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Foreword

This report is made available by Utah State University with permission from

the American Society of Civil Engineers (ASCE). This material may be down-

loaded for personal use only. Any other use requires prior permission from the

ASCE.

While great efforts have been made to ensure that the reliability-targeted

design ground snow load predictions resulting from this research are as accurate

as possible, the authors cannot accept responsibility for prediction errors or

any consequences resulting therefrom. Responsibility for the final design snow

loads rests with the builder or designer in charge of the project.
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Chapter 1

Introduction

The United States has a rich history of snow load studies at the state and

national level. The current ASCE 7 snow loads are based on studies performed

at the Cold Regions Research and Engineering Laboratory (CRREL) ca. 1980

and updated ca. 1993. The map includes large regions where a site-specific case

study is required to establish the load. Many state reports attempt to address

the “case-study regions” designated in the current ASCE 7 design snow load

requirements. The independently developed state-specific requirements vary in

approach, which can lead to discrepancies in requirements at state boundaries.

In addition, there has been great interest to develop site-specific reliability-

targeted loads that replace the current load and importance factors applied to

50-year snow load events as defined in ASCE 7-16. This interest stems from the

fact that the relative variability in extreme snow load events is not constant

across the country, leading to a non-constant probability of failure for a given

design scenario.

This report describes efforts to achieve three objectives:

1. Identify a representative reliability-target design snow load scenario that

incorporates advancements made in the reliability and construction of

structural members as well as changes made to snow-related provisions

in ASCE 7.
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2. Obtain site-specific probability distributions of annual snow loads at loca-

tions with sufficiently long histories of snow measurements. Use these dis-

tributions to estimate the nominal ground snow load required to achieve

a desired level of reliability based on the scenario developed in Objective

1.

3. Estimate reliability-targeted loads between measurement locations to

provide high resolution maps of reliability-targeted loads for the con-

terminous United States that varies smoothly across the landscape and

eliminates inconsistencies at state boundaries.

Emphasis was placed on finding reproducible and data-driven solutions for

each objective. This allows updates to this national effort to be made rea-

sonably quickly for relatively little marginal cost as improved and updated

information becomes available. This chapter summarizes the steps taken to

obtain reliability-targeted loads on a national scale.

Chapter Highlights:

• The illustration of the need for a uniform risk approach to defining ground

snow load as opposed to a uniform hazard approach.

• The summary of a reproducible workflow for obtaining reliability-targeted

ground snow loads.

• A brief summary of the remaining chapters in the report.

• A high-level comparison of the changes in design snow load requirements

from the current provisions with the move to reliability-targeted loads.

2



1.1. Project Aims

The final product of this project is a modern, universal, and reproducible

approach for generating design ground snow loads for the conterminous United

States. A natural consequence of this approach is the significant reduction of

areas currently designated as case-study regions. The estimated loads resulting

from this effort target a uniform risk for the entire country. This is in contrast

to the current ASCE 7 approach for snow loads which target a uniform hazard

(i.e. 50-year event) subject to a constant load factor and a discrete set of

importance factors. Design loads targeting a uniform risk will be referred to

hereafter as reliability-targeted design snow loads, or reliability-targeted loads

(RTL).

The need for RTLs, as opposed to uniform hazard loads, stems from the

fact that there are regional and local differences in the nature of the hazard

itself. This is represented analytically by the shape of the probability distribu-

tions describing annual maximum ground snow load events. The term “annual

maximum” describes the maximum snow load event occurring in the snow

season beginning in October of the previous year and ending in June of the

listed year. The shape of each distribution can be roughly classified as light-

tailed, exponential-tailed, or heavy-tailed with examples provided in Figure

1.1. Note that the area under the curve for any specified range of values on

the x-axis denotes the probability of observing an event in that range. It is

the area under the curve in the upper tail of the distribution that is of great-

est interest for structural safety. For example, a 50-year event is a value for

which the area under the curve above the specified value is equal to 0.02 or

2%. Table 1.1 compares the 20-year (0.05), 50-year (0.02), and 100-year (0.01)

standardized (unit-less) events resulting from each distribution. Included also

3



in Table 1.1 is the relative increase between 20, 50, and 100-year events. Note

that the magnitude of the extreme events, and the rate of increase between the

extreme events, are significantly larger for heavy-tailed distributions than for

light-tailed distributions.

0.0

0.1

0.2

0.3

0 4 8

Shape
−0.2
0
0.2

Figure 1.1: Example of a light (shape = -0.2), exponential (shape = 0), and heavy

(shape = 0.2) tailed probability distribution.

Table 1.1: Comparing the relative increase in estimated extreme events for
light (shape = -0.2), exponential (shape = 0), and heavy-tailed (shape = 0.2)
distributions.

Event Extreme Event Relative Increase (%)

(from 20-year event)

Light Exponential Heavy Light Exponential Heavy

20 Year 2.2 3 4.1

50 Year 2.7 3.9 5.9 23 30 44

100 Year 3 4.6 7.5 36 53 83

The crucial implication of these differing tail behaviors is that a 50-year

4



load multiplied by a constant load factor does not achieve a uniform design

reliability. For locations whose annual maximum snow events are described by

a heavy-tailed distribution, the constant load factor approach tends to under-

estimate the load required to achieve the desired reliability target. For locations

with light-tailed distributions, this same approach tends to over-estimate the

RTL. This argument is demonstrated in DeBock et al. [2017] and Liel et al.

[2017] which show that the constant load factor approach was conservative in

the mountains of Colorado but unsafe in the eastern plains of Colorado. For

this reason, this report pursues the identification of site-specific RTLs, rather

than 50-year ground snow loads.

The implications of this paradigm shift are best illustrated by way of ex-

ample. Figure 1.2 shows three histograms of annual snow load maximums in

Baltimore, MD; Rochester, NY; and Duluth, MN. Note that Baltimore has a

heavy-tailed distribution, Rochester has an exponential tail, and Duluth has a

light tail. In places like Duluth, the light upper tail leads to an RTL slightly less

than current requirements while the heavy tail in Baltimore is much greater

than current requirements.

1.1.1. “The Next Storm”

Recall that both current and new snow load requirements shown in Figure

1.2 need to be multiplied by 1.6 in order to obtain the design ground snow

load. This multiplication almost always results in the design ground snow load

exceeding any of the observed snow loads in a 50-100 year period. In some

cases, particularly at stations with short periods of record, the design ground

snow load may greatly exceed any observed snow loads. The target probability

of failure for a Risk Category II structure in a 50 year period is a mere 0.13%,

5



Figure 1.2: Histograms of annual maximum snow loads with fitted probability

distributions overlaid. Included also is a comparison of the new 50-year and RTLs

(divided by 1.6) to the current ASCE 7 requirements.

or one failure every 37,000 years. This exceedingly low probability might be

thought of as the probability of a building being required to withstand the

peak snow load in a year with two consecutive “superstorms,” the kind of

storm observed only once every 50-100 years, let alone twice. For places like

Baltimore, MD, an additional “Snowmageddon” NESDIS [2020] storm would

result in a proportionally larger increase in the annual peak snow load than if

that same storm hit Duluth, MN. This is because Baltimore’s peak snow loads

tend to be the product of a few large storms, while Duluth’s peak snow loads

tend to result from an accumulation of many storms through the year. Such

an explanation is consistent with the observation, made both in this report

6



as well as in Liel et al. [2017], that the difference between the RTL and the

50-year load are smaller in locations that consistently accumulate snow each

year. Remembering that design loads are intended to be larger than observed

snow loads aids in the evaluation of the results presented in this report.

1.2. Project Workflow

Figure 1.3 visualizes the workflow for estimating RTLs. Red boxes indicate

data/information, tan boxes indicate actions, and blue boxes indicate decision

points. The reliability analysis conducted in this report follows the pattern for

reliability analysis set forth in Ellingwood et al. [1980]. The primary differ-

ence is that the reliability analysis is conducted using site-specific probability

distributions, rather than using an aggregation of several site-specific proba-

bility distributions to derive a constant load factor. DeBock et al. [2017] and

Liel et al. [2017] provide the template for the site-specific reliability analysis

approach pursued in this report. This template was supplemented by lessons

learned from many state-specific snow load studies [Tobiasson et al., 2002,

Theisen et al., 2004, SEAO, 2013, Al Hatailah et al., 2015, Bean et al., 2018,

Meehleis et al., 2020] as well as national snow load studies [Tobiasson and

Greatorex, 1997, Buska et al., 2020].

The process starts with raw measurements of snow depth (SNWD) or snow

load (water equivalent of snow on the ground, denoted WESD) and ends with

maps of RTLs that can be used by practicing engineers. Several intermediate

steps are required to derive design snow loads from these raw measurements.

Some of those steps require assumptions/estimates that introduce uncertainty

into the workflow and are denoted by the red arrows. It is not practical to fully

7



account for every possible source of uncertainty in the estimation process. For-

tunately, DeBock et al. [2016] demonstrated that some sources of uncertainty,

such as the uncertainty resulting from the estimation of snow load from snow

depth, are not consequential in the estimation of RTLs as long as the estimates

of snow load from snow depth are unbiased. This study accounts for sources

of uncertainty known to be of greatest consequence in the RTL estimations,

namely:

• The uncertainty in the extreme ground snow load events.

• The uncertainty in the conversion from ground loads to roof loads.

• The uncertainty in the resistance members of the target-reliability scenario.

Decisions regarding how to characterize uncertainty in the workflow were made

using expert judgement on the part of the authors in collaboration with the

project steering committee. The following subsections provide brief summaries

of each step in this workflow.

1.2.1. (Chapter 2) Define Reliability-Target Scenario

The reliability-target scenario is a steel beam supporting a heated flat roof

in normal exposure conditions. This chapter describes the selection of proba-

bility distribution parameters that properly characterize this target scenario.

These distributions reflect changes that have been made in the production and

understanding of structural steel, as well as changes that have been made to

ASCE 7 provisions since the development of the 1.6 load factor for snow loads

in Ellingwood et al. [1980]. This chapter discusses changes made to ASCE 7

since the original load factor calibrations as well as the implications of those

changes on the resulting RTL calculations.
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Daily Snow Depth/Load Measurements

Remove Misreported Measurements

Load? Estimate Load

Collect Annual Maximums

Fit Probability Distributions

Estimate RTLsRT Scenario

Site-Specific Loads

Map
Loads

Geographic
Locations

Climate
Grids

Final Dataset

no

yes

Figure 1.3: Workflow for obtaining reliability-targeted (RT) maps from daily

measurements of snow.
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1.2.2. (Chapter 3) Create Ground to Roof Conversion Models

One crucial element of the reliability analysis described in Chapter 2 is the as-

sumed probability distribution characterizing the ratio between the maximum

ground and roof snow loads, referred to as GR. This chapter reviews existing

methods and available datasets for estimating GR and proposes a new ground

snow load dependent GR model using the best available data.

1.2.3. (Chapter 4) Clean and Process Data

Site-specific RTLs are very sensitive to the probability distribution used to de-

scribe annual maximum snow load events. This chapter describes efforts made

to download, clean, and process daily snow measurements from the National

Oceanic and Atmospheric Administration’s Global Historical Climatological

Network [Menne et al., 2012]. The raw dataset contained more than 236 mil-

lion observations at more than 65 thousand locations across North America.

Observations considered extended from the late 1800s through June of 2020.

Only stations with sufficiently long histories of high quality measurements were

retained, resulting in RTL estimates at nearly 8,000 measurement locations in

the conterminous United States and southern Canada.

1.2.4. (Chapter 5) Estimate Load from Depth

There are relatively few snow measurement locations that make direct measure-

ments of snow load. This makes it necessary in many situations to estimate the

snow load from the snow depth. There is an extensive history of models aimed

at relating a 50-year/annual snow depth to a 50-year/annual snow load. Most

of these models have used high altitude snow depth/load measurement pairs,

though others have used the National Weather Service’s first-order stations.
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Snow density is fundamentally different at high altitude/high load locations as

compared to locations that receive intermittent snow. This makes it impossi-

ble to use any single existing depth to load conversion model to characterize

snow density for all locations across the country. This chapter develops an ap-

proach for estimating snow load from snow depth that can accurately predict

both mountainous and non-mountainous snow density with a single random

forest model. Included also in the chapter are site-specific comparisons of snow

densities using a variety of depth-to-load conversion models, as well as overall

comparisons of accuracy between existing and proposed methods.

1.2.5. (Chapter 6) Fit Ground Snow Load Probability Distributions

The most significant piece of the reliability analysis described in Chapter 2

is the distribution of annual maximum snow loads. The reliability analysis

requires the estimation of loads whose magnitudes far exceed any observed

snow loads. This extrapolation can cause two distributions that produce sim-

ilar 50-year loads to produce divergent RTLs. This chapter describes a series

of steps intended to ensure robust and reasonable site-specific RTLs. Annual

maximums are modeled with a generalized extreme value (GEV) distribution,

which includes a third parameter that provides more flexibility in the distri-

bution fitting process. The shape parameter is smoothed at a regional level to

ensure that nearby and otherwise similar measurement locations have consis-

tent RTLs. This chapter demonstrates that the distribution fitting process is

more robust to outlier values than other distribution fitting strategies.
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1.2.6. (Chapter 7) Map Reliability-Targeted Loads

Chapters 2-5 result in a table of RTLs at nearly 8,000 measurement loca-

tions. This chapter describes the method for estimating RTLs between these

measurement locations. The method of choice for this task is called regional

generalized additive models (RGAM), which fit trends between snow loads,

elevation, winter precipitation, and temperature at a regional level. A smooth-

ing scheme is used between predictions in adjoining regions which eliminates

sharp changes in estimated loads along region boundaries. The accuracy of the

RGAM approach is evaluated by means of cross validation.

1.3. Project Implications

In order to make comparisons to existing 50-year loads, the new RTLs in

Figures 1.4 and 1.5 are divided by 1.6. This division by 1.6 makes the Risk

Category II loads from the current study directly comparable to 50-year loads

provided in current design requirements. The move to RTLs necessitates a

change in the load factor from 1.6 to 1.0. This makes the new design snow

load requirements substantially larger than the current snow load requirements

defined by 50-year loads. Figure 1.4 shows a map of the newly proposed design

snow load requirements for the country. Figure 1.5 shows the ratio between new

and existing requirements at all locations where new and existing requirements

are both between 10 and 100 psf. Current requirements were obtained from the

ASCE 7 Hazard Tool using requirements available in ASCE 7-16.

In general, new requirements tend to be smaller than existing requirements

in places where the maximum load is a product of consistent snow accumu-

lation throughout the snow season. RTLs tend to be higher than current re-

12



quirements in locations where the maximum snow load is a product of only a

handful of major storms. In general, more consistent snow accumulation pat-

terns throughout the season are associated with lower RTLs relative to the

50-year loads.

Figure 1.4: Map of Risk Category II ground snow loads (divided by 1.6) resulting

from the 2020 National Snow Load Study.

The new requirements make a continuously varying set of design ground

snow load predictions on a 0.5 mile (800 meter) resolution grid. This is in

contrast to current requirements available in the ASCE 7 Hazard Tool, which

define a single load for an entire geographic/elevation zone. The discreteness

of the current requirements partially explains the large relative differences in

design loads in western states as observed in Figure 1.5.

Mapping techniques described in Chapter 7 drastically reduce the number
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Figure 1.5: Map of the ratio between newly proposed and existing design ground

snow load requirements. Ratios are only calculated in areas where both the new and

existing snow load requirements are between 10 and 100 psf. Note that limitations in

the resolution of mapped values for existing requirements in the ASCE 7 Hazard

Tool make comparisons difficult in most western states.

of previously defined “case study” regions. This approach reduces case study

regions by 91% from what they are in ASCE 7-16 and 96% of what they were

in ASCE 7-2010. The difference in the reduction is due to the addition of state-

level studies to the ASCE 7 standard between 2010 and 2016 which eliminate

case study regions in some states. Case study regions are now confined to loca-

tions with elevations far exceeding the elevations of surrounding measurement

locations, typical of high mountain peaks in the intermountain west.

Another important consequence of this work is the elimination of load and

importance factors. Rather, the RTL is directly provided to the user for each

risk category. Figure 1.6 shows a map of the ratio between the Risk Category
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II and Risk Category IV RTLs. Under current ASCE 7 provisions, the ratio

between these two quantities is a constant value of 1.2. However, this map

illustrates that this ratio is highly dependent upon the shape of the annual snow

load probability distributions in the region. The move to direct estimates of

RTLs ensures that the same structure will have the same probability of failure

due to snow, regardless of its location for all Risk Categories in the United

States. The ensuing chapters illustrate the creation of site-specific RTLs in a

new era of design snow load requirements.

Figure 1.6: Comparison of the ratio between Risk Category II and IV loads

resulting from the 2020 National Snow Load Study.
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Chapter 2

Selected Conditions for

Reliability-Targeted Loads

Reliability analysis requires modeling the relationship between the hazard

(snow), the resistance members (a steel beam), and the design code. While

the distribution of the ground snow load is constant regardless of the struc-

ture, interaction between the hazard, resistance, and design provisions changes

based on the target structure. This chapter defines the target design scenario as

well as the parameters used to describe the structural resistance and conversion

from ground load to roof loads.

Since the seminal study of Ellingwood et al. [1980], the probability-based

method for calculating load factors and load combinations have been widely

used and proven satisfactory. It provides a foundational framework for cali-

brating load factors based on the available information. As a brief review on

the historical development, this chapter will also discuss how the Ellingwood

et al. [1980] framework has been adapted by various researchers to re-calibrate

load factors to account for changes to the design load provisions in ASCE 7,

as well as an improved understanding of the distribution of resistance mem-

bers and ground to roof conversion factors (GR) over the decades. In particular,

this framework enables the direct calculation of site-specific reliability-targeted

design ground snow loads (RTLs), as opposed to a single load factor. The re-
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mainder of this chapter is devoted to documenting the conditions for resistance

and GR used in the RTL calculations.

