaced by pipes (Figure 6). Water migrates downward through the pipes in the limestone bedrock until it meets with other water that has flowed through similar pipes in an area. This meeting place for water is the water table, and the water is now called groundwater.

The water table is a dividing line; essentially, above this line, there is little water, and below this line, the ground is saturated (filled) with groundwater. If a drinking glass is filled with sand and then colored water is poured onto the sand, we can see that the water moves downward or percolates
through the sand by means of gravity and accumulates at the bottom of the glass. The same process occurs in nature. Water infiltrates through the soil, then migrates along breaks in the limestone bedrock until it merges with the groundwater. Groundwater then flows laterally, following the natural gradient (slope) of the land surface (from high areas to low areas) as it makes its way to base level. Groundwater generally flows in the same direction as surface water.

The water-table level fluctuates during the year, depending on how much water is available to replenish what flows away. During periods when the water table is high, the pipes in the limestone bedrock may be filled with water. When the water table is low, the pipes may be open or free of water to a greater depth. In the latter case, as new weakly acidic water enters the open pipes, the acid reacts with the limestone, widening the fracture at a deeper level.

Pipes and Drains

Over time, the entry point of rainwater and surface water into the pipes serves as a drain. These drains complete the plumbing network, conveying water through the fractures (pipes) to the water table (Figure 7).
Not all of the pipes continue to the water table, however. Fractures may not continue all the way through a bed of limestone. In other instances, the composition of the limestone may result in dissolution only in certain parts of the limestone bedrock. As a result, some of the pipes become dead ends, whereas other pipes are open.

The plumbing system in limestone bedrock can be quite complex. Depending upon the orientation and direction of the pipes, groundwater follows the natural gradient of the land in a regular or irregular pattern and can flow to a surface discharge point or points. These discharge points are **springs**, which are common in limestone areas. A substantial area is usually drained by each spring; thus, a spring can be quite large.

In some cases, a stream may enter a drain, flow in the subsurface, and emerge at the surface some distance from where it first entered the drain. These streams are called **disappearing streams**. Names such as Sinking Creek or Lost Creek are common in limestone areas throughout the country.

Figure 7. Mr. Carbonic Acid shows off his plumbing network in the limestone bedrock. Groundwater flows through the pipes to get to the water table (the large pipe at the bottom).
Sinkholes and the Plumbing Network

The drains and pipes in our limestone-bedrock plumbing network play an important part in sinkhole development. Remember that subsidence was described previously in the example of the old farmhouse. The farmhouse began to sag after removal of its support, and eventually it collapsed. Now, think about our plumbing network.

First, consider the function of a drain. In a bathtub or sink, the drain is where the water goes once we pull the plug. At one time or another, most of us probably have encountered the nemesis of bathtubs, the clogged drain. We observe in those situations that water will drain very slowly and, at times, not at all. The bathwater just remains there until we use the proper unclogging agent to open the drain.

Clogged drains in limestone bedrock are very common. Soil typically clogs the drains and retards the movement of water into them. Because surface water moves naturally to the drains, the water may collect in the general area of a clogged drain. After a heavy rain or during the spring thaw or snowmelt, standing water may take on the appearance of a pond or a ghost lake (Figure 8). After a few days, the impounded water will slowly drain into the subsurface.

Surface water can act as a natural unclogging agent. Over time, surface water periodically flushes material down into the limestone drains.

Subsidence and Piping: the Bathtub Model

Imagine a bathtub filled with soil. The bathtub represents the limestone bedrock, and the soil represents soil in a fracture that has been widened by dissolution of the bedrock (Figure 9). If we slowly add water to the bathtub, the water will infiltrate through the soil and migrate toward the drain (Figure 9A). The water then moistens the soil in the area around the open drain. As a result, the moistened soil begins to lose its cohesive properties and begins to break apart. Some of the soil falls down into the open drain.

As the soil enters the drain, it leaves behind a void or open area in the bathtub soil (Figure 9B). If the water source is removed, this void may remain suspended in the soil profile. If water is continually added to the bathtub, the soil above the void (the roof) is moistened and collapses into the void. As the soil fills the void below it, another void is created directly above it (Figure 9C).

