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Abstract

A plasticity based constitutive compressive material model is proposed to model wood as elasto-plastic orthotropic

according to the Hill yield criterion in regions of bi-axial compression. Linear elastic orthotropic material response is

applied otherwise with maximum stresses taken as failure criteria. The model is implemented in the finite element code

to carry out the analysis of bolted connections using ADINA software. Reasonable agreement is found between nu-

merical simulations and experimental measurements of local and global deformation of one-bolt connection. The

predicted failure modes are consistent with experimental observations.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mechanical behaviour of wood connections with

relatively low member thickness to bolt-diameter-ratio is

very complex and is influenced by a number of geo-

metric, material, and loading parameters. The bolt–hole

contact introduces high localized stress concentrations.

Macroscopic observations have revealed that these

compressive stresses play an important role in the de-

velopment of brittle failures around holes [16].

In order to simulate the nonlinear compressive re-

sponse of wood in pinned joints, Chang [6] used cubic

spline interpolation of the experimental curve. Patton-

Mallory et al. [15] modeled the nonlinear compression

and shear stiffness using a trilinear stress–strain rela-

tionship. However, these models do not obey the laws of

constitutive modeling in continuum media. Further-

more, there is no coupling between the material behavior

in each direction. Others attempted to model wood as

elasto-plastic everywhere in a connection [5,14]. The

assumption of elasto-plasticity everywhere in the wood

member resulted in theoretically ‘‘unrealistic’’ plastified

regions due to combined compression/tension at the end

of the member or combined tension/tension and shear

on the hole-boundary, thus effecting the overall stress-

state.

In the present paper, an orthotropic plasticity based

compressive material model is proposed to predict the

post-elastic deformation caused by local wood crushing

under the bolt. The model is implemented in a finite

element model of one-bolt timber connection and found

to yield reasonable agreement with experimental local

and global deformation.

2. Constitutive modeling

Because wood is a cellular and porous material, it can

undertake permanent deformation under compression.

Some uniaxial compressive tests undergoing large de-

formation have been performed for different species of

wood [8,9] and shown that there is an initial phase with

an approximately linear elastic response. Then com-

pression in the axial direction shows some strain soft-

ening unlike compression perpendicular to grain and
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shear. This nonlinear permanent behavior may be

described macroscopically within the framework of plas-

ticity theory. Accordingly, wood is modeled as elasto-

plastic orthotropic in bi-axial compression according to

the Hill yield criterion, and linear elastic orthotropic in

tension with the maximum stresses taken as the failure

criteria (Fig. 1). Different strength values are considered

for tension and compression along each material axis.

2.1. Linear elastic orthotropic constitutive behavior

Although wood microstructure is very complex, it is

assumed to be homogeneous. Natural imperfections

such as knots, taper, and distortions in the alignment of

grain are ignored. If a sample is cut far enough from the

centre of the tree so that curvature of the growth rings

can be ignored, its properties may then be regarded as

orthotropic. It has three orthogonal planes of material

symmetry: longitudinal (L), radial (R), and tangential

(T). The linear elastic orthotropic constitutive equations

can be written in matrix form [4]:
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where EL, ET, ER are the Young�s moduli in directions L,
T, R; GLT, GTR, GRL are the shear moduli for planes L–
T, T–R, R–L; and mij is the Poisson�s ratio (i; j ¼ L, T,
R).

This assumption will be expanded to transverse

isotropy, which assumes identical properties in the radial

and tangential directions. This combined direction is

referred to as perpendicular to grain (?) while the lon-
gitudinal is referred to as parallel to grain (k). The
constitutive equations are reduced to:
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where E1, E2 are the Young�s moduli in directions k and
? to grain, respectively; G12 is the shear modulus for
plane 1–2; and m12 is the Poisson�s ratio.
It is presumed that m12E2 ¼ m21E1 [4]. All parameters

are determined experimentally.