Chapter Highlights:

• A summary of the original load factor calibration by Ellingwood et al. [1980].

• A summary of changes to design snow load provisions that prompt a re-

calibration of the snow load factor.

• A description of the design reliability-target scenario along with associated

probability distribution parameters.

• A summary of the simulation strategy used to estimate RTLs.

2.1. Previous Snow Load Calibration and Re-

quired Context

A summary of pertinent research related to the snow load combination and

reliability analysis is provided for context. The goal of this section is to provide

a basis for comparison to the selected reliability-target scenario described later

in this chapter. When necessary, original notation has been adjusted to ensure

consist notation among the referenced literature.

2.1.1. Ellingwood et al. (1980)

The original calibration for the ANSI A58 and the later ASCE 7-88 load fac-

tors related to the dead plus snow load case has remained unchanged until

the current version of ASCE 7-16. The seminal load and resistance factor cal-
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ibration for ASNI A58 load combinations was performed by Ellingwood et al.

[1980] with additional information provided in Ellingwood et al. [1982] and

Galambos et al. [1982]. The nominal load combination recommended in 1980

as well as ASCE 7-16 is presented in (2.1) as

1.2Dn + 1.6Sn = φRn (2.1)

where

• Dn is the nominal dead load,

• Sn is the nominal snow load,

• φRn is the nominal factored resistance.

The arrival at these load and resistance factors is described in some detail

and is based on a weighted approach intended to arrive at an optimal selection

of partial safety factors applied to the nominal resistance, dead load, and snow

load. The load and resistance factors are highly interdependent across hazards,

often constraining researchers to propose updated values under the limitation

that other relevant load and resistance factors be held constant. Such was the

case for Ellingwood et al. [1980], who was constrained to use a dead load factor

of 1.2 when defining the snow load factor.

Table 2.1 presents the Ellingwood et al. [1980] optimal load and resistance

factors for a steel beam as estimated using the information available at the

time. There is a strong dependency between the load (γ) and resistance factors

(φ), namely that larger values of φ require larger load factors to achieve the

desired reliability index. A 1.6 load factor for snow, in tandem with a resistance

factor of 0.79 and a load factor of 1.2 for dead load, were shown to achieve the

desired reliability target index of 3.0. The presentation of optimum factors, as
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well as optimum resistance factors for a 1.6 snow load factor and a 1.2 dead

load factor, illustrates the need for Ellingwood et al. [1980] to accommodate

constraints outside the scope of the referenced study.

Table 2.1: Steel Beam Optimal Load and Resistance Factors for Gravity
Loads (excerpt from Table 5.3 Ellingwood et al. [1980]).

Material Combination Optimum Values Optimum φ for

φ YL, YS YD = 1.2, YL = 1.6

Steel Beam D + L 0.96 2.10 0.78

(β0 = 3) D + S 1.05 2.32 0.79

The roof snow load model used in the previous calibration is critical to

discuss with relation to the current study. The roof snow load model used in

the ANSI A58 calibration was:

S = GrGl

where

• S is the random variable associated with roof snow loading,

• Gr is the random variable representing the ratio between the max ground

load and the max roof load,

• Gl is the random variable for ground snow load.

The distribution of Gl and associated parameters for reliability analysis

were developed from eight sites (shown in Table 2.2) that were part of a larger

statistical analysis of 180 first order weather stations and other sites between

the winter of 1952-1978 as documented in Tobiasson and Redfield [1980]. These

sites made up the basis for the ASCE nominal (i.e. 50-year) ground snow loads

(Pg) and/or maps for ANSI A58.
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Table 2.2: Water-Equivalent Ground Snow Load Data (excerpt from Ellingwood
et al. [1980]).

Site Annual Extreme A58.1-1972 50-yr Maximum

Ground Load Roof Load

Years λ ζ qn u a
of

Record (i.e. Pg)

Green Bay, WI 26 2.01 0.70 28 0.87 5.07

Rochester, NY 26 2.49 0.56 34 0.83 6.16

Boston, MA 25 2.28 0.51 30 0.70 6.63

Detroit, MI 20 1.63 0.58 18 0.69 5.97

Omaha, NB 25 1.60 0.69 25 0.62 5.20

Cleveland, OH 26 1.50 0.58 19 0.60 6.30

Columbia, MO 25 1.21 0.84 20 0.69 4.05

Great Falls, MT 26 1.77 0.49 15 0.80 7.16

Log-normal distributions were fit using annual extreme ground snow loads.

These log-normal distributions were combined with Gr to develop distributions

for 50-year roof loads that were assumed to follow a Type II distribution. The

Type II distributions in the final column of Table 2.2 were averaged to obtain

µ = 0.72 and α = 5.82. These correspond to a bias of 0.82 and coefficient of

variation (COV) of 0.26 for the roof snow load distribution.

The nominal ground-to-roof conversion factor (Cn) is nominally 0.8 in this

version of the ANSI A58 standard, but is currently 0.7. The random variable

Gr was assumed to follow a normal distribution with a mean of 0.5 and a COV

of 0.23.

With respect to the current study, flexural yielding of a simply supported

beam is the most critical resistance parameter. The Ellingwood et al. [1980]

resistance statistics were mean-to-nominal ratio (bias) of 1.07, COV of 0.13,

and followed a log-normal distribution. The reliability analysis primarily em-
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ployed the Rackwitz-Fiessler procedure, which is a quickly converging iterative

procedure that can accurately accept any distribution type.

2.1.2. Bennett (1988)

Shortly after the development of the ANSI A58 and ASCE 7-88 standard which

imposed the load and resistance factors described above, Bennett [1988] per-

formed a reliability analysis that investigated changes to both the code (such

as changing the ground-to-roof conversion factor from 0.8 to 0.7) and the sta-

tistical model for the ground-to-roof conversion factor. These changes were

based on a CRREL sponsored study by O’Rourke et al. [1983], which mea-

sured ground to roof conversion factors across the United States. Further de-

tails regarding this study are provided in Ellingwood and O’Rourke [1985] and

O’Rourke and Stiefel [1983]. This model is described as having a mean of 0.47

and COV of 0.42.

It is expected that a lower nominal ground to roof conversion factor and

a more variable GR model would require larger loads to achieve the same

reliability-targets. Using the ground snow load model provided in Ellingwood

et al. [1980], Bennett [1988] confirmed that these changes resulted in reliabil-

ity indices less than 3.0 in all cases. Bennett [1988] ultimately recommended

increasing the snow load factor from 1.6 to 2.0 to obtain a target reliability of

only 2.0 and indicated a load factor of up to 4.6 may be needed to obtain a

reliability index of 3.0.

Bennett [1988] also opined that it is difficult to develop models for snow

suitable for reliability analysis due to the nature of the data. This is because

reliability analysis requires the modeling of N-year recurrence intervals which

could be very large and in excess of what may be possible for a theoretical
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distribution. This was also discussed in Ellingwood and Redfield [1983] where

1000-year events may be needed for the reliability index. Chapter 6 discusses

strategies to ensure consistent tail extrapolations in the face of limited periods

of record.

2.1.3. Bartlett et al. (2003)

Bartlett et al. [2003] sought to update statistical parameters for steel members

to reflect those of current A992, Grade 50, materials rather than the A36 pa-

rameters from the 1960s and 1970s from Galambos and Ravindra [1978] and

ultimately update the resistance parameters for reliability calibration. Table

2.3 is a reproduction of the original and proposed resistance calibration param-

eters presented by Bartlett et al. [2003]. These numbers without discretization,

which was not considered in the original calibration, have lower bias and COV.

Bartlett et al. [2003] performed a reliability analysis considering the dead plus

live load case, but did not investigate snow.

Table 2.3: Reproduction of Table 9 from Bartlett et al. [2003].

Factor Original Calibration Current Calibration

No Discretization With Discretization

Bias CoV Bias CoV Bias CoV

Geometric 1.00 0.05 1.00 0.034 1.00 0.034

Material 1.05 0.10 1.028 0.058 1.028 0.058

Professional 1.02 0.06 1.02 0.06 1.02 0.06

Discretization 1.00 0.00 1.00 0.00 1.05 0.043

Total 1.07 0.127 1.049 0.090 1.101 0.100
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2.1.4. Lee and Rosowsky (2005)

Lee and Rosowsky [2005] proposed a new snow roof load for three different

regions in the US suitable for reliability analysis, which intended to improve

upon the original calibration ground and roof snow statistical models. Ground

snow parameters were calculated for several sites in the United States and it

was found that log-normal distributions fit best among most stations, though it

seems that only the Type I Extreme Distribution was alternatively considered.

In this case, as has been previously done up to this point, the entirety of the

data was used to fit the distribution, lending little weight to the tail of the

ground snow load distribution. This will be described in more detail later.

The ground to roof conversion factor was selected from the Ellingwood and

O’Rourke [1985] and O’Rourke and Stiefel [1983] models and was combined

with the distribution that fit the ground snow load. This was then simulated

to obtain a 50-year roof load where the upper 10% of the tail was fit. By fitting

the entire ground snow dataset and fitting only the upper 10% of the trans-

formed roof snow load simulated data, it is unclear if the ground snow load tail

dynamics are preserved in the final presented roof snow load distribution. For

roof snow the resulting regional log-normal distributions had a bias of 0.61 and

COV of 0.53 for Northeast, a bias of 0.84 and COV of 0.60 for Midwest/Mid-

Atlantic, and a bias of 0.8 and COV of 0.58 for Northern Midwest/Mountain

West. These bias and COV are scaled based on the nominal values and are

suitable for comparison with the original calibration 0.82 and 0.26 for bias and

COV, respectively. While biases are largely similar for two regions as compared

to the original calibration, the COV are approximately double for each region.

These are also more severe than those investigated by Bennett [1988] which

resulted in reliability indices below 2.0.
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2.1.5. Galambos (2006)

Galambos [2006] investigated the reliability of the 2005 American Institute of

Steel Construction (AISC) Specification in light of the information contained

in Bartlett et al. [2003] and corrected for dynamic yield stress similar to that

performed in Galambos and Ravindra [1978] and Jaquess and Frank [1999].

The material factor was used with a mean of 1.06 and COV of 0.06 (com-

pare to Table 2.3). The fabrication factor was obtained from Galambos et al.

[1982] with a mean of 1.0 and a COV of 0.05. The professional factor mean

of 0.99 and COV of 0.06 were based on extensive tests found in White and

Barker [2008], White and Duk Kim [2008], and White and Jung [2008]. Com-

bining material, fabrication, and professional factors for comparison resulted

in a mean of 1.05 and COV of 0.1 with the resistance parameter following a

log-normal distribution (nearly identical to that in Table 2.3).

Galambos [2006] also investigated the effects of snow plus dead load relia-

bility using the Ellingwood et al. [1980] roof snow distribution. The reliability

analysis method was the log transform of the first order second moment reli-

ability index introduced by Hasofer and Lind [1974] which assumes both load

and resistance are log-normal random variables:

β =
ln
(
R̄
Q̄

)
√
V 2
R + V 2

Q

(2.2)

where

• R̄ and Q̄ are the mean values of the resistance and the load, respectively

• VR and VQ are the corresponding COVs

This method, a first order second moment method, is known to produce
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issues when COVs are large [Turkstra and Putcha, 1985], but the log-transform

should help account for this with log-normally distributed inputs. The random

variable Cs was assumed to follow a normal distribution with a mean of 0.5

and a COV of 0.23. This process consistently produced reliability indices above

3.0 as shown in Figure 2.1.

Figure 2.1: Reproduction of Dead Plus Snow Reliability Indices from Galambos

[2006].

2.1.6. The Colorado Study: Reliability Targeted Loads

The 2016 Colorado Study [DeBock et al., 2016] addressed the aforementioned

lack of snow load requirements for mountainous states discussed in Chapter 1.

What sets this study apart from other state-specific studies is the pursuit of

site-specific reliability-targeted design ground snow loads. These site specific
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RTLs addressed a pressing concern in the state that design ground snow loads

were too low on the eastern plains of Colorado [DeBock et al., 2017, Liel

et al., 2017]. Coefficients of variation at stations of lower elevations were much

larger than those found in the mountains. This resulted in the site-specific RTL

concept. To accomplish this task, DeBock et al. [2016] performed analyses to

identify the load at each Colorado station that would result in the target

reliability index of 3.0. In many locations this resulted in a dramatic increase

above the ASCE 7 stipulated 50-year ground snow load, but in many higher

elevations resulted in a slight reduction.

Figure 2.2: RTL/50-year ground snow load versus elevation (adapted from cover of

DeBock et al. [2016]).

The Colorado study targeted steel flexural yielding (i.e., R = ZxFy) as the

resistance limit state and obtained steel yield strength (Fy) log-normal random

variable parameters with a bias of 1.10 and COV of 0.09 from Ellingwood
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et al. [1980]. The plastic section modulus (Zx) was modeled as a normally

distributed random variable with a bias of 1.05 and COV of 0.05 [Galambos

and Ravindra, 1978, Lind, 1977] to account for discretization (similar to Table

2.3). For comparison with the previous studies, these were combined by the

authors to produce a normally distributed random variable with bias of 1.155

and COV of 0.103.

Like the other studies, DeBock et al. [2016] used the original calibration

dead load random variable parameters (normally distributed, 1.05 and 0.1 bias

and COV respectively), but rather than varying dead-to-live-load ratio, they

targeted a constant dead load of 15 psf, reflecting the fact that larger loads

may not result in significant increases in dead load for many light roof systems.

Snow station parameters were clustered using an expert-based superstation

approach to arrive at fairly controlled tails of log-normal distributions. A tail

fitting approach was used for the upper 10% of observations in the supersta-

tions (used to establish the ground snow load COV) and the upper 33% at

the original measurement locations (used to establish the ground snow load

magnitudes).

The GR model was based on observations in Norway presented by Thiis

and O’Rourke [2015]. This is one of the largest databases of its kind, but is

held largely in strict confidence by the Norwegians. Little other information

about these data are known, beyond what is in the Thiis and O’Rourke [2015]

publication. The data seem to imply that there is a ground snow load trend that

makes some physical sense in that larger loads will persist longer, thus reducing
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the maximum potential GR. The equations for the distribution parameters are

µln = ln(0.50 exp(−0.034 + gl0.4)

σln = min(0.007gl + 0.1, 0.33)

where gl represents simulated values from the ground snow load distribution

Gl.

Figure 2.3: Ground to roof conversion factor (GR) versus Ground Snow Load (psf)

from Liel et al. [2017].

Once station parameters and GR were known, they were simulated and

combined with the dead load and compared with the simulated resistance to

result in an annual probability of failure. This was then converted to a 50-

year probability of failure. The process was repeated using a different nominal

load until each location achieved the target 50-year reliability. Following this,

loads were estimated between measurement locations using an interpolation

approach.
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2.1.7. Synthesis of the literature

The purpose of this literature investigation is not to be critical of past stud-

ies, but to illustrate the need for re-calibrating the snow load factor with the

benefit of more information and updated design provisions. Each study illus-

trates that reliability-targeted design ground snow loads are very sensitive to

assumptions regarding resistance members, ground to roof conversions, and de-

sign provisions. It is clear that the studies in this area have used a wide variety

of reliability analyses and random variables. Table 4 attempts to summarize

the main distribution parameters selected for the most important variables.

Table 2.4: Compilation of statistical parameters from previous work. The
abbreviations N, LN, and Type II stand for Normal, Log-normal, and Type II
Extreme Value distributions, respectively.

Study Snow Roof Load Resistance Ground to Roof Conversion

Bias COV Shape Bias COV Shape Nominal Mean COV Shape

Ellingwood et 0.82 0.26 Type II 1.07 0.13 LN 0.8 0.5 0.23 N

al. 1980

Bennett 1988 1.17 0.47 Type II 1.07 0.13 LN 0.7 0.47 0.42 N

Lee and 0.61- 0.53- LN - - - 0.7 0.47 0.42 LN

Rosowsky 0.84 0.6

2005

Galambos 0.82 0.26 Type II 1.05 0.1 LN 0.8 0.5 0.23 N

2006

Liel et al. Site Site LN 1.155 0.103 N 0.7 Eq Eq LN

2017 specific specific

Because of the differences in both analysis methods (first order second

moment, Rackwitz-Fiessler, and Monte Carlo simulations), the data from each

study was reproduced using each method and various input parameters. Figure

2.4a illustrates reproduction of the recommended load and resistance factors

from Ellingwood et al. [1980] compared to the authors attempted reproduction.

Figure 2.4b illustrates the effect of changes to the code made by industry as

produced by Bennett [1988] and reproduced by the authors for model valida-
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Figure 2.4: Reliability index vs nominal snow to dead load ratio using (a)

Ellingwood et al. [1980] recommended load and resistance factors for steel flexural

members (b) A58.1- 1982 code provisions and Ellingwood et al. [1980] loads as

determined by Bennett [1988] (c) using Bennett [1988] worst case roof snow load.

tion purposes. Figure 2.4c shows the Bennett [1988] worst case scenario. The

Ellingwood et al. [1980] case illustrates the expected target reliability scenario

given the information available at the time. In both Bennett [1988] cases, the

reliability is lower than the target 3.0 due to code changes that occurred fol-

lowing the Bennett [1988] calibration. Bennett [1988] showed that using the

same assumptions in Table 2.4 in conjunction with the Ellingwood et al. [1980]

roof snow model, the estimated reliabilities are near 2.5. In further analysis,

Bennett [1988] developed additional snow load models, with the worst case

presented in Table 2.4, that show reliability indices well below 2.0.

The Galambos [2006] study used an updated resistance parameter, but du-

plicated the original calibration with the exception of the reliability method.

Figure 2.5 (left) presents digitized Galambos [2006] data along with repro-

ductions of this analysis using different reliability methods. Using the non-
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Figure 2.5: (left) Reliability index vs snow to dead load ratio using various

reliability processes and parameters associated with Galambos [2006] and the same

analysis using R based on Liel et al. [2017] (right).

simplified methods, the reliability indices are slightly below the target relia-

bility, but significantly below the first order second moment method based on

Table 2.2 [Lind, 1977]. To illustrate the effect the resistance parameter selec-

tion has on the reliability index, in Figure 2.5 (right), the same analysis was

performed, but changing only the resistance parameter to that of Liel et al.