As water continues to enter the bathtub, the process is repeated, and the void migrates toward the surface. As the void gets closer to the surface, the surface may begin to sag (remember the farmhouse sagging as the sus-
Figure 8. These ghost lakes in Lehigh County resulted from a clogged drain. The impounded water may prevent vegetation from growing.

Figure 9. The bathtub model. A. Water infiltrates through the soil. B. As soil enters the drain, a void is left behind. C. Over time, the soil moves into the void and the void “migrates” toward the surface. D. Support is removed and collapse occurs. E. If enough water is supplied, an open connection to the drain results.
port is removed?). At some point, the roof of the void cannot support itself, and it finally collapses (Figure 9D). The result is a hole in the ground.

The actual size and orientation of voids in the soil depend on the thickness of the soil and the source of water. If the water source is continual, the flow may keep the void open to the drain in the limestone bedrock (Figure 9E).

This process of moving soil is called piping. Keep in mind that once a soil pipe has been established, water will continue to use it. There also may be more than one soil pipe leading to a common drain. Understanding this has a bearing on planning sinkhole repairs, as discussed later.

Remember that the drain in the bathtub may connect to other limestone-bedrock pipes and other drains. Also remember that water that enters the drains flows through the plumbing network and collects at the water table. During and immediately following periods of heavy precipitation, the groundwater level will rise, and then it will lower slowly after the rainfall has ended. This fluctuation of the water table can loosen the soil walls and roof of the void, and pieces can fall off. Conversely, prolonged drought may cause the groundwater level to drop, allowing soil to dry, shrink, and fall into existing voids, perhaps causing further collapse.

Sinkhole Characteristics

Sinkholes come in many different sizes and shapes. They are commonly circular in outline, but they can also be elliptical, linear, or irregular in shape. Sometimes a sinkhole will look as if someone scooped out a hole with a backhoe. In other examples, a sinkhole can resemble a funnel. A tunnel or throat may be visible within the hole (Figure 10). The throat represents a soil pipe that leads to the bedrock drain. If the soil overlying the bedrock is thin, bedrock or the bedrock drain may be exposed (Figure 11). If a sinkhole occurs in an urbanized area, utility lines may be exposed (Figure 12).

The size of a sinkhole depends on how much material has been flushed down the drain and on the size of the pipes. On average, sinkholes in Pennsylvania range from 4 to 20 feet in diameter and have approximately the same range in depth. Surface water can induce erosion along the rim of a sinkhole and cause enlargement of the sinkhole to as much as several hundred feet long. Due to the interconnected nature of the karst plumbing system, a group of small sinkholes can also coalesce to form a larger sinkhole (Figure 13).

The shape of sinkholes changes over time. Initially, sinkholes have steep or nearly vertical sidewalls. Portions of the sidewalls can break off over time and fall into the sinkhole. As this process continues, the sinkhole gets larger. If water continues to be added to the sinkhole, it can also get deeper.
Commonly, one side of the sinkhole remains steep, and the opposite side has a more gentle slope; the sinkhole resembles a funnel that has been cut in half along its length. An arch of soil may be apparent along the sidewall (Figure 10). This arch forms over the throat of the sinkhole and represents the roof of the void described in the bathtub model.

Initially, the area above the soil arch and throat, the steep side,
is the most stable. Over time, the sides of the sinkhole will continue to fall and fill in the hole. The sinkhole may fill in to the point that it will appear as a depression on the land surface, or it may have very little difference in surface relief from the surrounding area. In the latter case, the evidence that there was once a sinkhole is gone. If there is a constant supply of water entering a sinkhole (from a stream, for example), the sinkhole can remain open for years.

Karst Topography

We now know that a sinkhole is a complex subsidence structure formed by a variety of chemical and physical processes. The process of limestone dissolution over a large area results in a distinct landscape that is called karst topography. Karst topography includes features such as sinkholes, surface and closed depressions, and caves.

A Bit About Caves

Caves are probably the most aesthetic of karst features. The dissolution of the limestone bedrock, coupled with both the abrasive action of sediment that is transported by moving groundwater and the lowering of base level, forms cave passages along fractures, faults, and bedding planes. Ad-
additional chemical processes take place once passages have been developed and form the unique features observed in caves. Sinkholes can occur as a result of the collapse of the roof of a cave, but this is rare. For more information about caves, see White (1976).