2.2. Elasto-plastic orthotropic constitutive behavior

2.2.1. Historical background

The incremental plasticity is a macroscopic constit-

utive model that accounts for dissipative (irreversible)

effects characterized by permanent strain accumulation.

Hill was the first to conduct studies on anisotropic

plasticity [11]. He postulated the form of the yield sur-

face as an extension to von Mises criterion for isotropic

materials. Only isotropic hardening was considered

leading to a proportional change of the orthotropic

parameters during hardening. His work was later ex-

tended to account for nonproportional hardening [20],

differences in strengths for tension and compression [17],

other updated yield surfaces [10] and softening behavior

[13]. Implementation of anisotropic plasticity in finite

element modeling was achieved in 2-D and 3-D to an-

alyze the behavior of multilayered composite laminates.

The model is being incorporated in some finite element

softwares with differing assumptions. However, they do

not allow the user to define different yield or failure

surfaces in tension and compression.

2.2.2. Theory and application to wood

A theory of plasticity is a procedure by which a set of

constitutive equations for a multiaxial stress state can be

derived from uniaxial stress–strain test data. This is ac-

complished based on three basic properties: a yield cri-

terion, a flow rule, and a hardening rule [7]. In what

follows, the general analytical formulation of the fore-

going items will be presented with the application to

wood in compression.

2.2.2.1. Yield criterion. A generalization of the yield

condition for plastically anisotropic materials is the

general quadratic function f given by Shih and Lee [17]:

f ¼ ðrij; aij;Aijkl; kÞ ¼ 0 ð3Þ

where rij is the second order stress tensor, Aijkl

ði; j; k; l ¼ 1; 2; 3Þ denotes the fourth order tensor of
anisotropic strength parameters describing the shape of

the yield surface, aij describes the origin of the yield

surface and k is a scalar parameter which stands for a
reference yield stress.

In particular, a yield function that can capture or-

thotropy in the strength properties has been proposed by

Hill [11] as an extension of the von Mises criterion for

isotropic materials. As was demonstrated by Franc�ois
[8], the limit state in compression for some species of

wood can be approximated using this criterion. In plane

Fig. 1. Failure envelope of wood (1 ¼ parallel to grain,

2 ¼ perpendicular to grain).
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stress and assuming transversely isotropic medium, the

criterion for bi-axial compression can be expressed as:

f ¼ r1
r1c

� �2
þ r2

r2c

� �2
þ s

S

� �2
� r1r2
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� 1 ¼ 0 ð4Þ

where r1 is the compressive stress k to grain; r1c is the
compressive strength k to grain; r2 is the compressive
stress ? to grain; r2c is the compressive strength ? to

grain; s is the shear stress; and S is the shear strength.
r1c, r2c, and S are material properties and determined

experimentally.

f can alternatively be expressed in terms of the ef-
fective stress re as follows if hardening is to be modeled:

f ¼ re � kðvÞ ¼ 0 ð5Þ

where,

re ¼ ðAijrirjÞ1=2 ð6Þ

and v termed hardening parameter, and can be related to
some measure of plastic deformation or plastic work.

Aij is defined as:

Aij ¼ k2
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2.2.2.2. Decomposition of the total strain increments. In

the theory of plasticity, it is assumed that the total strain

increment, fdeg, consists of plastic components, fdepg,
and elastic components, fdeeg
fdeg ¼ fdepg þ fdeeg ¼ fdepg þ ½De�fdrg ð8Þ

½De� being the elastic compliance matrix, and can be
expressed in terms of the material constants as:
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2.2.2.3. Flow rule. The flow rule determines the direction

of plastic straining and is given as:

dep ¼ dk of
or

¼ dka ð10Þ

dk being a plastic multiplier that determines the amount
of plastic straining, of =or ¼ a is termed the flow vector.