[2017]. The Hasofer-Lind index is most greatly affected and shows an increase

of approximately 0.5 and the other procedures result in an increase of approx-

imately 0.25.

Figure 2.6 illustrates the reliability indices versus nominal snow to dead

load ratio when using the Lee and Rosowsky [2005] regional roof snow load

distribution parameters combined with resistance parameters from Ellingwood

et al. [1980]. In all cases, the reliability indices are below the target values.

After digitizing all stations investigated by Lee and Rosowsky [2005], the

reliability of each station was calculated to illustrate the effects of the updated
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Figure 2.6: Reliability index vs snow to dead load ratio and Lee and Rosowsky

[2005] snow roof load (a) bias of 0.8, and COV of 0.58 (b) bias of 0.61, and COV of

0.53 (c) bias of 0.84, and COV of 0.60.

Figure 2.7: Reliability index versus elevation for (left) Monte Carlo Analysis and

(right) First Order Second Moment using Lee and Rosowsky [2005] Roof Snow Load

Station Parameters using Liel et al. [2017] resistance statistics (blue circles) and

Bartlett et al. [2003] resistance statistics (red squares). Plot assumes constant dead

load of 15psf as described by Liel et al. [2017].
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roof snow load parameters and to justify future increases in snow loads as

presented in Figure 2.7. Only a handful of actual stations achieved reliability

indices above 3.0 when using the Bartlett et al. [2003] resistance statistics in-

dicating that local reliabilities are likely lower than when using large regional

composite statistics. Again, there is an approximate drop of 0.25 in the reliabil-

ity indices when using Bartlett et al. [2003] resistance statistics when compared

to those used in the Colorado study. Interestingly, there does not seem to be

elevation dependence on the reliability index in the stations selected by Lee

and Rosowsky [2005]. The same conclusions can be drawn from the first order

second moment calculations in Figure 2.7. These results seem to be inflated,

but are more reproducible and can be checked by hand using the tabulated

values in Lee and Rosowsky [2005] and Table 2.2.

Figure 2.8: Digitized reproduction of DeBock et al. [2016] data (blue) Fig. 2a,b,c

plotted alongside reliability reproduction by the authors using station specific

parameters with Liel et al. [2017] parameters from Table 2.4 (red) and changing only

the resistance to the recommended resistance parameters (black).

While the reliability targeted load (RTL) procedure presented in this paper
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is yet to be described, the Colorado approach was reproduced and is demon-

strated on three stations (the only stations presented with actual distribution

parameters) in Figure 2.8. Using only the updated resistance distribution pa-

rameters from Bartlett et al. [2003], assuming no discretization, there is another

significant drop in reliability indicating similar results to those in Figure 2.5b.

Using the framework developed by Colorado (and reproduction validated

by the authors in Figure 2.8) the station specific RTLs were calculated for the

Lee and Rosowsky [2005] station roof snow load models to estimate how much

the loads would need to be increased from the current 50-year loads (calculated

from the same distribution). Figure 2.9a presents the RTLs minus 50-year loads

versus elevation, showing that loads will need to be raised substantially, on the

order of 20-25psf on average and by as much as 75 psf for the worst-case

station. There does seem to be some elevation dependence for RTL 50-year

loads as higher elevations exhibit lower increases and also seem to exhibit

smaller changes when using the updated resistance model. In Figure 2.9b,

the ratio of the RTL and 50-year load also shows some elevation dependence

where ratios generally decrease with increasing elevation, but this may be due

to the lack of stations at the higher elevations. Based on Figure 2.9b, some

low elevation stations would see increases over 3.5 times what the 50-year load

would estimate. Figure 2.9 also indicates some stations would decrease in loads,

though not as dramatically. The use of the updated resistance parameters when

compared to the Colorado resistance model seems to increase loads on the order

of 2.5 to 10psf and 10% to 25% greater.

In the preceding sections, the authors have illustrated how state-of-the-art

snow load design has evolved since 1980. The purpose of the above exercises

was to show that the authors could accurately produce and validate various
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Figure 2.9: (a) reliability targeted load (RTL) minus the 50-year load and (b) RTL

to 50-year load ratio versus elevation for Lee and Rosowsky [2005] Roof Snow Load

Station Parameters using Liel et al. [2017] resistance statistics (blue circles) and

Bartlett et al. [2003] resistance statistics (red squares). Plot assumes constant dead

load of 15psf as described by Liel et al. [2017]

reliability analysis frameworks through reproduction of historical analyses from

the literature. Furthermore, it is important to demonstrate the differences in

change of parameters and methods on independently developed datasets and

input parameters. From these analyses it is clear that, due to changes in design

provisions and the distribution of resistance members, reliability indices no

longer meet the criteria outlined in ASCE 7 for target reliabilities for snow

loads on a national basis.

2.2. The Selected Target Scenario

Estimating RTLs requires the selection of a target situation, likely to be con-

sidered the most common case and then modify ground snow load values to
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meet this target reliability based on the random variables associated with the

structural situation. The selection of a reliability target does not guarantee a

uniform reliability in all design scenarios, but a uniform reliability for all geo-

graphical locations given the target design scenario. In collaboration with the

project steering committee, the selected target situation is a heated flat roof

supported by a steel beam in normal exposure conditions.

The analysis is limited to the nominal snow load controlling load case in

Table 2.1. Lambda (λ) will be defined as the ratio of the mean to the nominal

value or bias:

λX =
µX
Xn

where

• µX is the mean of the random variable X

• Xn is the nominal parameter of interest for random variable X.

The COV is defined as the ratio of the standard deviation to the mean of

the parameter of interest

VX =
σX
µX

where σX is the standard deviation of random variable X.

2.2.1. Resistance Parameters

Plastic yielding of steel flexural member is selected as the target resistance

limit state characterized as

φRn = 0.9Zx,nFy,n (2.3)

where
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• Zx,n is the nominal plastic section modulus

• Fy,n is the nominal yield stress of the steel

• 0.9 is the resistance factor φ.

After lengthy discussion with the steering committee it was decided that

the updated resistance statistics presented by Bartlett et al. [2003], assuming

A992 steel are to be used in the analysis. The combined material, fabrication

and professional random variable bias and COV are:

λR = 1.049 VR = 0.09

assuming no discretization.

2.2.2. Load Parameters

Dead Load (D) is assumed to follow a normal distribution with statistical

parameters taken from Ellingwood et al. [1980]:

λD = 1.05 VD = 0.1.

The use of the normal distribution rather than log-normal distribution im-

proves the computational efficiency of the Monte-Carlo simulations and does

not affect the resulting reliability indices or RTLs.

Snow Load Statistical Parameters assume the ASCE 7-16 Nominal Load

Model for flat roofs defined as

Sn = Pf = 0.7CeCtIsPg. (2.4)

where:
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• Pf is the nominal flat roof snow load

• 0.7 is the nominal ground to roof snow load conversion ratio

• Ce is the exposure coefficient

• Ct is the thermal coefficient

• Is is the snow importance factor

• Pg is the nominal ground snow load (currently 50-year per ASCE 7)

The load factor for nominal roof snow load was changed from 1.6 to 1.0.

This study also elected to assume Cs = Ct = Ce = 1.0 and Is will be removed

as this study directly provides estimates for each risk category. As an aside,

20-year loads are also provided for use as service loads.

The proposed roof snow load model attempts to incorporate the uncer-

tainties associated with the roof snow loading process. The ground to roof

conversion factor (GR) is used to convert from ground to roof snow load. The

coefficients in (2.4) (0.7CeCt) represent the nominal flat-roof GR model in

ASCE 7. The target scenario results in Ce = Cs = 1 and the roof snow load

model becomes

S = Gr ∗Gl

where

• Gr is the ground to roof conversion factor statistical model

• Gl is the statistical model for the ground snow load at a specific site which

has site specific distribution parameters.

The ground snow load is assumed to come from a Generalized Extreme

Value (GEV) Distribution. This distribution has three parameters called the

location (µGl
), scale (σGl

) and shape (ξGl
). Chapter 6 provides the details

regarding the GEV distribution fits in this National Study. Further, the Gr
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model is assumed to follow a square-root-normal distribution [Stidd, 1970],

with a ground snow load dependent mean

E
(√

Gr|Gl = gl

)
= 0.9865− 0.1192 ∗ log(gl)

and standard deviation

σGr = 0.18645

Details regarding the derivation of the Gl model are provided in Chapter 3.

In general, the greater the relative uncertainty in Gr and Gl, the larger the

reliability-targeted load (all else equal). Other notable sources of uncertainty

include the uncertainty in depth-to-load conversions, as well as the spatial,

mapping, and the ground snow load distribution parameters. Bean [2019] illus-

trates the potential explosion of load magnitudes (and corresponding increase

in loads) that occurs when accounting for compounding uncertainties in distri-

bution parameter estimates, rather than simply accounting for the variability

defined by the distribution itself. One issue with accounting for distribution

parameter uncertainty is that it is primarily a function of data availability,

rather than a function of snow dynamics. For example, all else equal, a sta-

tion measuring snow depth would have a larger RTL than a station directly

measuring snow load due to the increased uncertainty in parameter estimates

resulting from the depth-to-load conversion. This makes it difficult to distin-

guish if the hazard, or the lack of information related to the hazard, is driving

the estimated RTLs. For these reasons, the reliability-analysis will only charac-

terize the variability in the ground snow, the roof conversion, and the resistance

members, similar to related studies.
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2.2.3. Reliability Analysis

Monte Carlo Analysis is used to combine distributions and determine the num-

ber of failures based on the selected load case and limit state above. The limit

state equation to simulate is

G(R,Q) = R−Q

where

• R is the random variable describing the structural resistance

• Q is the random variable describing the load combination.

Q is defined as the 50-year roof snow load plus dead load (Dl). The targeted

probability of failure is calculated as

Pr(R < Q) = Φ(−β) (2.5)

where:

• Pr(R < Q) is the probability of failure of the member or system in a 50-year

period

• Φ is the CDF of the standard normal distribution

• β is the reliability index.

Figure 2.10 illustrates the workflow for the Monte-Carlo simulations. While

the GEV distribution models annual ground snow loads, direct simulations

of 50-year ground snow loads are obtained using the relation from Lee and
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Rosowsky [2005]:

F
(50)
GL

(x) = (FGl
(x))(50)(

F
(50)
Gl

(x)
)1/50

= FGl
(x) (2.6)

where FGl
and F

(50)
Gl

represent the cumulative distribution of annual and 50-

year ground snow loads respectively. The direct simulation of 50-year ground

snow loads (G
(50)
l ) differs from DeBock et al. [2016], but proved necessary

to ease the computational burdens of carrying out the simulations on a na-

tional scale without affecting the RTL estimates. Similarly, the assumption

that both R and Dl are normally distributed allows for the simulation of a

single “adjusted resistance R∗ = R−Dl (which is also, by definition, normally

distributed) which eases computation times.

Simulated events
(
R∗ −

(
G

(50)
l Gr

))
< 0 are considered failures. The num-

ber of tolerated failures corresponds with the target probability of failure de-

fined in (2.5). Table 2.5 shows the tolerated number of failures in 1 million sim-

ulations for each risk category. One million simulations was shown to achieve

stability in the RTL estimates while still being computationally feasible.

Table 2.5: Target number of failures from 1 million Monte-Carlo simulations for
each Risk Category.

Category β Failures

I 2.5 6,209

II 3.0 1,349

III 3.25 577

IV 3.5 232
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2.2.4. Monte-Carlo Simulation Steps

1. Define nominal Pg.

2. Count number of simulated failures using Pg:

• Simulate G
(50)
l

– Simulate a random number u between 0 and 1.

– Calculate u∗ = u1/50 (see Equation (2.6)).

– Calculate gl = F−1
Gl

(u∗;µGl
, σGl

, ξGl
).

• Simulate gr and r − dl.

• Count number of times that r − d− gl ∗ gr < 0.

3. If simulated failures exceed the target number of failures, increase Pg and

repeat Step 2.

2.3. Related Chapters

This chapter describes a probability-based computationally feasible framework

for estimating site-specific reliability-targeted loads. The result is a change in

the snow load factor from 1.6 to 1.0 and the elimination of the importance fac-

tor Is. Further details regarding the simulation process are provided in Chapter

3, which describes the derivation of the new Gr model, and Chapter 6, which

describes the process of estimating annual ground snow load probability dis-

tributions.
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G
(50)
l

GEV (µGl
, σGl

, ξGl
)

(site specific)

Gr
SRN

(
0.987− 0.119 log(Gl), 0.1862

)

Dl

N
(

1.05Dn, (0.105Dn)2
)

Sn = 0.7Pg
Dn = 15

Rn = (1.2Dn + 1.0Sn) /0.9

START: Set Pg

R∗ = R−Dl

N
(

1.049Rn − 1.05Dn, (0.105Dn)2 + (0.094Rn)2
)

S = Gr ∗G(50)
l

R

N
(

1.049Rn, (0.094Rn)2
)

G = R∗ − S Pr(G < 0) < Φ(−β)?

END: Retain Pg

no

yes

Figure 2.10: Flowchart summarizing the RTL estimation process. Grey squares

indicate the distributions that are directly simulated from as part of the

Monte-Carlo analysis. Orange squares indicate calculations. Distributions include

generalized extreme value (GEV), Normal (N) and Square-Root Normal (SRN).
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Chapter 3

Converting Ground Loads to

Roof Loads

The core element of the reliability-analysis described in Chapter 2 is the simu-

lated 50-year roof snow loads. Roof loads are almost always inferred from the

ground snow load due to the general lack of direct roof load measurements. The

ratio between the annual maximum ground snow load and roof snow load, re-

ferred to as GR, has the potential to dominate the proposed reliability analysis

given the high variability of GR due to roof geometry, heat loss, and exposure

conditions. This chapter describes efforts to create GR models compatible with

the reliability-target scenario, using ground and roof load measurements from

a decade of snow surveys on a variety of structures across Canada [Allen, 1956,

1958, Allen and Peter, 1963, Faucher, 1967, Hebert and Peter, 1963, Ho and

Lutes, 1968, Kennedy and Lutes, 1968, Pernica and Peter, 1966, Scott and

Peter, 1961, Watt and Thorburn, 1960]. The models include a ground snow

load dependency that assumes that GR tends to decrease as the ground snow

load increases. The model behavior accounts for the expected loss of snow on

roofs due to wind, sublimation, heat loss, etc., which tends to be greater in

high snow load regions where persistent snow is subject to longer periods of

exposure.

This chapter reviews previously existing GR models [Ellingwood et al.,
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1980, O’Rourke et al., 1983, DeBock et al., 2016]. Included also is a compari-

son of the reliability-targeted loads (RTLs) that result at locations across the

United States using each GR model. The recommended model includes the

ground snow load dependency observed in Thiis and O’Rourke [2015] and De-

Bock et al. [2016], while leveraging the detailed metadata in the Canadian

snow surveys to create a subset of data most relevant to the target scenario.

Chapter Highlights:

• A summary of datasets that have been used to create GR models.

• A summary of previous GR models that have been used in reliability-

analyses.

• A description of a newly proposed ground snow load dependent GR model

based on flat roof GR measurements taken from a decade of Canadian snow

surveys.

• A comparison of the differences in RTLs that result from the use of different

GR models.

3.1. Available Datasets

The difficulty of obtaining simultaneous measurements of ground and roof

loads likely explains the relative lack of available GR data, especially recent

GR data. The authors contacted some of the authors involved in the ongoing

update of the Eurocode [Croce et al., 2019], who were willing to share some

recent GR data but not in a compatible format. The general lack of available

measurements is exacerbated by varied roof geometries, exposure, slope, and
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thermal conditions among the measurements that further reduce the number

of observations relevant to the target scenario, which is a heated flat roof un-

der normal exposure conditions. After a thorough review of the GR literature,

there appears to be three major datasets that are available for GR model devel-

opment: one Norwegian, one American, and one Canadian (citations provided

in following subsections). Table 3.1 shows the number of observations along

with varying subsets based on roof slope (θ).

Table 3.1: Number of observations in each available GR dataset at
varying slopes θ.

Dataset Sample Size

All θ ≤ 30 θ ≤ 15

Norwegian 991 430 n/a

American 230 203 140

Canadian 477 434 337

The model proposed at the end of this chapter only considered roofs with

slopes less than 15 degrees to reduce the chance of underestimating GR due to

snow sliding. Similar logic could be used to justify such sub-setting based on

the thermal (Ct) and exposure (Ce) properties of the roof. However, no further

subsets of the data were considered for a variety of reasons:

• The definitions of thermal and exposure classes were not constant across

datasets. For example, the Canadian data only includes two classes for ex-

posure instead of three, as is the case with the American data. Establish-

ing equivalency among thermal categories in the American and Canadian

datasets was similarly unclear. Additionally, exposure information was not

available in the Norwegian dataset.

• Any differences in GR measurements due to thermal properties were domi-
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Figure 3.1: Comparisons of four combinations of scenarios considering Heated (H)

vs. Unheated (U), as well as Exposed (E) vs. Not Exposed (NE) roofs in the

American and Canadian datasets.

nated by other site-specific measurement factors. Figure 3.1 shows that the

differences in GR measurements taken from heated and unheated buildings

were small relative to the variability due to other factors among flat roof

observations in the combined American and Canadian datasets.

• More importantly, there was no significant decrease in the variability of GR

measurements when focusing on a single Thermal/Exposure scenario.

• Most importantly, subsets based on thermal or exposure resulted in too

small of sample sizes to reliably estimate GR models. A mere 51 American

observations and 23 Canadian observations exactly matched the reliability-

target scenario of a heated flat roof with normal exposure.