Redefinition

To put things into perspective, let’s go back to our definition (page 2) and modify it to read, “A sinkhole is a hole formed in a karst area by localized, gradual or rapid sinking of the land surface to a variable depth; it is characterized by a roughly circular outline and a distinct break in the land surface. The collapse feature is a result of soil or related materials being transported by water into voids within carbonate bedrock or in the overlying regolith.”

Still too technical? How about, “A sinkhole is a roughly circular hole in the ground in an area underlain by limestone bedrock, which varies in depth, acts as a drain for surface water, and is a result of periodic flushing of material (soil, rocks, or other surface materials) by water down into voids either in the limestone bedrock or soil profile.”

Figure 13. A group of sinkholes in the Saucon Valley of Lehigh County have joined to form a larger sinkhole. Each individual sinkhole was approximately 30 feet in diameter.
Does Karst Topography Develop Everywhere?

According to our definition, karst develops in areas underlain by carbonate bedrock. One would think that if we knew where all the carbonate rocks in the state are located, we would have a fairly good idea of where sinkholes can occur. Figure 1 shows that the major carbonate bedrock areas of Pennsylvania are in the central and eastern parts of the state. Do all of these areas have karst topography? Generally, yes.

In addition to those areas shown on the map, some extensive and large caves occur in calcareous sandstone bedrock along Chestnut Ridge in southwestern Pennsylvania. There are also some relatively thin units of limestone in western Pennsylvania that exhibit solution features in the form of widened fractures and small caves. In general, however, these thin limestones do not exhibit a well-developed karst topographic surface.

Carbonate rocks are not the same everywhere. Although carbonate rocks may be similar in chemical composition, there are other factors that can influence karst development.

One of the main factors that permit development of karst is the percentage of calcium carbonate (calcite) within a limestone. Generally, the percentages of calcite and dolomite vary widely in different limestones. Variations can even be at the atomic level, where magnesium, manganese, or iron ions can be substituted for calcium ions. These changes in the limestone chemistry can affect the dissolution rate and the volume of limestone that is dissolved.

Shale and sandstone can also be calcareous. That means that there is some percentage of calcium carbonate present in the rock. If dilute hydrochloric acid comes into contact with it, the rock will fizz to some degree. However, since most of the rock is noncarbonate in composition, most of it is unaffected. The larger the percentage of noncarbonate material in a rock, the less it is affected by the dissolution process caused by carbonic acid.

Although dolomite reacts more slowly to carbonic acid than does limestone, it may dissolve to a greater extent. Generally, dolomite is more brittle than limestone and may have a larger number of natural fractures. The fractures provide more pipes, thereby exposing more of the dolomite bedrock to the carbonic acid.

Sinkholes in the Urban Environment

If we add to the information in Figure 1 and show the locations of the larger towns and cities in central and eastern Pennsylvania, we see that large population areas are on or adjacent to areas underlain by carbonate bedrock (Figure 14).
When populated areas undergo development, land is cleared, soil and rocks are moved, foundations are dug, utility lines are laid, and roadways are established. The landscape is altered to accommodate residential, commercial, or industrial structures.

Let us consider a residential area that has been developed on karst topography. What are the potential problems? How does urban development interact with karst topography?

Storm-Water Drainage

Storm-water drainage is a major urban concern. Where does the storm water go after a heavy rain? It runs off roofs, down storm gutters, along streets, over parking lots, and then either enters the ground by percolating through the soil or is directed toward a natural or artificial drainageway.

The storm-water-drainage problem is compounded in karst areas by the fact that development reduces the surface area available for rainwater to infiltrate naturally into the ground. A typical residential development having quarter-acre lots may reduce the natural ground surface by 25 percent, whereas a shopping center and parking lot may reduce it by 100 percent. If storm water, gathered over a specific area, is collected and directed into a karst area, the concentration of water may unplug one of the karst drains (Figures 15 and 16).

Figure 14. Carbonate bedrock distribution (color) and major population centers in central and eastern Pennsylvania.
Utility Lines

Buried utility lines can also serve as a focus for sinkhole development. Normally, a trench is dug to accommodate the utility lines, and the bottom of the trench is lined with compacted soil or crushed stone. The utility lines are placed in the trench, service lines are connected, and the trench is back-filled. Infiltrating water from precipitation or from leaky storm sewers, sanitary sewers, and water mains can flow through the crushed rock along the length of the trench or pipeline until it comes to a karst drain. The water can slowly flush out a drain over a period of time and cause slow subsidence and eventual collapse. This type of occurrence can take on added importance if there are natural gas pipelines in a karst area. Rupturing of natural gas lines by sinkhole collapse can have tragic results.