2.2.2.4. Hardening rule. An anisotropic hardening rule

developed by Vaziri et al. [19] will be adopted here. Such

a theory allows for nonproportional change of the yield

values and thus leads to a nonuniform expansion of the

yield surface during plastic flow. Based on the notion of

equivalent plastic work, the evolution of yield stresses is

assumed to be governed by the following set of equa-

tions:

r21c � r21c0 ¼
Ep1
H

ðk2 � k20Þ

r22c � r22c0 ¼
Ep2
H

ðk2 � k20Þ

s2 � s20 ¼
G
H
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ð11Þ

k0 and k are the initial and updated effective yield

stresses, respectively.

Ep1, Ep2, Gp are the plastic moduli defined by:

Ep1 ¼
E1ET1

E1 � ET1

Ep2 ¼
E2ET2

E2 � ET2

Gp ¼
GGT

G� GT

ð12Þ

with ET1, ET2, and GT being the tangent moduli of the
stress–strain curves.

H is the plastic modulus of the effective stress–effec-

tive strain diagram which can be identified with any one

of the three basic stress–strain curves.

H ¼ dre

dee
ð13Þ

As mentioned earlier, wood undergoes softening in

compression parallel to grain and hardening perpen-

dicular to grain. Depending on the chosen value of H ,
perfect plasticity, slight hardening or softening can be

modeled.

2.2.2.5. Incremental elasto-plastic constitutive equations.

The consistency condition requires the state of stress to

remain on the yield or loading surface during plastic

flow and is expressed by:

df ¼ 0 ð14Þ

By substituting Eq. (4) in (14) and combining Eqs. (8)

and (10), the constitutive equations are given by [2]

drij ¼ Cepij dej ð15Þ

Cepij ¼ Ceij �
CeikakalC

e
lj

1� 1
2k rirj
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ok
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Ce is the elastic stiffness matrix, and Cep is termed the
elasto-plastic stiffness matrix.

3. Finite element implementation

A Fortran program of the elasto-plastic compres-

sive material model was written and inserted into the
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user-supplied material model of ADINA software [1].

The flowchart shown in Fig. 2 summarizes the stress

computation in the elasto-plastic regime.

4. Application to one-bolt connection

A one-bolt connection model is developed using

ADINA and results are compared with new experiments

conducted on one-bolted timber connections. The wood

member is 17 mm thick loaded by a bolt with a 1 mm

radial clearance (Fig. 3). Strains are measured using

strain gages in the contact region 5 mm away from the

hole. LVDT�s are mounted to record the movement of
the wood member relative to the bolt.

A typical finite element mesh is shown in Fig. 4. The

material properties are given in Table 1. Frictional

contact between the bolt and the hole was modeled using

Lagrange multiplier algorithm [3] with a coefficient of

friction of 0.7 [18]. The finite element program is run

first with the elastic orthotropic material model every-

where in the wood member, then with the application of

the new elasto-plastic orthotropic model in order to

show the benefits of the proposed model over the elastic

material model [12].

Fig. 5 shows a comparison of numerically predicted

longitudinal compressive strains in the region of contact

(a region of high bi-axial compression) with seven rep-

licates of strain gage readings for W1E3 (where w ¼ 1d,
e ¼ 3d) and W1E5 (where w ¼ 1d, e ¼ 5d) configura-

Fig. 2. Stress computation in the elasto-plastic regime.

Fig. 3. Schematic of a one-bolt timber connection geometry.

Fig. 4. Finite element mesh of a one-bolt connection.
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tions respectively. The nonlinear behavior of strains

observed for both configurations is initially caused

by the increased contact between the bolt and the hole.

The predicted strains with the linear elastic material

model fall in the lower range of the recorded curves and

become softer as the load is increased. Better predictions

are obtained with the elasto-plastic material model that

seems to capture the stiffening behavior of the strains.

This becomes more evident in the configuration with

longer end distance, i.e. W1E5. At a load approaching

the experimental average failure load of about 9 kN, the

numerical strains soften since the nodal point enters the

plastic state.