Figure 3.2 shows a scatterplot of GR vs. ground snow load for all observa-

tions taken on roofs with θ ≤ 30. The points show a slight decreasing trend
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in GR as ground snow load increases, though substantial variability remains

both within and between datasets. Figure 3.3 shows smoothed histograms of

GR measurements in each dataset, which shows that the Norwegian measure-

ments have higher values with less variability than the American and Canadian

measurements. The following subsections provide details for each of the can-

didate datasets.
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Figure 3.2: Scatterplot of GR vs. ground snow load for the Norwegian, American,

and Canadian datasets.

3.1.1. Norwegian Dataset

Collection of the Norwegian dataset is described in Høibø [1988] and Høibø

[1989] and subsequently analyzed in Thiis and O’Rourke [2015]. These data
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Figure 3.3: Smoothed histograms of GR measurements in the Norwegian,

American, and Canadian datasets.

are not publicly available, though author Thomas Thiis graciously provided

measurements for use in this national snow load study. These data, which

includes unheated gabled roofs with slopes from 0 to 45 degrees, were subse-

quently used to develop the ground snow load dependent GR models described

in Liel et al. [2017].

One disadvantage of these data is the lack of meta-data regarding roof type,

exposure, or geolocation. This makes it difficult to determine the similarity

in climate conditions between Norway and the United States. Additionally,

the Norwegian measurements were “intended to give the ‘µ-factor,’ given as

the ratio of the roof load to ground when the snow load on the roof was at

its highest during the winter” [Høibø, 1988]. This is different from “GR” as

measured in O’Rourke et al. [1983] and subsequently used in ASCE 7, which is

the ratio between the max ground load and the max roof load, which may not

occur at the same time during the snow season. This difference likely explains
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why the Norwegian measurements tend to be higher than the North American

GR measurements.

3.1.2. American Dataset

The American dataset collected by O’Rourke et al. [1983] and further analyzed

in O’Rourke and Stiefel [1983] forms the foundation of many roof related pro-

visions in ASCE 7. Measurements were taken 2-4 times during the snow season

in an attempt to capture the maximum ground and roof snow loads. Proposed

GR models resulting from these data only considered GR measurements for

which the associated ground snow load was greater than 20 psf. Measurements

were taken at structures in Idaho, Colorado, South Dakota, Oregon, and New

York in an attempt to obtain a representative dataset for the country. Fig-

ure 3.4 shows that increases in the number of visits during the snow season is

associated with a decrease in median GR measurement across locations. This

reinforces the point that maximum ground and roof snow loads often occur at

different times of the year.

3.1.3. Canadian Dataset

The Canadian dataset is a compilation of a decade of snow surveys used in the

development of Canadian design snow load provisions [Allen, 1956, 1958, Allen

and Peter, 1963, Faucher, 1967, Hebert and Peter, 1963, Ho and Lutes, 1968,

Kennedy and Lutes, 1968, Pernica and Peter, 1966, Scott and Peter, 1961,

Watt and Thorburn, 1960]. The surveys included four Tiers of measurement

stations including:

• “A” Buildings: Detailed descriptions are provided of roof geometry and site-

specific snow conditions. Measurements of ground and roof snow loads are
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Figure 3.4: Boxplots of GR measurements based on the number of measurements

made during the snow season. Typical (i.e. median) measurements tend to decrease

as the number of measurements increase.

taken weekly throughout the course of the snow season, usually over the

course of several years. Measurements are taken at several locations on the

roof and averaged to obtain a roof snow load. These buildings are regarded

as the best available data in the snow survey.

• “C” Buildings: These are similar to A stations in terms of measurement

procedures and quality. These buildings are all large, flat roofs located on

military bases throughout the country.

• “B” Buildings: These are measurements taken by volunteers due to anoma-

lous circumstances such as a building failure. These data are not subject to
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the same quality standards as A and C stations.

• “D” Buildings: These measurements are from surveys of snow loads on roofs

in residential neighborhoods after particularly large snow storms. Measure-

ments seem to be taken only once during the snow season for these locations,

rather than weekly.

The authors decided to only use measurements at “A” and “C” structures

due to the frequency and consistency of measurements throughout each snow

season. Additionally, one unusual roof geometry observed amongst the “C”

structures was removed where measurements were being taken on a flat roof

that was adjacent to an arch hangar. Sliding snow from the arch hangar would

consistently result in GR measurements on the flat roof portion well above

one. This unusual situation, perhaps only seen on military bases, did not seem

representative of the target scenario of interest. Additionally, one observation

was removed for having a GR measurement greater than 2, which was deemed

unrealistic for the target scenario.

The climate conditions of the Canadian GR measurement locations were

compared to locations from the American dataset to ensure that the Canadian

data were representative. This determination was made considering approxi-

mate climate metrics obtained from gridded climate maps from the climateNA

project [Wang et al., 2016] by geolocating measurements based on city names

from both the American and Canadian datsets. Figure 3.5 shows the mean an-

nual temperatures of the coldest month as plotted against the average winter

(December-February) precipitation. The Canadian data is fairly representative

across both metrics, but the three annotated locations were removed for having

significantly colder temperatures than those observed at the American loca-

tions. The sample sizes provided in Table 3.1 reflect only the measurements
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retained for analysis.
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Figure 3.5: Plots of mean annual temperature of the coldest month vs. winter

precipitation from measurement locations in the American and Canadian datasets.

3.2. Previous Methods

Ellingwood’s original partial safety factor calibrations were conducted before

O’Rourke et al. [1983] and without access to the Canadian surveys. This in

mind, through collaborations with Wayne Tobiasson of CRREL, GR was as-

sumed to follow a normal distribution with a mean (µgr) of 0.5 and a standard

deviation (σgr) of 0.115. Subsequent data analysis by O’Rourke et al. [1983],

from which the American GR measurements for this manuscript were obtained,

proposed the new GR model

µgr = 0.47 ∗ E ∗ T
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where E and T represent exposure and thermal factors respectively. Under the

target reliability scenario, E = T = 1. The residuals were assumed to follow a

lognormal distribution with µ∗r = 0 and σ∗r = 0.42.

Colorado’s recent pursuit of RTLs made use of all the Norwegian GR data

described in Thiis and O’Rourke [2015], which includes gable roofs with slopes

from 0 to 45 degrees. This model assumed that GR followed a lognormal dis-

tribution, with log-scale parameters µ∗gr and σ∗gr, dependent on ground snow

(pg) and calculated as

µ∗gr = log (0.5× exp (−0.034 ∗ pg) + 0.4)

σ∗gr = min (.007 ∗ pg + 0.1, 0.33) .

For low snow loads, the resulting probability distribution can lead to simulated

GR values much larger than 1. To control for this, simulated GR values were

capped to never exceed 1.2 in the reliability analysis [Liel et al., 2017].

Figure 3.6 compares the shape of the resulting GR distributions for each

method, including the Colorado GR distribution at ground snow loads of 10,

30, and 60 psf. Note the significant shift in the mean of the GR distribution

as ground snow load increases for the Colorado method. Also note that the

O’Rourke et al. [1983] model has more variability than the other considered

methods.

3.3. Proposed Model

Originally, efforts were made to combine the three datasets to create a new

GR model. However, the different GR distributions in each dataset caused
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Figure 3.6: Comparison of the shape of the assumed GR distribution from

Ellingwood et al. [1980], O’Rourke et al. [1983], and Liel et al. [2017]. Loads in

parenthesis indicate the ground snow load associated with the GR distribution.

the consolidated models to inherit the high average values of the Norwegian

data, as well as the high variability of the Canadian and American data. The

resulting models exhibited higher RTLs than would be obtained using existing

models and did not seem reasonable for use. The newly proposed model instead

uses only Canadian observations at “A” and “C” buildings with roof slopes less

than 15 degrees. This model incorporates the ground snow load dependency

of the Colorado GR curve, while avoiding the use of the Norwegian µ-factor

measurements which are known to overestimate GR.

Figure 3.2 illustrates that GR measurements tend to decrease as ground

snow load decreases. This relationship can be modelled linearly with appro-
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priate variable transformations. The ground snow load dependency in GR is

assumed to be of the form:

E
[√

Gr

]
= β0 + β1 log(pg).

This dependency is estimated via least squared regression to obtain:

E
[√

Gr

]
= 0.99− 0.12 log(pg). (3.1)

Because there are few GR measurements with associated ground snow load

values above 50 psf, E
[√
Gr
]

were capped below at 0.99− 0.12 ∗ 50 = 0.27 to

avoid inappropriate extrapolations of the ground snow load dependent trend.

Figure 3.7 visualizes the trend line (with the 50 psf ground snow load cap) as

compared to a local polynomial regression model on the transformed scale. The

agreement between the proposed model and the local regression model verifies

that the
√
Gr and log(pg) are linearly related, with log(pg) explaining about

17% of the variability of
√
Gr. This reduction in the variance of

√
Gr serves

to reduce RTL estimates as compared to those obtained using a GR model

developed with the same data that assumes no ground snow load dependency.

Figure 3.8 shows that the residuals of this regression model follow a nor-

mal distribution (except perhaps at the extreme endpoints) and are centered

around zero. The variance of the residuals is estimated to be ˆσGr = 0.19. Val-

ues of the square root of GR are simulated from a normal distribution, and

then squared to return to the original scale of GR.

Figure 3.9 shows the back-transformed estimates of (3.1). The dashed lines

represent the thresholds for which 95% of the simulated GR values (after back-

transforming) are expected to fall. These simulated values are occasionally

63



0.0

0.4

0.8

1.2

2 5 10 20 40 80 160 320
Ground Snow Load (psf − log scale)

sq
rt

(G
R

)

Figure 3.7: Comparison of the proposed regression model with the trend flat-lined

after 50 psf (black) to a local-polynomial regression (red) model.

above 1.0 when the ground snow load is small. DeBock et al. [2016] had a simi-

lar issue with their simulated values which they resolved by capping simulated

values at 1.2. It was decided in consultation with the steering committee asso-

ciated with this national study that simulated values should be capped at 1.0

since the maximum roof load is not expected to exceed the maximum ground

snow load on a heated roof under the uniform loading scenario. Simulated GR

values are also necessarily capped below at 0. Table 3.2 shows the expected

percentage of simulated values that require a 0.0 or 1.0 GR cap for various

ground snow loads.

3.4. Implications

Figure 3.10 compares the assumed GR distributions under these new models

to those obtained in DeBock et al. [2016]. As expected, the new models have

64



(a)

−0.25

0.00

0.25

0.50

−2 0 2
Normal Standard Deviations

R
es

id
ua

ls

(b)

−0.25

0.00

0.25

0.50

2 5 10 20 40 80 160 320
Ground Snow Load (psf − log scale)

R
es

id
ua

ls

Figure 3.8: (a) Shows that the residuals of model (3.1) are normally distributed.

(b) Scatterplot of residuals vs. ground snow load to illustrate that the residuals are

unbiased with constant variance until at least 50 psf ground snow load.

Table 3.2: Percentage of simulated Gr values that are capped at the 1.0 or
0.0 threshold for various ground snow loads. Recall that the Gr distributions
are identical after 50 psf.

Ground Load (psf) % Capped at 1.0 % Capped at 0.0

10 6.1 < 0.1

20 2.3 < 0.1

30 1.2 0.1

40 0.8 0.2

50 0.5 0.3

lower averages than the Colorado model, but also have more variability. The

larger variance of the newly proposed model reduces the expected reduction in

loads due to the smaller average measurements.

Figure 3.11 compares the estimated RTLs using different GR models at

the 81 non-Alaska locations considered in Lee and Rosowsky [2005]. Note that

larger values of the distribution shape in the left plot indicate a heavier dis-

tribution tail for the ground snow load distribution. The results show that the

new model usually estimates lower RTLs than would be obtained using previ-
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Figure 3.9: Back-transformed estimates of the average of
√
Gr. Dashed lines

represent the range for which 95% of simulated GR values fall for a given ground

snow load.

ous GR models, and substantially lower RTLs than the O’Rourke and Stiefel

[1983] GR model. The “tempering” effect that the ground snow load depen-

dency in the new GR model has on heavy-tailed ground snow load distributions

is highlighted by the increasing ratios with increases in the distribution shape.

The reduction in RTLs as compared to using the Colorado GR model illustrates

the effect of the high GR bias in the Norwegian measurements. The final RTL

values are comparable to what would have been obtained using the Ellingwood

et al. [1980] GR model, though the ratio is dependent upon distribution shape.

The reduction in RTLs that occur with the use of the new ground snow

load dependent GR model is likely due to the following:

1. The frequency of measurements in the Canadian dataset make it the

most likely dataset to capture the true GR value each snow season.

2. Accounting for the ground snow load dependency observed in each dataset
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Figure 3.10: Comparison of distributions for the Colorado and National Study GR

models for various ground snow loads.

reduces the variability in GR as relative to equivalent “flat-line” models.

3. Capping simulated values at one (which reduces loads) reflects expected

conditions for the target design scenario.

Chapter 6 explains the development of the ground snow load distribution mod-

els used in these GR model comparisons.
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Chapter 4

Data Processing

The time intensive nature of data collection and cleaning makes it difficult to

quickly update design snow load estimates as new information becomes avail-

able. These difficulties are partially overcome by improvements in the quality

and accessibility of snow measurements at the national level. Despite these

improvements, significant challenges in data quality remain. Proper methods

and strategies for handling misreported values are particularly important given

this project’s focus on extreme events, which are particularly sensitive to mis-

reported outlier values. Estimates of extreme events are likewise sensitive to

pseudo maximums which are caused by inconsistent coverage of the snow sea-

son. This chapter describes a systematic procedure to screen daily observa-

tions of SNWD and snow load for misreported values and detect unreasonably

low pseudo maximums due to lack of coverage. The iterative outlier detec-

tion schemes described in this chapter err on the side of caution by retaining

observations when an observation is only suspected to be misreported. The

distribution fitting approach described in Chapter 6 is designed to tolerate the

inevitable outlier observations that remain in the record. The key advantage

to the data cleaning approaches described in this chapter is that they can

be quickly implemented and easily updated, with the exception of the manual

outlier verification. This allows the final project results to be updated in future
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years as improved information becomes available with little marginal cost.

Chapter Highlights:

• A description of the data sources used to define the reliability-targeted loads

(RTLs).

• Descriptions and examples of recurring outlier issues that were identified

and removed from the dataset.

• A summary of a series of data screens that were used to identify candidate

stations with sufficient information to estimate site-specific RTLs.

• An explanation of the process used to merge snow records at geographically

close stations.

• An outline of the observation preference hierarchy when multiple measures

of a snow load are provided for the same season.

• Maps of the locations of the qualifying measurement locations as well as the

definition of a three-tier system for describing the reliability of the station

measurements.

4.1. Data Summary

The core dataset for this project was the Global Historical Climatological Net-

work Daily Dataset (GHCND) Menne et al. [2012]. The GHCND includes

observations from the following station networks:

• National Weather Service (NWS) first-order stations (FOS). These stations

are typically located at airports and are regarded as the most reliable mea-

surements in the GHCND.

72



• The Natural Resources Conservation Service (NRCS) Snowpack Telemetry

(SNOTEL) stations. SNOTEL stations are primarily located in the inter-

mountain west and began replacing or supplementing the once-monthly snow

course measurements in the late 1970s.

• NWS Cooperative Observer Network (COOP) stations. Measurements at

these stations are taken by volunteers in collaboration with the NWS. These

measurements are subject to less quality control measures than FOSs and

often measure only snow depth.

• Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) mea-

surements. Like COOP stations, these measurements are also taken by vol-

unteers. They are subject to less quality control measures than FOSs but

do occasionally contain direct measurements of snow load.

GHCND measurements are freely available for mass download (https://

www.ncdc.noaa.gov/ghcnd-data-access). The variables of interest are snow

depth (SNWD) and water equivalent of snow on the ground (WESD). Measure-

ments from additional station networks were used to develop the depth-to-load

conversion models. Additional details about those supplemental networks are

provided in Chapter 5.

The original data download included more than 237 million observations

at more than 65,000 weather stations in the United States and Canada. Obser-

vations extend as far back as 1857, though the vast majority of measurements

are taken post 1948.
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4.2. Outlier Detection

The distribution fitting process described in Chapter 6 relies on the annual

snow maximums, with snow seasons extending from October of the previous

year to June of the listed year. The focus on seasonal maximums makes the

distribution fitting process particularly sensitive to abnormally high and mis-

reported measurements in the period of record. This chapter describes efforts

to remove the most grievous misreported values.

Every observation in the GHCND data set has a quality flag (QFLAG)

which indicates whether the observation has failed any of a series of automatic

and manual outlier checks [Durre et al., 2010]. All observations flagged by the

GHCND for quality control were removed prior to analysis. While the removal

of these flagged observations greatly improved the quality of the dataset, many

misreported observations remained.

Additional automatic checks of observations implemented by the authors

proved insufficient for removing the persistent misreported observations. How-

ever, manual checks of all 65,000 candidate stations was also not feasible given

time and funding constraints. In light of these constraints, a hybrid approach

was adopted where stations would be flagged for potential issues using a series

of automatic checks, then manually checked for outliers by the authors. The

iterative process is as follows:

1. Fit distributions at candidate measurement locations with no outlier

points removed.

2. Identify stations for manual inspection at locations with anomalous dis-

tribution parameter estimates.

3. Visually inspect SNWD and WESD measurements at the flagged stations

for outlier values.
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4. Remove observations only if the measurements are “obviously” misre-

ported,

5. Refit distributions with the anomalous points removed.

If there was any doubt as to whether the value in question was legitimate, the

observation was left in the dataset.

Stations were flagged for manual inspection if they met any of the following

problematic conditions:

• Stations where an observation exceeded verified state-level snow depth records,

or the difference in sequential observations exceeded county-level snowfall

records [SCEC, 2020].

• Stations with unusually heavy distribution tails (as fit in Chapter 6).

• Stations with distribution shapes significantly different than neighboring

observations.

• Stations where the majority of seasonal maximums were zero, yet the station

had an observed snow load above 20 psf.