Storm sewers and water mains have a great potential for causing collapse because of the large volume of water carried in the lines. Water mains are also under pressure. Water mains can leak because of deterioration of the metallic pipe by oxidation. Storm sewers are normally large-diameter, jointed pipes. Leaks around seams can result in localized settlement, which
causes offsetting at the joints of the pipes, which in turn increases the amount of water leaking out of the pipes. Over a period of time, these leaks can wash away large amounts of soil and cause the pipes to subside and ultimately fail.

The failure of a water main in a karst area can be quite dramatic. The pressurized water can rapidly flush out nearby karst drains, resulting in a sudden removal of support of the land surface. It is not uncommon in these instances to have large sections of roadway collapse. Nearby structures can also be affected (Figure 17).

Although it is arguable that a sinkhole is the immediate cause of a break in a utility line, or vice versa, we must keep in mind that the karst landscape has taken thousands or perhaps millions of years to develop. It is the momentary action of moving water that triggers most sinkholes. This makes urban areas and newly developing areas more susceptible to subsidence problems. Problems can arise there from modification of natural drainage areas, increases in the amount of storm-water runoff, diversion of water from established drainageways, improper design of storm-water management systems, and negligence of utility-line maintenance.
Groundwater Withdrawal

The extraction of carbonate-mineral resources can create problems when mining or quarrying extends below the water table. Surface water and groundwater in such cases must be pumped out of a quarry or deep mine to allow removal of the resource. Large volumes of groundwater are sometimes pumped from the lowest part of a mine, which can affect the level of the water table over a localized area. Aside from affecting the yields of public and private water wells, fluctuations of the water table can affect karst drains and cause subsidence.

Sinkholes can also occur in close proximity to private or public water wells. Water wells are commonly drilled in areas that correspond to fracture zones, the pipes and drains of the karst plumbing network. Local fluctuations in groundwater level caused by pumping from a water well may enhance the migration of voids (as in the bathtub model) or cause flushing of surface materials into subsurface voids.

Groundwater Contamination

Carbonate rocks are important sources of groundwater in Pennsylvania, yielding millions of gallons of water to commercial and domestic wells.
However, because water moves readily from the earth’s surface down through solution cavities and fractures, and undergoes very little filtration, groundwater in limestone is easily polluted. It would be easy to contaminate the groundwater by discharging waste materials into a karst drain. This process would be similar to pouring waste down the drain in our homes. The waste enters the drain and is essentially unchanged as it makes its way to the sewer line. Similarly, as waste enters the karst drains, it follows the pipes and enters the water table. If the waste happens to be an organic chemical that does not mix well with water, such as oil or gasoline, contamination can be widespread, and the contaminating substance can remain in the groundwater for a long time.

Contamination of groundwater is not restricted to industrial sources. Other contaminants, such as sewage, fertilizers, herbicides, and pesticides, can be traced back to municipal, agricultural, and household sources. Even storm water may be considered a polluting substance (Commonwealth of Pennsylvania, 1985, 25 Pennsylvania Code § 97.71).

How to Recognize a Developing Subsidence Problem

There are clues that can indicate ongoing subsidence. Within a building, cracks may be evident along walls and floors, particularly in the basement. Cracks may also be noticeable along brick and mortar joints. Gaps may be seen where porches join with a house. Doors and windows may jam and not open and close properly. Keep in mind, however, that other factors that existed during construction, such as soil moisture, soil compaction, and slope of the land surface, can also have a bearing on subsidence and foundation problems.

On the land surface, depressions may be evident, particularly in drainage areas. Depressions may be apparent in yards and streets. Offset or uneven sidewalks and curbs may also be indicative of ongoing subsidence. Large, open cracks may be evident in soil, lawns, sidewalks, parking lots, and streets. Trees and shrubbery may lean noticeably.

Is it a Sinkhole?

A feature that some people interpret as a sinkhole may be something completely different. Knowing the history of a particular piece of property may provide an explanation for those “strange discoveries” that property owners come across now and then. Some items that you may wish to consider are discussed below.