To gain further insight into the extent of compression

in the contact zone, numerical stresses on the hole-

boundary are plotted in Fig. 6 for this group of con-

figurations at their respective average experimental

failure loads (5.33 kN for W1E3, and 9.3 kN for W1E5).

Compressive stresses parallel and perpendicular to grain

substantially exceed the associated strengths with the lin-

ear elastic material model (average compressive strengths

being rk ¼ 43 MPa and r? ¼ 8 MPa), as opposed to the
post-elastic material model that increases the contact

angle by 30% for W1E3 and 68% for the W1E5 config-

uration. This angle is found by noting the value on the

curves at which the state of stress changes from com-

pression to tension in both directions for each configu-

ration considered.

Numerically predicted load–deformation curves with

both material models are compared to those obtained

experimentally via LVDT�s as shown on Fig. 7 for
W1E5 configuration. By modeling wood as elasto-plas-

tic orthotropic, the curve becomes nonlinear, thus

agreeing with the experimental trend. This is a major

improvement over the linear elastic orthotropic material

usually assumed in the modeling of bolted connections.

Bearing of the material immediately adjacent to the

contact points is causing nonlinear global deformation

of the connection.

The spreading of plastic zones and contours of the

nondimensional effective stress re=k for the configura-
tion W2E5 are depicted in Fig. 8 for three different load

levels: 4, 7, and 10 kN respectively. Incipience of plastic

deformation was found to occur right beneath the bolt

at a low load of approximately 2 kN. As the loading

increases, the plastic zone extends in depth towards the

end member in the direction of loading and in large

along the hole-boundary. The characteristic shape and

growth of the plastic zone at the maximum load, about

10 kN, can be associated with the compressed ‘‘column’’

of material which fails in bearing parallel to grain.

Stress contour plots with both material models fur-

ther prove the adequacy of the proposed material model

to predict the post-elastic behavior of single-bolted

connections. Again, these contours are generated at the

average experimental failure load for W2E5 configura-

tion (Fig. 9a and b). The contact compression zone is

found to increase significantly causing a higher tension

zone perpendicular to grain right after the end of contact

between the bolt and the hole. This is also causing the

region of high shear to shift on the hole-boundary. Net

tension caused by high tensile stresses parallel to grain

Table 1

Material properties for glued-laminated timber

Material property (MPa)

E1c 9158.8

r1c 43.8

E2c 325

r2c 7.70

ET1 14,335

rT1 102.50

ET2 538

rT2 6.20

G 756

S 9.10

(b)

(a)

Fig. 5. Comparison between numerical and experimental

compressive strains for (a) W1E3 and (b) W1E5.
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and adjacent to the hole is one possible failure mode.

Shear-out due to combined shear and tensile stresses

perpendicular to grain on the boundary after the contact

zone is another possible failure mode. In fact these are

the predominant failure modes noted in the experiments.

5. Conclusion

The proposed compressive constitutive material

model has improved the predictions of local and global

behavior of connections in timber, and given insight into

the brittle failure mechanism. It is found that inelastic

deformation starts at low load levels beneath the bolt.

Bearing of the material immediately adjacent to the

contact points is causing nonlinear global deformation

of the connection. As loading progresses, a larger con-

tact area between the wood and the bolt is developed, as

compared with the linear elastic material model. Failure

is believed to be caused by combined effect of shear and

tension perpendicular to grain along failure planes that

lie either side of the compressed contact zone, thus

corresponding to the predominant shear-out failure

observed in the experiments.

Fig. 7. Comparison between numerical and experimental load

vs. deformation curves for W1E5.

(b)

(a)

Fig. 6. Predicted stress distribution along the hole-boundary parallel and perpendicular to grain for (a) W1E3 and (b) W1E5.
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Fig. 8. Spread of plasticity in a one-bolt connection W2E5.

Fig. 9. (a) Elastic stress distribution in a one-bolt connection W2E5. (b) Elasto-plastic stress distribution in a one-bolt connection

W2E5.
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