Occasionally, all stations within a region would be checked for misreported

observations if the estimated design loads were higher than expected. This was

the case in coastal Washington and Oregon as well as the eastern slopes of the

Rocky Mountains in Colorado. In many cases, few to none of the observations

were removed. In other cases, entire snow years were found to be incorrect and

were removed. Some of the recurring outlier issues that were discovered during

the manual checks included:

• SNWD measurements that were incompatible with corresponding WESD

measurements (Figure 4.1).

• Incorrectly reported units of measurements (usually a factor of 10) for a
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portion of the period of record (Figure 4.2).

• Consecutive WESD measurements at an impossibly high value during months

when little to no snow is expected (Figure 4.3).

• Single, anomalous observations in an otherwise well-behaved set of measure-

ments (Figure 4.4).

• Consecutive years of zero-valued maximums in locations where some snow

is expected every year (Figure 4.5).

The manual checks also confirmed that many of the state and county snow

records are out of date. Figure 4.6 shows a Montana SNOTEL station that

consistently exceeds the state-verified snow depth record, yet there is no sign

of anomalous values. Values that were flagged but showed no visual evidence

of being an outlier value were ultimately retained in the dataset.

The original data download considered 237 million observations at more

than 65,000 stations in the United States and Southern Canada, though roughly

100 million of those observations were during summer months, missing, or mis-

reported. Table 4.1 shows the number of observations (in millions) before and

after each data cleaning step. Table 4.2 shows the percentage breakdown of

outliers that were manually removed by the authors. Note that the vast major-

ity of these roughly 650,000 manually removed observations were misreported

zero-values or systematic issues in the measurement units (usually off by a

factor of 10). Only about 0.2% of the values removed were isolated incidents

of anomalously high values that were inconsistent with the surrounding obser-

vations. Most of the “other” outliers were also units issues, though the issues

were not as pervasive as they were at the 29 weather stations with systematic

measurement unit issues.
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Figure 4.1: Station USS0021A32S in Washington, illustrating incompatible SNWD

and WESD measurements. Triangle points indicate removed observations.
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Figure 4.2: Station USC00254790 in Nebraska which illustrates a systematic

measurement units issue.
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Figure 4.3: Station USW00014925 in Minnesota which demonstrates consecutive

misreported measurements of WESD.

77



0

20

40

60

Feb 25 Mar 04 Mar 11
Date

D
ep

th
 (

in
) Outlier

FALSE
TRUE

Element
SNWD
WESD

Figure 4.4: Station US1COBO0290 in Lafayette, Colorado, illustrating isolated

measurements incompatible with the long term accumulation patterns.
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Figure 4.5: Station CA003031400 in Alberta, Canada, illustrating an impossibly

long series of zero-valued snow years in a location where snow is expected every year.
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Figure 4.6: Station USS0013A19S in Montana. The top line represents the SNWD

Montana maximum, and the bottom line represents the WESD Montana maximum.

The flagged points, which are any point above its respective line, were not removed

since they are clearly not outliers.
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Table 4.1: Summary of the remaining observations after each data cleaning
step.

Observations

Cleaning Steps (in millions)

Original Dataset 237.09

Remove July-September and “missing presumed zero” 138.74

Remove quality control issues identified by GHCN 138.49

Remove manually identified misreported observations 137.84

Table 4.2: Composition of the 653,000 manually removed outliers.

Type Percentage

Misreported zero-valued observations 93.7%

Systematic unit issues (> 250 points removed per station) 5.3%

Isolated outlier values (< 10 points removed per station) 0.2%

Other 0.8%

4.3. Coverage Filters

The manual outlier checks described in Section 4.2 revealed some obvious issues

of systematic misreported observations. However, those checks were not effec-

tive at identifying pseudo maximum values caused by a partial lack of coverage

of the snow season. These pseudo maximums can be screened through coverage

filters that ensure sufficient coverage of each snow season. These screens need

to be strict enough to remove pseudo maximums, yet lenient enough to avoid

throwing out entire years of record unnecessarily.

4.3.1. Coverage Filter Algorithm #1

The balance between strictness and leniency is achieved in this effort through

the following algorithm applied after outliers were removed:

1. Where necessary, estimate snow load from snow depth (see Chapter 5 for
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details).

2. Collect all seasonal snow load maximums from every available year ap-

plying no coverage filter.

3. Calculate the median seasonal maximum snow load at each station loca-

tion.

4. Separate stations into “high” and “low” accumulation groups based on

their median seasonal maximum. High accumulation stations are those

whose median seasonal maximum is greater than 50 psf.

• The 50 psf cutoff separates most SNOTEL and “SNOTEL-like” sta-

tions from the rest, since SNOTEL stations are known to have different

accumulation patterns than typical COOP stations. Approximately

80% of considered SNOTEL stations have a median annual maximum

above this threshold.

5. A seasonal maximum “passes” the coverage filter if it has at least one

observation in each of the four months where a seasonal maximum is

most likely to occur. This four month window depends on accumulation

group as observed in Figure 4.7.

• High accumulation stations: January-April.

• Low accumulation stations: December-March.

6. Discard stations with less than five seasonal maximums passing the cov-

erage filter.

January-April was selected for high accumulation stations instead of February-

May to accommodate COOP stations that are less likely to have consistent

snow records in May. Most May maximums occur at SNOTEL stations that

are very likely to also have consistent records in January. This coverage fil-
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Figure 4.7: Counts (normalized by accumulation group) of the number of non-zero

snow load maximums occurring in each month at stations with coverage in every

month of the snow season.

ter reduces the number of candidate stations from roughly 65,000 to 20,000.

All seasonal maximums, regardless of coverage filter status, are retained for

these 20,000 stations. A second coverage filter is applied to the seasonal maxi-

mums after grouping geographically close stations as described in the following

section.

4.4. Station Clustering

It is often the case that the geographic location of a station will change slightly

during its lifetime. Occasionally, this change in location results in a new station

identifier being assigned to the ensuing measurements. This creates situations

where what should be a single, extended period of record is incorrectly regarded

as two shorter periods of record. The distribution fitting process described
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in Chapter 6 is most reliable when applied to long periods of record. The

need for long periods of record encourages the combination of observations

at geographically close stations. This is accomplished through a hierarchical

clustering algorithm using a custom distance metric that assigns a “distance”

unit d of one for every:

• 0.6 miles of geographical separation between groups

• 50 feet of elevation difference between groups

The clustering algorithm creates groups of stations for which d ≤ 4 between

the farthest neighbors in the cluster. This means that stations in a cluster are

separated by no more than 2.4 miles and 200 feet in elevation. For stations

separated by 100 feet in elevation, the geographical separation can be no more

than 1.2 miles for stations to be combined. This clustering approach is an adap-

tation of the approach described in DeBock et al. [2017], yet creates smaller

clusters.

The d = 4 cluster threshold creates roughly 18,000 “measurement loca-

tions” from the 20,000 qualifying weather stations. The clustering scheme

serves to extend the period of record for a measurement location, especially

when one weather station was intended to replace another. The clustering

scheme also eliminates the model instability issues that occur when co-located

(or nearly co-located) stations are used as input into the spatial mapping mod-

els described in Chapter 7. These advantages come at the risk of combining

observations at stations whose annual maximum snow load follow different

probability distributions due to differences in measurement conditions. The

d = 4 threshold is intended to balance the advantages of clustering with the

risk of losing the small-scale variability in snow loads. This balancing act re-

sults in occasional sets of “sister stations” that should be combined but are

82



ultimately treated as distinct locations. Any discrepancies in the fitted distri-

butions that occur at sister stations are reconciled with the shape parameter

smoothing approach described in Chapter 6.

4.5. Collecting Seasonal Maximums

The combination of weather stations into consolidated measurement locations

inevitably creates situations where there are overlapping measurements of the

same snow season. Even measurement locations comprised of a single weather

station often have overlapping direct (WESD) and indirect (SNWD) measure-

ments of snow load. This means there are usually multiple candidate seasonal

maximums for each snow season obtained from different weather stations and

measurement types. A single maximum is obtained for each snow season though

the following preference hierarchy:

1. Prefer seasonal maximums obtained from measurements that pass cov-

erage filter #1.

2. Prefer non-zero seasonal maximums.

3. Prefer seasonal maximums obtained from direct measurements of snow

load (WESD) to those obtained from indirect measurements of load

(SNWD).

4. All else equal, prefer the largest available seasonal maximum.

The preference hierarchy only proceeds to the next preference option if multiple

candidate seasonal maximums satisfy the current preference option. Decisions

1 and 2 protect against artificial zero maximums, while Decision 3 gives pref-

erence to direct measurements of snow load.
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4.5.1. Coverage Filter Algorithm #2

With preferred seasonal ground snow load maximums in hand, a second cov-

erage filter is applied to further reduce the prevalence of pseudo maximums.

For each measurement location:

1. Determine the median seasonal maximum.

2. Retain maximums that meet at least one of the following two conditions:

• The maximum passes coverage filter check #1.

• The maximum is above the median seasonal maximum.

The coverage filter exception for maximums above the median ensures that the

largest seasonal maximums are never excluded due to lack of coverage of the

snow season. At the same time, the coverage filter protects against the pseudo

maximums that can wreak havoc on estimated distribution fitting parameters

in high load locations.

4.6. Final Stations

The previous sections of this chapter ensure the quality of retained seasonal

maximums at the measurement locations. Probability distributions are fit to

these annual maximums as described in Chapter 6. Reliable estimates of proba-

bility distribution parameters rely on sufficiently large sample sizes of seasonal

maximums. This is especially true for site specific RTLs, which are more sen-

sitive to slight changes in probability distribution parameters as compared to

50-year snow loads. Minimum sample sizes for distribution fitting have histor-

ically included seven [SEAU, 1992] or ten [Theisen et al., 2004, Al Hatailah

et al., 2015, Meehleis et al., 2020, Buska et al., 2020]. DeBock et al. [2016] uses
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a minimum sample size of 30 in the only comparable site-specific reliability

analysis available.

In light of the sample size limitations for certain portions of the country, a

three tier station designation was adopted:

1. Tier 1 stations have at least 30 years of record and 15 years of non-zero

seasonal maximums.

2. Tier 2 stations have at least 15 years of record and 7 years of non-zero

seasonal maximums.

3. Tier 3 stations have at least 30 years of record with 20% or less of the

seasonal maximums being non-zero.

Tier 2 stations are only considered in the analysis if there is not a Tier 1 station

close by. Similarly, Tier 3 stations are only considered if there are no Tier 1

or 2 stations close by. “Closeness” is defined using the same clustering scheme

proposed in Section 4.4 but uses a threshold of d = 20 instead of d = 4. The

hierarchical nature of the clustering ensures that d = 4 clusters will be fully

contained within d = 20 clusters. Note that Tier 3 stations retained in the

analysis treat the d = 20 clusters as a single measurement location. This pre-

vents the Tier 3 stations from being over-represented in the analysis. Figure

4.8 shows a map of the final set of stations with color denoting the tiers. Only

Tier 1 Canadian stations within 60 miles of the U.S. border are retained in

the analysis. Table 4.3 shows a breakdown of the final set of stations by Tier.

Chapter 6 describes the distribution fitting process at these measurement loca-

tions while Chapter 7 describes how RTLs are estimated between measurement

locations.
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Figure 4.8: Map of Tier 1, 2, and 3 stations retained for analysis.

Table 4.3: Counts of station Tiers used for distribution fitting.

Tier Count

1 6775

2 509

3 680
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Chapter 5

Depth-to-Load Conversions

With the exclusion of SNOTEL stations, relatively few weather stations pro-

vide direct measurements of snow load. This requires the snow load to be esti-

mated from snow depth. There are multiple national [Tobiasson and Greatorex,

1997], regional [Sack and Sheikh-Taheri, 1986, Sturm et al., 2010], and state-

specific [Theisen et al., 2004, SEAO, 2007, DeBock et al., 2016, Meehleis et al.,

2020] depth-to-load conversion models that are currently used to obtain de-

sign ground snow loads. These models characterize the relationship between

the maximum (or 50-year) snow load with the maximum (or 50-year) snow

depth. Each of these models effectively characterize expected snow densities

for a particular region or station type, but none are equipped to characterize

snow loads at a continental scale in both high and low accumulation regions.

This chapter describes efforts to develop a universal depth-to-load conver-

sion model that accounts for differences in local climate and resolves the non-

linear density relationship that occurs between low and high (usually moun-

tainous) accumulation regions. The analysis draws inspiration from Hill et al.

[2019], but the model is specifically designed to predict annual maximum snow

loads, rather than daily snow loads. Additionally, this model is the first to

resolve the non-linear gap between the depth/density relationships observed

among high altitude Snowpack Telemetry (SNOTEL) stations, and low alti-
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tude first-order stations (FOS).

The new models are shown to be competitively accurate in estimating snow

loads on a variety of station networks. This is in contrast to existing methods

which show strong accuracy on the specific station type or region for which it

was developed. Such a model allows for the use of a single depth-to-load con-

version method for all locations in the conterminous United States, eliminating

the need for different depth-to-load conversion models in different regions or

circumstances.

Chapter Highlights:

• A brief summary of the datasets that were used to develop a universal depth-

to-load conversion model.

• A review of current depth-to-load conversion methods, including hydrologic

models that predict daily, rather than annual maximum, snow loads.

• The introduction of a universal depth-to-load conversion model using the

random forests method.

• A comparison of the accuracy of new and existing models on various station

networks.

5.1. Data Consolidation

The core dataset for the depth-to-load conversion models was the global histor-

ical climatological network - daily (GHCND) [Menne et al., 2012] described in

Chapter 4. Relevant observations from the GHCND (excluding Canadian loca-

tions) were taken from SNOTEL stations, located at high altitudes in western
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states, and FOSs generally located at airports scattered across the country.

These observations were supplemented with Snow Course (SC) observations

from the Natural Resources Conservation Service (NRCS). Additional supple-

mental data came from region specific datasets in Maine (ME) [Maine Ge-

ological Survery, 2020], New York (NY) [NRCC, 2020], and California (CA)

[CDWR, 2020]. These supplemental data were necessary to overcome the lack

of direct load measurements in eastern states. However, only GHCND data was

used for reliability-targeted load (RTL) calculations as these data were most

consistent and dependable in terms of accessibility and quality control.

Whenever a station was simultaneously reporting in two separate networks,

measurements were retained only from the station network that was easier to

access. The data from each of these sources include measurements of snow

depth (SNWD) and the water equivalent of snow on the ground (WESD),

which is equivalent to snow load. Available station location information in each

network includes elevation (E), latitude (LAT) and longitude (LON). Table 5.1

shows the measurement frequency, sample size (yearly maximum ratio), and

indication of quality control checks prior to data publication. Measurements

Table 5.1: Comparison of measurement frequency, data availability, and provided
quality control (QC) checks for the considered station networks.

Network Frequency Stations N QC

SNOTEL Daily 825 13,465 Yes

FOS Daily 177 4,265 Yes

SC Monthly 742 13,640 No

ME weekly 218 3,046 Yes

NY Bi-Monthly 456 10,862 No

CA Daily 55 601 No

from these data sources were combined into a single dataset of SNWD/WESD
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pairs and grouped by snow season, which covers October of previous year to

June of listed year.

The variable of interest is the ratio ρd(i, j) = max(WESDi,j)/max(SNWDi,j),

where i and j represent stations and years respectively. Because the annual

maximum measurements of WESD and SNWD need not occur on the same

day, final values of the ρd are not observed ratios, but representations of the

maximum snow density for each station/water year pair. The ratio ρd will be

referred to as “specific gravity” throughout the remainder of this chapter.

5.1.1. Climate Normals

Station meta data were supplemented with 30-year climate normals (i.e. aver-

ages) obtained from 800 meter resolution PRISM maps [Daly et al., 2008]. The

inclusion of these climate normals makes it possible to account for the effect of

climate on snow densities, motivated by the recent success of Hill et al. [2019]

in a similar approach. Table 5.2 lists the PRISM climate normals considered in

model development. Site-specific values of each climate variable were extracted

from the PRISM maps using bilinear interpolation. Other variables considered

in model development but not obtained via the climate grids are provided in

Table 5.3.

Table 5.2: Description of 30-year normals used as explanatory variables in
the regression tree models.

Name Description Units Variable

MCMT Mean Coldest Month Temperature ◦C Tc

MWMT Mean Warmest Month Temperature ◦C Tw

TD MWMT - MCMT ◦C Td

PPTWT Winter Precipitation (Dec - Feb) mm Pt
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Table 5.3: Description of 30-year normals used as explanatory variables in the
regression tree models.

Name Description Units Variable

SNWD Snow Depth mm h

D2C Distance to Coast km Dc

Elevation Elevation m E

SMONTH Month of Max Depth (Oct - 1, Jun - 9) Ms

5.2. Data Processing

Quality control checks were performed both on the data and the meta-data. For

station meta-data, misreported geographical coordinates created mismatches

between the mapped climate normals and the actual climate of the measure-

ments. Potentially misreported locations were flagged by comparing the official

station elevation and the PRISM elevation map. Stations were removed from

consideration if the officially listed elevation was less than 0.8 times the low-

est PRISM elevation, or greater than 1.2 times the highest PRISM elevation,

observed in a 3 mile radius. This resulted in the removal of 24 candidate sta-

tions: one from the CA network, five from the NY network, and 18 from the

SC network.

GHCND data were subject to the same automatic and manual quality con-

trol measures described in Chapter 4. For supplemental networks, any obser-

vations flagged by the data administrators were also removed prior to analysis,

but no additional manual checks of individual observations were performed.

All station networks were subject to coverage filters described in Chapter 4,

though the exception allowing observations above the median to be retained

regardless of coverage was not allowed. The removal of the median exception

was in part due to smaller periods of record where both SNWD and WESD
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are recorded which makes estimates of the median less robust.