1. *The age of the structure.* Associated with newer structures may be holes or depressions in the land surface due to natural settling
of soil fill that was deposited or redistributed during construction. Was clean fill used during construction? During the process of construction, organic material such as trees, wood, or even trash may have been buried. Trees may have also been removed so that the stumps and roots were left in the ground. Over time, the organic debris will decompose and leave voids in the soil. These voids may collapse, much like the migrating voids in the bathtub model. In some instances, you may be able to find wood in the hole as evidence that a tree had once been there.

If the structure has been there for some time, it may have gone through any number of modifications. Many houses have used or are using a septic system for sewage disposal or a water well for drinking. If these were abandoned in order to connect to a municipal service, was the septic system removed? Was the well plugged? Aside from the actual septic tank or water-well structures, there are also the pipes to consider. Were the buried pipelines removed? Over time, they may deteriorate and collapse, resulting in surface features that can resemble sinkholes. You may be able to find out answers to some of these questions from your local municipality.

(2) **Drainage areas and springs.** Is the depression or hole in a low-lying area? Does the area hold water on the surface during a storm? Is it wet most of the time? Are there springs in the general area? Do the storm gutters drain in the general direction of the hole?

(3) **Burrowing animals.** Is the hole an animal burrow? Animal burrows are fairly easy to identify. Generally, the hole is small, a few inches to perhaps a foot and a half in diameter. It is common to see ejected material at the entry point, usually soil and bits of rock.

(4) **Abandoned or active underground mines.** Is it an old mine? Subsidence due to underground mining can result in features similar to sinkholes. Knowing the local history of the area can provide valuable information as to whether or not the area had been mined in the past. There are a number of sources that can be used to help track down mining information. Local municipal offices, libraries, or historical societies are good places to start. Another source of information is state and federal government agencies. Agencies that deal exclusively with mining and abandoned mines are listed in the Appendix.

What if you have completed your research and have concluded that the hole is not an abandoned well or mine, or an animal burrow? What is next?
Remember the definition of a sinkhole. The key to identifying a sinkhole area is to consider the location of carbonate bedrock. Is your property in an area underlain by carbonate bedrock? Where can you find out that sort of information? Again, start locally. Talk to your local municipal government. Most municipalities have a board of supervisors or a council that governs activities within a given area. Engineering firms are often employed by a municipality to handle the technical duties associated with permitting, utility design, and land management. These firms may have information on the type of bedrock in your area. Public works and road maintenance offices may also have pertinent information.

If there is still some doubt about the bedrock type in your area, you can go to a library or contact a local or state government office. Depending on the size of your local library, it may or may not have detailed geologic publications that pertain to your area. You may have to go to a library in a larger city or to a college library.

If you find a publication or map that shows the bedrock geology of your area, look for the key words limestone, dolomite, or carbonate. Most maps will be in color, so you can identify an area that is underlain by carbonate bedrock by looking for a particular color. Other maps may be in black and white, and you may have to be more careful in your inspection of the map to locate areas of carbonate bedrock.

At this point, you may have gathered as much information as you can by making a few telephone calls and talking with the neighbors. Let us assume that the collected evidence indicates that a sinkhole is present. Now you have to decide what to do with it.

Safety Precautions

One of the first things to do is to secure the area. If it seems unlikely that you will be filling the hole anytime soon, erect a barricade around it. Sawhorses work fine, as does fencing. Brightly colored flags can be used as warning markers. If possible, cover the hole with a piece of plywood or some other type of firm cover. The main objective is to keep the curious away from the hole, particularly children. It is a good idea to inform your neighbors. If the hole is very large, contact the local police department and ask for assistance in securing the area. Unless there are compelling circumstances, no one should enter a sinkhole. This is particularly true for newly formed sinkholes. It is common for the sinkhole sidewalls and pipes to continue to collapse, creating an unstable and dangerous condition.

In addition, remember that the soil pipes that lead to the drain are not caves. They should not be entered regardless of how safe they may look.
Spelunking, or caving, is an entirely separate issue and is an activity that requires special training in technique and safety.

Does your house use natural gas? If so, the gas company should be notified immediately if any type of disturbance to the line is suspected. All types of home heating systems can be affected by subsidence. The degree of potential danger depends on the magnitude and location of the subsidence event.

Is the sinkhole close to the house or is it a hundred feet away? Is a throat visible? In which direction does the throat trend?

A thorough examination of the property and structures should be done to assess damage, potential damage, and threats to safety. Gather as much data as you can. This will help you when you start making telephone calls. Below is a general discussion of items that may be helpful in repairing a sinkhole.

Repairing a Sinkhole

There is no such thing as a typical sinkhole and, therefore, no standard way to repair one; each one has its own characteristics. It is important to remember that a sinkhole is nothing more than a large natural drain that has suddenly opened. When initiating a repair, the objective is to stop loose material from flushing down into the drain, and then to remove the triggering mechanism.

Sinkholes also serve as major recharge areas for groundwater, particularly in rural areas. Plugging these recharge areas may not be desirable, and alternative methods may need to be employed.

There are normally a number of engineering firms and general contractors listed in local telephone books (see the Appendix for additional information). Some may have experience in evaluating sinkhole damage and in sinkhole repair. Municipalities may be able to help with references. Check with more than one firm and contractor to get estimates. Your homeowner’s insurance policy should also be examined to see if your property and house are covered for sinkhole damage.

Repair methods are varied, and the method used may depend largely on economics and location of the sinkhole. The method and materials needed to fill in a small sinkhole in the backyard or in a rural area may be quite different from those needed to repair a sinkhole in the middle of a street in a highly urbanized area. Repair tools can range from heavy machinery to hand shovels. Materials can include concrete, soil, grout, synthetic filter fabrics, and various sizes and mixtures of crushed stone.
It is important to understand the type of material that is being used to repair a sinkhole. Filling in a sinkhole with one size of crushed rock may work initially, but over a period of time, subsidence may reoccur. Recall the bathtub model; unconsolidated materials can loosen over time and continue to migrate downward into subsurface voids.

To make a more permanent repair, it is common to combine methods and materials. Plugs constructed of large rocks and concrete or combinations of filter fabric and different sizes of crushed rock have been used successfully to repair sinkholes.

It is better to construct the plug directly at the location of the bedrock drain. This allows the plug to be in direct contact with the bedrock, providing a better seal. Sinkholes in which no bedrock is encountered, and where the soil cover is thick, require careful geologic analysis followed by various types of costly repair, ranging from pressure grouting in the subsurface to driven piles having concrete caps and gravel-mat backfilling.

Once a sinkhole has been filled, the repair is almost complete. To minimize the chances for additional subsidence, the triggering mechanism must be addressed. As water is generally the primary triggering mechanism, it is necessary to identify and remove to the extent possible the source of the water that may have caused the sinkhole. If the source is the storm gutters, you may need to change the discharge point. Keep in mind, however, that by moving the discharge point to another area, you may be shifting the problem to another part of your property or to someone else’s property.

Prevention of Sinkholes

As with any geological hazard, most often it is the lack of awareness of the hazard (in this case, subsidence) that leads to the greatest problems. This is particularly true in residential development, but it also applies to industrial and highway construction. Land may be developed with minimal regard for the potential problem of sinkhole subsidence.

What can be done to prevent sinkholes or to minimize their impact in a local area?

1. **Become informed about the geology of your area.** Find out what is beneath the land surface. Check with libraries, colleges and universities, county planning commissions, and state and federal agencies for information on the geology of your area. Maps showing locations of sinkhole-prone areas may be available.

2. **Ensure that municipalities regularly inspect existing utility lines.** Because moving water is a major triggering mechanism, it is logi-
cal to check water mains and connections, storm sewers, and sewage lines for leaks. This will minimize potential subsidence problems as well as groundwater contamination.

(3) **Ensure that development is regulated.** When there is an understanding of the potential problems that are common to karst areas, development can then proceed in a safe and conscientious manner. Regulation is not meant to discourage development, but to ensure that the proper steps are taken to minimize the potential for future problems. Regulation may mean that special foundations are required for residential and commercial structures, or that utility and storm-water facilities require special design. Specific zoning regulations and storm-water-management plans in karst areas should be established to provide guidance to individuals as well as to minimize future problems. Alternate land use plans could also be considered.

(4) **Maintain sinkhole insurance.** Insurance policies should be checked to determine if your property is covered. Finding out after the fact that your house is not covered by your insurance for damages attributed to subsidence is a hard lesson to learn. Sinkhole insurance could even be included as part of the mortgage process.