The smaller sample size issue is exacerbated by the need for both measures

to pass coverage filters each year. This is in contrast to the condition required

for distribution fitting which was that at least one measure passed the coverage

filter. At the same time, it is crucial that the maximum SNWD and snow load

for each year are correctly represented in order to ensure the validity of the

ρd measurements. In order to prevent excessive loss of observations at under-

represented locations, stations in the FOSs, NY, and ME were only required

to have observations in three of the four months in which a maximum snow

load was most likely to occur.

Observations of ρd above 0.8 were removed from consideration, which is

a density typical of “firn” (i.e. pre-glacial) snow [Copland, 2020]. Similarly,

observations of ρd below 0.05 were also removed per recommendations from

members of the project steering committee. The sample sizes provided in Table

5.1 represent the observations that remain after data filters are applied.

5.3. Current Methodologies

Numerous region-specific models have been developed to estimate snow loads

from snow depth. Some methods focus only on estimating annual maximum or

50-year snow loads, while other methods attempt to estimate snow loads on a

monthly or daily scale. Additionally, some methods predict load (pg) directly,

while others predict specific gravity which is easily converted to snow load.

This section considers a variety of density methods that can be readily used

to predict annual maximum snow loads. For convenience, all equations are

converted from their original forms to show the estimated values of pg.
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5.3.1. Rocky Mountain Conversion Density

The Rocky Mountain Conversion Density (RMCD) models snow loads in west-

ern states solely as a function function of SNWD, denoted as h in the equation

and measured in inches [Sack and Sheikh-Taheri, 1986]. This method is a two

part linear regression represented as

pg(h) =


0.90 ∗ (h) , h ≤ 22

2.36 ∗ (h)− 31.9, h > 22

.

Coefficients were determined using high elevation snow course data, making

the model most suitable to to predict snow loads in western states where snow

is expected to accumulate throughout the season.

5.3.2. Colorado Models

The state of Colorado developed a similar depth-to-load model using high

elevation SNOTEL and snow course data specific to their state [DeBock et al.,

2016]. Their study acknowledged that the resulting power curve was most

appropriately applied to “compacted” snow sites subject to consistent snow

accumulation. This model is given as

pg(h) = COLH(h) = 0.584 ∗ (h)1.25 .

However, this curve overestimates snow loads at “settled” snow sites, which

are locations where the snow does not always persist throughout the season. For

such locations, the Colorado study made use of the depth-to-load model (TOB)

developed by Tobiasson and Greatorex [1997] using data from FOSs. These

stations tend to be more representative of populated locations not subject to
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consistent snow accumulations. This model is defined as

pg(h) = TOB(h) = 0.279 ∗ (h)1.36 .

The combined Colorado model (COL) takes a weighted average of the predic-

tions from both curve at locations with elevations falling between those typical

of SNOTEL stations and Colorado’s FOSs.

It is worth noting that the TOB model was developed by relating 50-

year snow depths to 50-year snow loads. An annual version of this same curve

was obtained via personal communication with the TOB model authors. This

equation is defined as

pg(h) = 0.342 ∗ (h)1.32 .

It has been confirmed that the loads resulting from this annual alternative are

not appreciably different than those obtained from the original TOB model.

5.3.3. Sturm’s Equations

Alternative depth-to-load conversion models come from research in hydrology

and attempt to model daily snow densities for various climate classes. One

notable method is described by Sturm et al. [2010], who created a bulk density

equation with varying coefficients based on climate class. This model can be

summarized by the following equation:

pg(h, d, Cc) = ((ρmax − ρ0)
[
1− e−k1∗(h∗2.54)−k2∗d

]
+ ρ0) ∗ 0.2048 ∗ h

Here, Cc is the distinct climate class indicating where the measurement of h
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was taken and ρmax, ρ0, k1 and k2 are parameters specific to the particular Cc.

These values are summarized in Table 5.4. This model was used in the most

recent Utah snow load study [Bean et al., 2018] and is referred to as STURM

for the remainder of this chapter. It has been noted that this model likely

Table 5.4: Parameters for Sturm’s equation for
each distinct climate class.

CC ρmax ρ0 k1 k2

Alpine 0.598 0.224 0.001 0.004

Maritime 0.598 0.258 0.001 0.004

Prairie 0.594 0.233 0.02 0.003

Tundra 0.363 0.243 0.003 0.005

Taiga 0.217 0.217 0.0000 0.0000

over-estimates ground snow loads at most low elevation locations in Utah.

This conservatism was a desirable feature in the context of Utah snow load

study, but perhaps not appropriate on a national scale.

5.3.4. Hill’s Climate Map Approach

Like Sturm et al. [2010], Hill et al. [2019] developed a regression model for

estimating WESD that can account for environmental variability in a continu-

ous fashion rather than using discrete climate classes. This was done by using

30-year gridded climate normals obtained from the ClimateNA project [Wang

et al., 2016]. This model has separate equations for the snow accumulation and

ablation phases of each water year. The model was fit using SNOTEL station
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data and is expressed in final form as

pg(h, Pt(u), Td(u), DY )

=


0.2048 ∗ 0.053h0.948P 0.170

t T−0.131
d D0.292

Y Dy < 180

0.2048 ∗ 0.0481h1.0395P 0.1699
t T−0.0461

d D0.1804
y Dy ≥ 180.

where Dy represents the day of he snow season and Pt and Td are defined

in Table 5.2. Hill et al. [2019] demonstrates that the consideration of climate

variables improves upon Sturm et al. [2010] in terms of accuracy. While not

specifically designed for annual maximum depths, the model can be readily

used for this purpose.

5.3.5. Bulk Density Equations

There exists a large body of research that aims at directly modeling ρd. These

methods are often referred to as “bulk density equations” and tend to be

simple and easy to scale nationally. The bulk density equations considered

in this chapter are compared in Avanzi et al. [2015] on a limited number of

SNOTEL stations. This chapter expands the original comparison by Avanzi

et al. [2015] to a national scale.

5.3.6. Other Methods

Other depth-to-load conversion methods do exist, most notably the Montana-

specific depth-to-load equations applied in Theisen et al. [2004]. Other, more

complicated time series models also exist [Meløysund et al., 2007, McCreight

and Small, 2014], but require measurements on a time scale not feasible at

most weather stations. As such, model comparisons in this chapter are limited
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to methods that can readily extended to a national scale.

5.4. Modern Regression Approach

One major limitation of all of the above described approaches is that each

model was developed using a particular weather station type, which limits its

efficacy in different regions or climates. Most are developed using only high

elevation SNOTEL data with snow accumulation patterns very different from

most populated locations. The Tobiasson and Greatorex [1997] model is an

important exception as it was developed with FOS data that is more relevant

to most populated locations, but perhaps not relevant to populated locations

that receive more snow than is typically observed at FOS locations. Using

existing depth-to-load conversion models would require different models to be

selected for use in different parts of the country, requiring extensive knowledge

of the varied climate of the country that is beyond the expertise of the authors.

Rather, the authors use modern regression approaches to characterize dif-

ferences in snow density properties across the country. These models are able

to characterize high-ordered interactions and non-linear effects across time,

depth, and climate, to provide accurate estimates of snow densities at both

FOS and SNOTEL locations. The key advantage of the modern regression ap-

proach is the elimination of the need for different models in different climates

and at different elevations.

The model of choice is named random forests (RF), which is an extension of

regression trees (rtree). Both models make use of gridded climate data similar

to Hill et al. [2019]. The following subsections describe the structure of these

models as well as a brief descriptions of their implementation.
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5.4.1. Regression Trees

Regression trees [Breiman et al., 1984] are a machine learning technique that

are popular due to their relatively straightforward representations. Regression

trees are comprised of a number of binary splits on the predictor variables

which results in a set of disjoint prediction “branches.” The tree is fit using

a greedy algorithm that at each step makes a split on the predictor variable

that results in the greatest possible reduction in the Residual Sum of Squares

(RSS):

RSS =
J∑
j=1

∑
i∈Rj

(yi − ŷRj )
2

where ŷRj represents the predicted values of the response variable for all ob-

servations falling into the Rjth terminal node (i.e. bin with no more splits),

and J represents the total number of terminal nodes that result from the pro-

posed split in the regression tree. Predicted values from the tree in this case

are simply the average value of ρd for all observations that fall into the same

terminal node.

Fully grown trees can fit the input data perfectly, which usually leads to

poor accuracy when predicting new observations. Instead, trees are “pruned”

(by means of a cost-complexity parameter) so that the tree is large enough to

be accurate, but small enough to generalize to new observations. To prune the

tree in this analysis, it was required that each terminal node have no less than

1% of the total number of observations and that each split resulted in at least

a 0.1% increase in the total variance of ρd explained by the model, similar to

Hill et al. [2019].

A representation of the final regression tree for predicting ρd is observed in

Figure 5.1. Observations fall to the left if the listed condition at each split is
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met, and falls to the right otherwise. For example, at the first split, observations

fall to the left if the given snow depth is less than e7/25.4 ≈ 43 inches. For

the low depth measurements, observations fall again to the left if the mean

temperature of the warmest month is greater than 21 degrees Celsius. This

decision making process continues until the observation falls into a terminal

node and is assigned the average value of the node. Notice that the second level

splits occur on different variables for the low and high depth observations.

These differences highlight the ability of the regression tree to characterize

interactions among the variables, as certain variables are only important in

characterizing certain subsets of the data.

The tree predicts ρd rather than pg. These predictions are readily converted

to snow loads as

pg = 0.2048ρdh

While more complicated than linear regression, the regression tree is a rela-

tively simple alternative among possible machine learning approaches. Despite

its relative simplicity, the model is surprisingly effective at estimating snow

loads as discussed in Section 5.5. However, the discrete “jumps” in densities

as observations transition between nodes creates significant issues in the dis-

tribution fitting approaches described in Chapter 6. This problem is resolved

by smoothing the transitions between terminal nodes with a RF model.

5.4.2. Random Forests

Random forest models are simply collections of regression trees where each

tree is fit using a bootstrap sample of the original data, and each split in the

tree is made using a random subset of the available variables. The random
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bootstraps and subsets encourage diversity among the trees, so that each tree

predicts a slightly different value for each input observation. Final predictions

for an observation are simply an average prediction made from all trees in the

forest. This average has the effect of smoothing the regression tree predictions

and tends to improve the accuracy compared to using a single regression tree.

For this analysis, the RF model is fit using 201 regression trees, and each tree

is allowed to grow until each terminal node contains no less than 0.5% of the

total number of training observations.

The improvement in predictive accuracy, however, comes at the cost of

model interpretability, as the RF model consists of many trees that are impos-

sible to effectively visualize. However, it could be argued that a large collection

of linear regression models bound together by a model selection algorithm has

its own interpretation difficulties. RF models are best visualized by their out-

puts, as is explored in Section 5.6. Random forests also provide a unique and

robust measure of variable importance not possible in linear models. This met-

ric is obtained by determining the decrease in accuracy that occurs when the

information for one of the explanatory variables is randomly permuted. Vari-

ables that, when permuted, result in greater losses of predictive accuracy are

deemed more important. Figure 5.2 shows that the most important variable

in predicting ρd (not pg) is the month in which the maximum snow depth

occurred, followed by winter precipitation and snow depth.

The importance of the month variable reflects the tendency for snow density

to increase throughout the season. It is therefore possible that the RF model

will predict a higher snow load for depth slightly lower than the annual max-

imum that occurs later in the season. While the models were estimated using

only annual maximum depths, estimates of snow load are made using monthly
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Figure 5.2: Variable importance plot for the RF model. Variables associated with a

higher percentage increase in mean square error (MSE) are more important in

prediction.

maximum depths, retaining only the maximum estimated load for each season.

This approach will give the same or slightly higher estimates of annual snow

load than compared to predictions made using only annual maximum depths.

5.5. Accuracy Comparisons

All available observations were used when creating the final RF model. How-

ever, it is also important to determine the effectiveness of both new and existing

models in predicting snow depths on new information. To do this, a secondary

version of the random forest and regression tree models were split using only a
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subset of the available data (i.e. a training set) and evaluated on the remaining

data not used during model fitting (i.e. a test set). The creation of these two

subsets was performed at the station level, not the observation level, such that

the locations in the training and test sets are fully distinct. A summary of the

total number of stations and observations for each station network is given in

Table 5.5. Figure 5.3 shows the geographical locations of the training and test

set stations.

Table 5.5: Summary of the number of stations (ST) and observations
(N) in the training and test sets.

Network Train Test

N ST N ST

SNOTEL 7,244 434 6,221 391

FOS 2,413 103 1,852 74

SC 6,481 355 7,159 387

ME 1,688 113 1,358 105

NY 5,431 207 5,431 249

CA 266 335 25 30

Splitting the data in this manner demonstrates the ability of the regression

tree and RF methods to generalize to locations that were not used in their

training. For this analysis, four different accuracy metrics were considered, all

comparing the difference between the actual and estimated snow loads (psf).

These metrics include:

• Mean Absolute Error (MAE): shows the average error (skewed high by large

loads).

• Mean Error (ME): gives a sense of any systematic bias in predictions.

• Median Absolute Error (MedAE): shows the “typical” error and is less sen-

sitive to occasionally large errors.
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Figure 5.3: Geographic locations of training and testing stations.

• Root Mean Square Error (RMSE): most sensitive to large errors, when com-

pared to the MedAE it provides a sense of the error skewness (greater dif-

ference between RMSE and MedAE means greater skew).

The results of the final comparison of methods on the testing dataset can

be seen in Figure 5.4. This shows that the RF model outperforms all other

methods on the combined dataset and is unbiased in prediction, with the rtree

method not far behind. This is not unexpected as this is the only model de-

veloped using a combined dataset. Note that the Colorado (COL) method

employs the weighted average approach based on elevation as developed in the

Colorado report. This was designed to be Colorado specific and not expected

to scale nationally. The same could be said for the RMCD. In spite of this,

the COL and RMCD methods outperform most of the considered bulk density

equations on the pg dataset, as well as the hydrologic approaches of Hill and
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Sturm.

The TOB method performs poorly on the combined dataset but was never

intended to be used at SNOTEL station locations, which make up the majority

of the combined dataset. A true test of the new RF approach is its ability to

maintain performance on specific subsets of the data, such as FOS, which are

more relevant stations for most populated locations. This accuracy comparison

is visualized in Figure 5.5. For this subset, the accuracy of the TOB model is

best (with the COL model being nearly identical to the TOB model in this

situation), but the RF model is a close second. This suggests that the Tobias-

son and Greatorex [1997] model is effective when used in its intended dataset,

and that the RF model is similarly effective. The important implication is that

the RF model is competitive (in terms of accuracy) across station networks,

demonstrating its ability to learn differences in snow densities that occur be-

tween different climates and station types. Similar results were observed on the

other station networks and using other accuracy comparison approaches, such

as spatial cross validation Meyer et al. [2019]. This validates the use of the

RF model as a universal approach for estimating snow densities on a national

scale.

5.6. Site-Specific Implications

The ability of the RF model to model the interaction between ρd, time, and

climate is demonstrated in Figures 5.6, 5.7. The low and high elevation depth-

to-load models from DeBock et al. [2016], serve as reference lines for the RF

predictions. Figure 5.6 shows that the RF predictions follow the TOB curve al-

most exactly in Salt Lake (a valley location) but follow the Colorado mountain
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Figure 5.4: Comparison of snow load estimation methods on all stations in the

testing dataset. The x-axis is measured in psf.

snow curve almost exactly in Brighton (a popular ski area). Similar effects can

be seen at two eastern locations in Figure 5.7, though the RF model seems to

slightly over-predict average loads in the Concord, NH case. While not perfect,

these figures demonstrate the ability of the RF model to appropriately adjust

load predictions based on climate, strengthening the argument for its use as a

universal depth-to-load conversion approach.

5.7. Future Work

This chapter has demonstrated that the RF model provides accurate estimates

of annual maximum snow loads from snow depths across a variety of station

networks. All considered models estimated annual maximum snow loads, which

allows for combinations of direct and indirect measurements of loads in the dis-

tribution fitting step described in Chapter 6. Depth-to-load conversion methods

not considered in this chapter, including those intended for use with 50-year
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Figure 5.5: Comparison of snow load estimation methods on FOS in the testing

dataset. The x-axis is measured in psf.

snow depths rather than annual snow depths, deserve further investigation in

future comparisons.

Another area where further investigation is warranted is the impact of the

depth-to-load conversion model on the distribution fitting of the annual ground

snow load. All of the models considered in this chapter, including the pro-

posed regression tree and random forests, are smoothing methods which have

the intrinsic effect of a reduced variability in the predicted loads. As such,

they all have the potential to condense the distribution fitted to the loads,

leading to an underestimation of any extreme event like the 50-year load. De-

Bock et al. [2016] demonstrated that the Colorado depth-to-load conversion

models resulted in unbiased estimates of annual ground snow load probabil-

ity distribution parameters, but the available data to make this determination

was overwhelmingly from SC and SNOTEL stations. Such results are consis-

tent with the authors’ observations of unbiased estimations of 50-year events

using indirect measurements of snow loads at SNOTEL stations, but similar
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Figure 5.6: Comparison of the newly proposed depth-to-load conversion predictions

against the high (COLH) and low (TOB) elevation models described in DeBock

et al. [2016] at locations in the state of Utah. Scatterplots show measured

depth/load pairs at each location.

comparisons of 50-year loads using direct and indirect measurements at FOSs

proved much more variable and biased (high or low) across all approaches (new

and existing). Limited information was available for these preliminary distri-

bution fitting comparisons at FOSs and more study is needed to investigate

the potential bias on distribution fits at these locations.