In summary, recall that the karst system can be thought of as a plumbing system. The karst system is developed by naturally occurring carbonic acid dissolving the carbonate bedrock along fractures over a long period of time. The drains and pipes of the plumbing network are established by the dissolution of the carbonate bedrock; they provide an entryway for surface water to infiltrate and migrate to the water table. Moving water is the primary triggering mechanism for flushing soil down karst drains and creating sinkholes. Sinkholes can result from the collapse of the roof of a cave, but typically it is the piping of unconsolidated material from one location to another that causes most land-subsidence events.

Sinkhole repair requires two components. The first one is to close the hole, and the second is to remove the triggering mechanism. Plugging the hole is the most common method used for sinkhole repair.

The rule of thumb for developing in a karst area is “look before you leap.” Do some investigating before purchasing property. Understand potential or existing problems. If you proceed with development, consult with contractors and other professionals who have experience in karst areas. Preliminary subsurface investigations and carefully implemented construction techniques can eliminate or minimize future problems in a karst area. Sinkhole insurance is available.
Acknowledgments

The author gratefully acknowledges the assistance of Donald M. Hoskins, W. D. Sevon, Helen L. Delano, Jon D. Inners, Connie Zimmerman, and Robert J. Losh for their comments and suggestions during the review process.

The author also wishes to recognize J. Peter Wilshusen, who described sinkholes and their impact on Pennsylvania in Geologic Hazards in Pennsylvania (1979). His efforts brought geologic hazards to the attention of the general public and put information about them in a succinct, easy to read, and understandable format. This booklet expands on his original work.

References

Glossary

Definitions are modified from Jackson (1997).

Base level. The lowest elevation of the land surface attained as part of the erosion process; can be local or regional in extent.

Bedding. The arrangement of layers of sedimentary rock of varying thicknesses; generally, one layer of rock stacked atop another. One individual layer of rock is called a bed.

Bedding plane. A planar or nearly planar bedding surface that visibly separates one rock layer from another.

Bedrock. Solid rock beneath the regolith.

Calcareous. Having calcium carbonate as part of its composition.

Calcite. A mineral that is composed of calcium carbonate, CaCO₃.

Carbonate. A mineral compound having the carbonate ion (CO₃⁻) as part of its structure (for example, calcite); or, a sediment formed by organic or inorganic precipitation of carbonate minerals.

Carbonic acid. An acid (H₂CO₃) formed by the combination of carbon dioxide and water.
Dissolution. Dissolving, put into solution.

Dolomite. A carbonate mineral that is composed of calcium magnesium carbonate, \(\text{CaMg(CO}_3\text{)}_2 \); also a carbonate rock having the mineral dolomite as its primary constituent.

Fault. A surface or zone of rock fracture along which there has been some displacement.

Fracture. In general, any break in a rock; commonly a repetitive planar break in a bed of rock.

Gradient. Slope.

Ion, ionic. An electrically charged atom or group of atoms.

Karst topography. A type of topography that is formed on limestone or dolomite by bedrock dissolution and that is characterized by closed depressions, sinkholes, caves, and underground drainage.

Limestone. A carbonate rock primarily composed of calcium carbonate (calcite); contains more than 50 percent calcium carbonate by weight.

Lithification. Natural earth processes that convert sediment into rock.

Piping. Erosional process whereby unconsolidated subsurface material, primarily soil, is transported by moving water. The process can result in the formation of long, narrow tunnels, or “pipes.”

Regolith. Any unconsolidated sediment that lies above coherent bedrock.

Sinkhole. In a karst area, a depression formed by a localized, gradual or rapid subsidence of the land surface to a variable depth; generally characterized by a roughly circular outline, internal drainage, and a distinct break in the land surface. The collapse feature is a result of soil or other related materials being transported by water into voids within carbonate bedrock or in the overlying regolith. Although not as common, sinkholes can also be formed by subsidence caused by the collapse of the roof of a cave.

OR

In an area underlain by limestone bedrock, a roughly circular hole in the ground that is variable in depth, acts as a drain for surface water, and is a result of the flushing of material (soil, rocks, or other surface materials) by water down into voids either in the limestone bedrock or soil profile; rarely can be caused by the collapse of the roof of a cave.

Subsidence. A gradual downward settling of the land surface; no horizontal motion.

Surface depression. A karst surface feature; a variable but generally bowl-shaped depression in the land surface; it may be of variable size and depth and have an unbroken ground surface around the perimeter.
Appendix—Sources of Information

Information on geology, groundwater, mineral resources, geologic hazards, sinkholes, and caves (information ranges from detailed to general)

Department of Conservation and Natural Resources
Bureau of Topographic and Geologic Survey
3240 Schoolhouse Road
Middletown, PA 17057–3534
(717) 702–2017
www.dcnr.state.pa.us/topogeo/

Department of the Interior
U.S. Geological Survey
950 National Center
Reston, VA 22092
www.usgs.gov
Check telephone book for regional offices.

Other sources (generally more localized information on geology and related disciplines; amount of information varies)

Local colleges and universities having departments in geology, earth sciences, physical sciences, planetary sciences, geography, or engineering (geological and civil)

State, county, college, or university libraries

Information on active underground or surface mines and mine subsidence

Department of Environmental Protection
Bureau of Mining and Reclamation
P. O. Box 8461
Harrisburg, PA 17105–8461
(717) 787–5103
www.dep.state.pa.us/dep/deputate/minres/bmr/bmrhome.htm
For mining activity in your area, ask for telephone number of District Mining Office, Permits Section.

Web addresses are subject to change.
Department of Environmental Protection
Bureau of Abandoned Mine Reclamation
P. O. Box 8476
Harrisburg, PA 17105–8476
(717) 783–2267
www.dep.state.pa.us/dep/deputate/minres/bamr/bamr.htm

Department of the Interior
Office of Surface Mining
20 N. Pennsylvania Avenue
Wilkes-Barre, PA 18701
(717) 826–6681
www.osmre.gov

Information on caves and karst

National Speleological Society
Cave Avenue
Huntsville, AL 35810
(205) 852–1300
www.caves.org

Ask for addresses of local Grottoes (Chapters) in Pennsylvania. Local Grottoes have information on caves for a given region, caving methods, and cave safety.

The Pennsylvania Cave Survey
2191 Mountain View Avenue
State College, PA 16801–7214
(814) 238–2057
kwheeland@psualum.com

Information on sinkholes and storm-water management in rural areas

Natural Resources Conservation Service
Department of Agriculture
Suite 340
1 Credit Union Place
Harrisburg, PA 17110–2993
(717) 237–2100
www.nrcs.usda.gov

Ask for methods of sinkhole repair and storm-water management. Also contact county district office; number in telephone book.
Information on local and regional history and archeology

Pennsylvania Historical and Museum Commission
300 North Street
Harrisburg, PA 17120
(717) 787–3362
www.phmc.state.pa.us

Local historical societies (check telephone book)
Municipal records

Key words to check in the telephone book if you need services
(bold words are general categories; it helps to talk with a geologist or an engineer having a geological background first)

Building materials—Stone, concrete, and soil
County planning commission
Emergency management
Environmental services
Excavating contractors—Backhoes
Geologists or engineers—Under engineers check civil, consulting, environmental, geological, and geotechnical
Insurance
Municipalities—Borough, city, and township
Police
Utility companies—Gas, electric, and water
OTHER BOOKS IN THE
PENNSYLVANIA GEOLOGICAL SURVEY
EDUCATIONAL SERIES

ES 1 Rocks and Minerals of Pennsylvania
ES 2 Common Fossils of Pennsylvania
ES 3 The Geology of Pennsylvania’s Groundwater
ES 4 The Geological Story of Pennsylvania
ES 5 Geology and the Gettysburg Campaign
ES 6 Pennsylvania and the Ice Age
ES 7 Coal in Pennsylvania
ES 8 Oil and Gas in Pennsylvania
ES 9 Landslides in Pennsylvania
ES 10 Earthquake Hazard in Pennsylvania
ES 12 The Nonfuel Mineral Resources of Pennsylvania

ADDITIONAL COPIES OF THIS PUBLICATION
MAY BE OBTAINED FROM
PENNSYLVANIA GEOLOGICAL SURVEY
3240 SCHOOLHOUSE ROAD
MIDDLETOWN, PA 17057–3534
717–702–2017