While there is no substitute for direct measurements of load, the RF model

presented in this chapter has proven effective in estimating snow loads at an

annual scale. These estimates are crucial to supplementing the lack of snow

load measurements at most weather stations across the country. The key ad-

vantage of the RF approach is the elimination of the need for different model
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Figure 5.7: Comparison of the newly proposed depth-to-load conversion predictions

against the high (COLH) and low (TOB) elevation models described in DeBock

et al. [2016] at locations in eastern states. Scatterplots show measured depth/load

pairs at each location.

equations for different regions/elevations, which allows for the newly proposed

methodology to be easily deployed on a national scale.
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Chapter 6

Site-Specific Distribution

Fitting

6.1. Introduction

The central-element of the reliability-targeted design ground snow load (RTL)

estimation problem is the assumed distribution of the annual ground snow

loads. The RTLs require accurate estimations of the extreme right tail of the

ground snow load probability-distribution, which makes RTLs sensitive to even

small changes in the estimated distribution parameters. Robust estimates of the

ground snow load distribution parameters are difficult to obtain given the short

periods of record relative to the targeted probabilities of failure. The problem

is exacerbated by the occasional misreported maximums that go undetected in

the quality control step described in Chapter 4.

This chapter describes a regional generalized extreme value (GEV) distri-

bution fitting approach, where estimates of the distribution tail shape are in-

formed by geographically close stations with similar patterns of snow accumula-

tion. The third parameter of the GEV distribution, called the shape parameter,

provides greater flexibility in modeling the shape of the upper tail of extreme

ground snow loads than can be obtained with traditional two-parameter dis-

tributions. A lower shape parameter results in a “lighter” upper-tail where
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extreme snow events are less likely than the same distribution with a higher

shape parameter or “heavier” upper-tail where extreme snow events are more

likely. The analysis reveals that high altitude and far north locations have

lighter upper-tailed distributions than would be expected with the log-normal

distribution, while certain mid-latitude locations known for their occasional

“superstorms” have heavier distribution tails than would be expected with the

log-normal distribution.

The chapter also describes an alternative distribution fitting approach em-

ployed in places that consistently have annual maximum snow loads equal to

zero. The result is a set of geographically consistent RTLs that accurately

reflect regional differences in snow accumulation patterns across the country.

Chapter Highlights:

• A review of alternative distribution fitting approaches.

• A description of the regional smoothing of the GEV shape parameter to

ensure robust estimations of the upper tail of the ground snow load distri-

butions.

• A summary of an alternative distribution fitting approach for locations with

mostly zero-valued annual snow load maximums.

• A discussion of practical constraints used to ensure consistent RTL esti-

mates.
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6.2. Previous Approaches

Extreme value analysis has a relatively long history with a wide variety of

applications [Gumbel, 2004]. Probabilistic characterizations of environmental

hazards have been an integral piece of structural reliability analysis since the

inception of load resistance factor design in the late 1960s [Ellingwood, 2000].

The seminal work of Ellingwood et al. [1980] defined a load factor that related

a 50-year ground snow load to the RTL by fitting log-normal distributions to

annual maximum ground snow loads at eight locations and deriving a Extreme

Value Type I roof load distribution at each location. The mean and coefficient

of variation (COV) at each location were then averaged to create a single

probability model for roof loads that resulted in the current 1.6 snow load

factor defined in ASCE 7. The averaging of the site-specific coefficients made

this final probability model less sensitive to changes in the input data than

would have been the case if RTLs were calculated for each individual site.

A region-specific set of RTLs were proposed by Lee and Rosowsky [2005],

though this approach also relied upon an averaging of individual probability

distributions within each region using an expanded set of ground snow load

measurement locations.

Since that time, the primary focus of extreme snow load analysis has been

on accurate characterizations of 50-year events, both at the national [Tobiasson

and Greatorex, 1997] and state levels [Tobiasson et al., 2002, Sack, 2015, Sack

et al., 2016, Meehleis et al., 2020]. Each of these national and state-specific re-

ports have used a variety of two-parameter probability distributions to model

annual maximum ground snow loads, though the log-normal distribution ap-

pears to be most common. The distribution fitting approaches have varied

widely in each study, with some studies fitting distributions to all annual max-
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imums and others fitting distributions to the upper tails of the distributions.

In every case, the focus on 50-year events reduces the need for extreme tail

extrapolation, which is why estimated 50-year events tend to be less sensitive

to changes in the estimated distribution parameters than direct estimates of

RTLs.

The challenge of robust estimates of site-specific RTLs is demonstrated in

DeBock et al. [2017], which acknowledged the difficulty of obtaining consistent

estimates of RTLs from short periods of record. Their remedy for this issue

involved clustering measurement locations into six (consolidated to four for

this study) climate regions in an adaptation of a region of influence approach

[BURN, 1990]. Annual maximum snow loads from individual sites were then

scaled to have a common 95th percentile to create “super-stations” with more

observations in the distribution tails than could be obtained at any individual

site. The estimated parameters resulting from the combined distributions were

then adjusted to better reflect site specific conditions [DeBock et al., 2017].

This process highlights the perhaps unavoidable need for a site-specific relia-

bility analysis to be partially informed by available information at neighboring

locations with similar snow accumulation patterns.

The region of influence approach requires expert opinion and local knowl-

edge to cluster the stations, both of which are difficult to scale nationally.

Further, it is unclear how clustering might be employed in locations where

climate regions are not highly correlated with elevation. Regardless, the region

of influence approach described in DeBock et al. [2017] provides a template

for leveraging information from surrounding stations in the calculation of site-

specific RTLs.
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6.3. The Generalized Extreme Value Distribu-

tion

One critical observation in DeBock et al. [2017] are the distinctly different

probability distribution tail behaviors observed in high vs. low elevation lo-

cations. High elevation stations subject to consistent snow accumulation had

lighter distribution tails than low elevation locations subject to intermittent

snow accumulation. These different tail behaviors were expressed via differ-

ences in the COV, though all measurement locations in DeBock et al. [2016]

were assumed to follow a log-normal distribution. The GEV distribution is a

collection of three two-parameter extreme value distributions tied together by

a third parameter called the shape parameter. The flexibility in modeling the

distribution shape offered by the third parameter allows for better character-

izations of the differing tail behaviors observed in the Colorado study and is

a popular distribution for estimating extreme hydrologic events [Martins and

Stedinger, 2000, Feng et al., 2007, Panagoulia et al., 2014].

The GEV distribution has the nice theoretical property that any set of

extreme measurements (such as annual maximum loads) are guaranteed to

converge to one of the three GEV distribution types given a sufficiently large

sample size. A shape parameter of zero results in the Type I or Gumbel dis-

tribution, which has a lighter tail than the log-normal distribution. A shape

parameter greater than zero results in a Frechet or Type II distribution and

may have a heavier tail than the log-normal distribution based on the magni-

tude of the shape parameter. Finally, a shape parameter less than zero follows

a reversed Weibull distribution with a finite upper bound. The probability den-

sity function of the GEV distribution, f(x) in Equation 6.1, and cumulative
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distribution function (CDF), F (x) in Equation 6.2, are defined below in terms

of location µ, scale σ, and shape ξ. The possible range of values for Equa-

tions 6.1 and 6.2 are given in Equation 6.3. Figure 1.1 in Chapter 1 provides

examples of distribution shapes resulting from each distribution type.

f(x) =


1
σ

[
1 + ξ

(x−µ
σ

)](−1/ξ)−1
exp

[
−
[
1 + ξ

(x−µ
σ

)]−1/ξ
]

ξ 6= 0

1
σ exp

[
−
(x−µ

σ + exp
[
−
(x−µ

σ

)])]
ξ = 0

(6.1)

F (x) =


exp

[
−
[
1 + ξ

(x−µ
σ

)]−1/ξ
]

ξ 6= 0

exp
[
− exp

[
−
(x−µ

σ

)]]
ξ = 0

(6.2)

x ∈


(−∞, µ− σ

ξ ] ξ < 0

(−∞,∞) ξ = 0

[µ− σ
ξ ,∞) ξ > 0

(6.3)

6.4. Distribution Fitting

One common approach for estimating extreme events is distribution tail fit-

ting, where distribution parameters are derived by focusing on only a portion

of the observations in the upper tail [Nowak and Collins, 2012]. The result has

the advantage of providing more accurate estimates of the upper tail of the

distribution (which is usually the primary interest in reliability analysis), but

with the disadvantage of increased sensitivity in parameter estimates due to

the effective reduction in sample size. Figure 6.1 show example distributions fit

to annual maximum snow loads in Denver, Colorado. It should be noted that
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there is record of at least one 30+ psf snow load in the city though this value

was not recorded in the available data from the Global Historical Climatologi-

cal Network - Daily (GHCND) Dataset. Regardless, Figure 6.1 still effectively

illustrates differences in the estimated quantiles from each distribution fitting

approach. The log-normal distribution fit to all of the observations fails to

properly characterize the upper tail of the distribution as well as the tail fit

log-normal distribution. However, notice that the GEV distribution character-

izes both the upper and lower tail of the distribution of the data. The flexibility

offered by the shape parameter is reflected in the curve of the GEV distribu-

tion on the probability plot. This provides evidence that the GEV distribution

can properly characterize tail behavior like a tail-fitting approach, while main-

taining the relative stability in parameter estimates that comes when fitting all

observations. In this study, GEV distributions are fit to annual maximum snow

loads using L-moments, a variant of probability weighted moments [Hosking

et al., 1985] known to produce parameter estimates that are robust to outlier

values and small sample sizes [Hosking, 1990]. Success using L-moments to

estimate 50-year ground snow loads was recently demonstrated by Cho and

Jacobs [2020].

6.4.1. Low Outlier Screens

The shape parameter has a substantial influence on the relative magnitude of

the RTL estimates. The shape parameter estimates are sensitive to anoma-

lously low maximums usually due to poor reporting during a particular snow

year. While Chapter 4 describes extensive efforts to remove such observations,

the undetected anomalous low values that persist disrupt accurate estimations

of the distribution shape. These low values often manifest themselves in the
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Figure 6.1: Example of various distributions fit to annual maximum loads observed

in Denver, CO. The left shows probability plots with distributions overlaid. The right

shows estimated quantiles (0.98 - 50 year to 0.99 - 1,000 year) for each distribution.

form of a negative estimate of the shape parameter. While the GEV distribu-

tion is intended to be fit to all observations, it is reasonable to assume that

the lowest valued maximums should not have undue influence on the estimated

distribution shape. This in mind, an automatic screening strategy is employed

that:

1. Fits three separate GEV distributions using L-moments at each location:

(a) using all data,

(b) using all data except the lowest recorded maximum,

(c) using all data except the lowest two recorded maximums.

2. If the shape parameter in (b) or (c) is 0.1 units larger than the shape

parameter in (a) and the shape parameter in (a) is negative, then discard

the (a) distribution fit. If both conditions are not met, then use the (a)

distribution fit and skip step 3.
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3. If the shape parameter in (c) is 0.1 units larger than the shape param-

eter in (a) and the shape parameter in (b) is negative then use the (c)

distribution fit. Otherwise, use the (b) distribution fit.

This strategy results in the removal of 765 low non-zero maximum values from

the more than 0.5 million original maximum values.

6.4.2. Distribution Screens

Despite best efforts to remove misreported values from the dataset, the realities

of imperfect data make distribution fits untenable at some locations. Poor fits

are flagged by detecting anomalous values of the shape parameter. Hosking

[1990] notes that −0.5 < ξ < 0.5 in practice and that estimated parameters

are no longer asymptotically efficient outside of this range. For this reason, all

measurement locations with initial shape parameter estimates below -0.5 or

above 0.5 were removed from consideration. This resulted in the removal of 83

of the 9715 candidate Tier 1 and 2 stations.

6.4.3. Shape Parameter Smoothing

The key advantage of the GEV distribution is greater flexibility in modeling the

upper tail of the distribution with the shape parameter. However, this flexibility

comes with the need to estimate an additional parameter, which is difficult to

accomplish with short periods of record. Even small changes in parameters,

especially the shape parameter, can cause substantial changes in the estimated

RTLs. Similar sensitivity is also observed fitting log-normal distributions. Left

unrestrained, this sensitivity can result in large disparities in estimated RTLs

within the same municipality. Consider for example the disparities in RTLs
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Figure 6.2: Sample of raw (red) and adjusted (blue) 50 year (solid) and RTL

(dashed) at two measurement locations in Baltimore, MD.

observed at two separate measurement locations in Baltimore, MD, observed

in Figure 6.2. One location recorded a 30 psf snow load event while the other,

due to differences in recording periods, records no measurements much larger

than 20 psf. Left unrestrained (i.e. red lines), the RTL (which are divided by 1.6

to be comparable to 50 year loads) in one location is nearly triple the RTL in

the other location. These disparities reinforce the need to leverage surrounding

information to inform parameter estimates. The blue lines shown in Figure 6.2

illustrate the results of measures described in this section to ensure consistency

in geographically close and climatically similar locations.

Despite these occasionally large site-specific differences due to misreported

maximums or small sample sizes, the average distribution shape parameters

show strong and consistent local patterns. These patterns seem to be strongly

related to local snow accumulation patterns: locations whose peak loads are

the result of a few major storms tend to have large shape parameters while

locations whose peak loads are the result of the accumulation of many storms

throughout the snow season tend to have small (or even negative) shape pa-

rameters. Patterns in typical snow accumulation are represented by the median
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annual maximum snow load from the available period of record. Examples

of these patterns in four ecoregions are shown in Figure 6.4. The smoothed

shape parameters include a manually applied lower bound at zero for reasons

described in Section 6.4.4. Note that some regions, such as a plains of Col-

orado, show no relationship between median loads and the estimated shape

parameters. In such cases, the shape parameter smoothing proceeds by simply

modeling any geographical trends.

The shape parameter is smoothed using the RGAM approach described in

detail in Chapter 7. The regional models adopt the following form using the

median annual ground snow load p
(med)
g :

E(ξ|p(med)
g ) = β0 + β1 log(p(med)

g + 1) + fs (LON,LAT) (6.4)

where fs (LON,LAT) is a spatial smoothing strategy described in Chapter 7.

The key model assumptions is that the shape parameter varies as a function

of snow accumulation (modeled with median load), but also exhibits spatial

patterns not fully explained by median loads. Figure 6.3 shows a map of the

smoothed shape parameter values across the country. There are certain regions

(such as the coastal Washington/Oregon, the Mid-Atlantic, Eastern Colorado,

and central North/South Dakota) that have particularly heavy-tailed annual

maximum ground snow load distributions. On the other hand, the Rocky

Mountains, Northern Minnesota, and the New England states have lighter-

tailed distributions.

After obtaining smoothed estimates of the shape parameter, the location

and scale parameters of the GEV distribution are fit using constrained maxi-

mum likelihood. This strategy allows the shape of the ground snow load prob-

ability distributions to be defined regionally, but only use site-specific data to
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Figure 6.3: Map of smoothed shape parameter values. Larger values of the shape

parameter indicate heavier-tailed probability distributions.

model the mean and variance of the snow loads.

Figure 6.5 shows that the shape parameter smoothing results in unbiased

estimates of 50-year events as compared to the original distribution estimates,

but produces slightly lower estimates of 50-year events than would have been

obtained using tail-fit parameter estimates of a log-normal distribution. Most

importantly, the shape parameter smoothing ensures consistent estimates of

the distribution tails despite the size and quality limitations of the input data.

6.4.4. Practical Constraints

The smoothing strategy described in Section 6.4.3 proved effective in ensuring

consistency in RTL estimates across the country. Two additional practical con-

straints on the shape parameters are included to ensure feasibility in design.
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Figure 6.4: Examples of original and smoothed GEV shape parameters plotted

against median annual maximum loads.

The first constraint is that smoothed shape parameters are bounded below

by zero. Negative GEV shape parameters assume a finite upper bound of the

simulated distribution values, which results in non-conservative estimates of

reliability-targeted loads for Risk Category III and IV structures. Additionally,

historical preference for the log-normal distribution means that distributions

with shape parameters equal to 0 will likely already reduce loads from their

currently defined requirements. Any further reductions of loads due to negative

shape parameters seem unwarranted until more research is done to investigate

the consequence of bounded distributions on RTL estimates.

The second constraint is that shape parameters are limited to be no larger

than 0.25. This is in line with Hosking [1990] and Ragulina and Reitan [2017],

who indicate that nearly all GEV distribution fits fall below 0.23 in hydrological
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Figure 6.5: A comparison of 98th percentile estimates for different distributions fit

to maximum load, data for all stations. Shape parameters are fixed using and

location and scale parameters are estimated using maximum likelihood estimation.

applications. 256 of the 9715 candidate stations (2.6%) were subject to the 0.25

shape parameter cap. Empirical results suggest that shape parameters beyond

this value result in untenable loads.

Finally, despite every effort to ensure high-quality distribution fits in spite

of the data limitations, there are still 23 of the final 7987 stations whose RTLs

were more than 3.5 times their estimated 50-year loads with a difference greater

than 40 psf. These locations highlight the difficulty of site-specific RTLs cal-

culations and are removed for practical reasons as the resulting RTLs are sim-

ply too high to be tolerated. The loss of these locations is countered by the

high-quality mapping techniques described in Chapter 7 that make reasonable
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inferences of design loads in the absence of the anomalous station.

6.5. Considerations for “No-Snow” Years

All distribution parameters are estimated using non-zero maximum values. To

account for areas with zero-valued maximums, a point mass at zero is added

to the CDF [Aitchison, 1955]. This point mass is proportional to the number

of years with zero-valued maximums (n0) passing coverage filters divided by

the total number of years (i.e. p0 = n0
N ). This is modeled by the CDF F ′(x) =

p0 + (1 − p0)F (x), x > 0, where F (x) represents the CDF with parameters

estimated using only non-zero snow years. This representation can be used to

adjust the estimated quantiles during Monte-Carlo simulations. For a given

xk > 0 and F ′(xk) = pk, the effective quantile for the non-zero portion of the

distribution is calculated as

F (x) =
pk − p0

1− p0
.

Thus, the 98th percentile of a site with 50% zero-valued maximums is esti-

mated using the 0.98−0.5
1−0.5 = 0.96, or 96th percentile of the distribution fit only

to the non-zero maximums. The consideration of zero-valued snow years, rec-

ommended by Buska et al. [2020], avoids bias at the nearly 50% of measurement

locations in the final dataset recording at least one zero-valued snow year.

There are some locations with such high proportions of zero-valued snow

years that there are simply not enough non-zero observations to fit a proba-

bility distribution. Simply defining the RTLs as being exactly equal to zero is

not appropriate as virtually all locations in the United States have received

some snow, including Florida [SCEC, 2020]. In order to ensure smooth transi-
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tions between “low-snow” and “no-snow” locations, it is imperative to obtain

reasonable (albeit small), non-zero estimates of RTLs at these locations. Such

locations are the motivation for the creation of the Tier 3 measurement loca-

tions (see Chapter 6), which have:

• More than 30 years of observations.

• More than 80% of the recorded maximums are zero.

• Are not already a Tier 1 or 2 station.

For these locations, the clustering threshold described in Chapter 4 is increased

from d = 4 to d = 20. The newly formed clusters are only retained if they do

not include any measurement locations already being considered as Tier 1 or

2 stations.

Tier 3 locations are located in areas that receive hardly any snow over large

geographical areas. The uniformity in snow conditions in such regions allows for

more aggressive combinations of measurements to overcome the small sample

size constraints. Such combinations are only appropriate in areas where the

lack of snow is widespread, which is why Tier 3 station combinations are only

performed in Level III ecoregions where at least 25% of the stations were Tier

3 stations. For the qualifying ecoregions:

1. Combine all Tier 3 measurements in qualifying ecoregions to create a

single super-station.

2. Determine a single annual maximum snow load for each year by:

• Retain all non-zero snow load maximums within the combined records.

• When more than one non-zero maximum exists for a given year, take

the median of the non-zero maximums as the representative measure-

ment for the year.
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3. Fit a gamma distribution to the non-zero maximums resulting from the

previous step. Due to its shape, the gamma distribution more naturally

characterizes values that are arbitrarily close to zero and only requires

the estimation of two parameters instead of three.

4. Use the resulting gamma distribution parameters for all Tier 3 measure-

ment locations within the ecoregion, but use the site-specifics estimate

of the proportion of zero-valued snow years.

This strategy prevents spurious extrapolations of large snow loads due to

the inevitable instability in site-specific distribution fits that would result from

small sample sizes. The Tier 3 distribution fits are combined with the Tier 1

and 2 station fits to provide appropriate transitions in RTLs from “low snow”

to “no snow” regions. These transitions are accomplished via the mapping

scheme described in Chapter 7.
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Chapter 7

Mapping Reliability-Targeted

Design Ground Snow Loads

7.1. Introduction

In addition to the move to reliability-targeted design ground snow loads (RTLs),

this research aims to drastically reduce the number and size of case study re-

gions in the United States. This requires high quality estimates of RTLs be-

tween the measurement locations to create continuous maps of requirements.

Newly mapped values rely upon the 7,987 site-specific RTLs computed in Chap-

ter 6 as input. This chapter describes efforts to create mapping techniques that

are:

• Accurate: Mapped values should closely reflect the input data, without

over-fitting the input data.

• Adaptive: The relationship between ground snow load and explanatory

variables such as elevation changes regionally. Mapping approaches should

account for these non-constant trends.

• Smooth: Small changes in location and/or elevation should result in pro-

portionally small changes to the estimated load.

• Scalable: Predictions should be computationally feasible on standard com-
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puters to facilitate reproducibility.

Of all mapping approaches considered, the best method for achieving the

listed objectives was a regionalized adaptation of generalized additive models

(GAMs). GAMs fit smooth trends between explanatory and response vari-

ables without having to specify a particular model form. GAMs also seam-

lessly model spatial trends in snow loads not accounted for by other variables

such as elevation. Unique GAMs were fit to site-specific RTLs within each of

the Environmental Protection Agency’s (EPA) ecoregions and use a buffering

approach to smooth the mapped values between regions. The resulting region-

alized GAMs (i.e. RGAMs) create accurate, high resolution snow load maps

that drastically reduce the number of case study regions and eliminate the dis-

crepancies in load requirements that currently exist along the borders of many

western states.

Chapter Highlights:

• A brief summary of previous mapping approaches.

• A description of the RGAM mapping approach, including region-specific

examples.

• Comparisons of accuracy between the new and previous mapping approaches.

7.2. Previous Methods

The number of locations with sufficiently long histories of snow depth/load

measurements is sparse relative to the number of locations requiring design

snow load estimates. This issue is almost always addressed by estimating de-
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sign loads between measurement locations using mapping techniques. Perhaps

the most common mapping approach is inverse distance weighting, where pre-

dictions at any location on the map are a weighted average of the surrounding

measurement locations with preference given to locations that are closer to the

prediction location [Shepard, 1968]. This approach remains a popular approach

[Lu and Wong, 2008] and is representative similar interpolation approaches that

seek to fit the input data exactly. These interpolation approaches leverage the

inuitive spatial assumption that observations located close to each other in

space tend to be more similar than observations that are far away from each

other.

Another popular set of mapping approaches are regression-based models

such as PRISM [Daly et al., 2008]. These models also account for the similari-

ties between observations due to location, but do not try to fit the input data

exactly. Rather, these models try to model the changing relationships between

the response and explanatory variables over space. There are advantages and

disadvantages to both interpolation and regression approaches, but one key

consideration in favor of regression approaches are that the site-specific RTLs

are estimates, not observations. Fitting the input RTLs exactly can lead to un-

reasonably sharp changes in mapped values over short geographical distances,

even within the boundaries of a single municipality. In contrast, regression ap-

proaches smooth over the uncertainties present in the RTL values, while still

respecting the rapid changes in load that can occur due to changes in elevation

or climate.

There is a rich history of interpolation and regression approaches for map-

ping design ground snow loads in the United States. The current ASCE 7 snow

loads are based on studies performed at the Cold Regions Research and Engi-
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neering Laboratory (CRREL) ca. 1980 and updated ca. 1993. These maps focus

on defining loads for most populated locations, but label many topographically

complex locations as “case-study regions.” Guidance for conducting case study

regions is provided by Tobiasson and Greatorex [1997] and more recently in

Buska et al. [2020], though many western states have elected to define snow

load requirements through state-level studies using a wide variety of mapping

techniques (see Sack [2015] for a relatively comprehensive review).

The states of Idaho [Al Hatailah et al., 2015], Montana [Theisen et al.,

2004], and Washington [Sack, 2015] use interpolation based approaches that

use normalized ground snow loads (NGSL) Sack and Sheikh-Taheri [1986] to

account for the effect of elevation. In contrast, the states of Colorado DeBock

et al. [2016], Utah Bean et al. [2018], Oregon SEAO [2013], and New Hampshire

Tobiasson et al. [2002] employ regression based approaches to account for the

effect of elevations on design loads. Each approach acknowledge the strong

spatial dependencies among observations that cannot be explained solely by

elevation. For this reason, each of the referenced reports attempt to account

for both elevation and spatial/climate effects in design load estimations.

While the NGSL approach has proven popular, Bean et al. [2019] illus-

trated the difficulties of using NGSLs to account for the effect of elevation

in the state of Utah. The difficulty arises from the changing relationship be-

tween ground snow loads and elevations in different states. For example, the

relationship between RTLs and elevation is log-linear in the state of Wyoming,

linear in Maryland, and virtually non-existent in Ohio (see Figure 7.1). NGSL’s

work well for linear effects, but poorly for non-linear effects. In order to effec-

tively map loads nationally (including current case study regions), it is crucial

to employ a mapping technique that can adaptively model the relationship
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between ground snow loads and elevation (or any other potential explanatory

variables). Further, new approaches are required to appropriately employ these

state-specific mapping approaches on a national scale.

Figure 7.1: Comparison of the relationship between RTLs (Risk Category II) and

elevation in Ohio (OH), Maryland (MD), and Wyoming (WY).

To address this need for a new national mapping approach, the authors

have created an adaptive mapping technique called regional generalized addi-

tive models (RGAMs) that map RTLs between measurement locations. The

remainder of the chapter is devoted to describing the data and methodology

underlying the RGAM approach.

7.3. Incorporating Climate Data

The core data of the RGAM approach are RTLs defined at the nearly 8,000

measurement location. Available meta-data for each location includes its ge-

ographical coordinates and elevation. While elevation is a strong predictor of
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snow loads in many western states, other variables such as temperature prove

to be better predictors of design loads in many eastern states.

Recent advances in streaming data mechanisms have led to the rise of grid-

ded (i.e. mapped) climate products produced by the PRISM climate group

[Daly et al., 2002, 2008]. These maps provide daily, monthly, or 30-year aver-

ages of climate-related measurements, such as temperature and precipitation,

and were used previously in Chapter 5. The state of Oregon took advantage of

these gridded data by replacing elevation with custom PRISM output as the

explanatory variable in their most recent design ground snow load predictions

[SEAO, 2013]. This is accomplished by matching the measurement locations

with their mapped climate variables using the measurement location coordi-

nates. Other uses of gridded climate data include a recent attempt by Cho

and Jacobs [2020] to define 50-year ground snow loads using output from the

Snow Data Assimilation System (SNODAD) maintained by the National Op-

erational Hydrologic Remote Sensing Center [NOHRSC, 2004]. This attempt

defines 50-year loads for each grid and entirely circumvents the use of tradi-

tional measurement locations.

The mapping approach described in this chapter uses elevation as the pri-

mary explanatory variable for predicting RTLs. In addition to elevation, the

maps make use of the PRISM climate variables:

• 1981-2010 Mean Temperature of the Coldest Month

• 1981-2010 Mean Annual Winter Precipitation (December - February).

The three variables elevation, temperature, and winter precipitation often

explain large proportions of the variability in RTLs, though their influence

changes drastically from region to region. There are also spatial patterns in

RTLs that these explanatory variables do not fully explain. For this reason,
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the RGAMs described in the following section include a regional subset strat-

egy that accounts for the ever-changing influence of the predictor variables, as

well as a spatial modeling step that accounts for local variability in RTLs left

unexplained by other climate variables.

7.4. Generalized Additive Models

GAMs provide a framework for generalizing ordinary least squares (OLS) re-

gression models to account for non-linear effects. The method can be repre-

sented as

E(pg|x) = β0 + f1 (xi1) + f2 (xi2) + . . .+ fp (xip) (7.1)

where pg represents the reliability-targeted design ground snow load and x rep-

resents the potential explanatory variables such as elevation and temperature.

There are a variety of different approaches for fitting GAMs, but typically each

smooth term fk() is estimated using penalized regression splines with smooth-

ing parameters that are selected using some form of cross-validation. These

smoothing parameters control the smoothness of each term in the model. The

cross-validation approach automatically calibrates the smoothing terms to gen-

eralize to new data. This drastically reduces the number of parameters that

need to be defined prior to modeling, which makes the approach more objective

than comparable approaches.

To account for the spatial variability in RTLs left unexplained by other

climate variables, a geographic smoothing spline is added to Equation 7.1. The

final model used to estimate RTLs is given as 7.2.
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yi = β0 + f1 (xi1) + f2 (xi2) + . . .+ fp (xip) + fs (LON,LAT) + εi (7.2)

where fs is modeled using a “splines on the sphere” approach [Wahba, 1981,

Wood, 2003]. This additional term models spatial patterns not explained by

other explanatory variables.

7.5. The Regional Smoothing Approach

The GAM modeling approach is effective at characterizing non-linear trends

between RTLs and the variables elevation, temperature, and precipitation, but

there still exists the need for a way to allow the estimated trends to vary re-

gionally. The spatial smoothing term described in Equation 7.2 is not fully

adequate in explaining continental-scale differences in RTLs. Rather there is

the need for separate models to be defined for different regions of the country.

The main issue with regional models is the inevitable discrepancies in predic-

tions that occur along region boundaries. Such is the case currently along the

boundaries of western states [Sack, 2015].

To address the boundary issues, the authors developed the following re-

gional smoothing approach.

1. Partition the country into well-defined regions. This is accomplished us-

ing the Environmental Protection Agency’s (EPA) Level III ecorergions

[CEC, 1997], which are areas that are regarded as having similar climate

and ecological characteristics. Figure 7.2 shows an example of the level

III ecoregions in the state of Colorado, though these ecoregions pay no
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respect to political boundaries such as state borders. Figures 7.3 and

7.4 provide examples of the different trends between RTLs and climate

variables depending on the eco-region.

2. Fit a regional GAM for all observations in a level III ecoregion as well as

all observations within 30 miles of the boundaries of the ecoregion (buffer

zone #1). Figure 7.5 shows an example of included stations within and

near an ecoregion boundary.

• To ensure reliable trend estimates, at least 150 observations are re-

quired to fit a GAM model within an ecoregion. If this is not auto-

matically satisfied, the buffer zone of 30 miles is increased until 150

observations are in range.

3. Make predictions on a 0.5 mile resolution grid for all locations in the

ecoregion, as well as those within 15 miles of the ecoregion boundary

(buffer zone #2).

4. Smooth predictions by taking a weighted average of ecoregion model

predictions in grid cells with predictions from two or more ecoregions

due to the second buffering. See Section 7.5.1 for details regarding the

weighted average calculation.

The described algorithm has the precision that comes with local modeling,

without the undesirable sharp boundary changes that normally come with

regional models.

7.5.1. Weighted Averaging Approach

Given a location x, RTL predictions y1, y2, ..., ym from models corresponding to

ecoregions 1 through m are obtained. Let d1, d2, ..., dm represent the shortest
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Figure 7.2: An illustration of level III ecoregions in the state of Colorado.

distances between location x and the boundaries of ecoregions 1 through m

respectively. If x is located within the boundaries of an ecoregion, the distance

between x and that ecoregion is zero. Given an arbitrary ecoregion j, the weight

wj given to yj is non-zero when dj is within some threshold S (Equation 7.3).

wj =


(
S−dj
S

)2
dj ≤ S

0 dj > S

(7.3)

A final prediction y′ for location x is calculated by Equation 7.4:

y′ =
w1y1 + w2y2 + ...+ wmym

w1 + w2 + ...+ w2
(7.4)

When a prediction is made in ecoregion j and the prediction location is

further than S units from any ecoregion border, then dj = 0 and Equation 7.4

reduces to y′ = yj . As predictions in ecoregion j approach the border of ecore-

gion k, then the weight of yk increases gradually and y′ =
yj+((S−dk)/S)2yk

1+((S−dk)/s)2
. At
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Figure 7.3: Log of RTL event vs. variables used in GAM for ecoregion 6.2.14. The

points shown in each plot represent partial residuals, which are the residuals that

would be obtained by dropping the term concerned from the model while leaving all

other estimates fixed.

the border of ecoregions j and k, y =
yj+yk

2 . Finally, as predictions progress into

ecoregion k, weights for yj decrease gradually to zero and y′ =
((S−dj)/S)2yj+yk

((S−dj)/S)2+1
.

Figure 7.6 is a simple example of smooth transition between three different re-

gions given a constant predicted value for each region.

7.6. Cross Validated Results

The efficacy of using GAMs rather than alternative modeling techniques is eval-

uated by means of cross validation. Ten-fold cross-validation involves randomly
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Figure 7.4: Log of RTL event vs. variables used in GAM for ecoregion 9.4.1. The

points shown in each plot represent partial residuals, which are the residuals that

would be obtained by dropping the term concerned from the model while leaving all

other estimates fixed.

separating the data into ten groups then using nine of the ten groups to fit the

model to then make predictions on the tenth group. This process is repeated

ten times, each time withholding a different group of observations, refitting the

model with the remaining observations, and evaluating the difference between

the actual and predicted values. The process of removing observations helps

to determine how well the model will generalize to new data and discourages

models that fit the input data closely, but generalize poorly. A spatial variant

of cross validation was also attempted [Meyer et al., 2019], which considers the

geographic distribution of the locations when forming model groups, though
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Figure 7.5: Example of a buffer zone being applied to an ecoregion to determine

qualifying stations for a regional model fit.

the spatial variant of the method yielded nearly identical results.

Table 7.1 shows the results from several spatial modeling approaches in-

cluded traditional regression, kriging with an external drift [Goovaerts, 1997,

Bean et al., 2019], PRISM [Bean et al., 2017], and inverse distance weighting

[Al Hatailah et al., 2015]. The regional smoothing approach described in the

previous section improved the accuracy of all considered models, though the

RGAM models stood out as the models having the lowest errors across every

considered metric.

Because the RGAMs model performed the better than any of the other

models considered, the cross-validated error rates of this model are considered
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Figure 7.6: Border smoothing example. Each region gives a constant valued

prediction, then the borders are smoothed as described in Equation 7.4. The red line

is predicted values at 0.8°N.

in depth. In particular, summarized values of the spatial cross-validation of

the globally smoothed GAMs model are displayed for each ecoregion in which

data are available. Figure 7.7 shows that mapped RTLs (divided by 1.6 so as

to be comparable to current ASCE 7 requirements) tend to be within 4 psf

of the site-specific values for the vast majority of the country, with accuracy

slightly worse in intermountain states. Further, Figure 7.8 shows that the mean

relative errors are within 2%, on average, for virtually all of the country with

the exception of some slight biases (blue represents under-predictions and red

represents over-predictions) in the Cascade mountains, western deserts, and

areas with exceptionally small RTL values (such as Southern Texas). This

demonstrates the efficacy of the RGAM approach to maintain accuracy in

mountainous regions, allowing for the near elimination of case study regions.
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Table 7.1: Standard cross-validated results on RTL.

Model Fitting Technique MAE MedAE MSE

GAM National Scale 8.51 3.2 504

GAM Locally Smoothed 6.43 2.35 235

OLS National Scale 16.8 6.53 1810

OLS Locally Smoothed 8.44 3.35 361

Kriging National Scale 15.3 5.74 1280

Kriging Locally Smoothed 9.24 2.94 553

Prism National Scale 8.33 3.12 518

Prism Locally Smoothed 6.94 2.65 272

IDW National Scale 28.9 15.6 2200

IDW Locally Smoothed 18.3 6.3 1480

7.7. Implications and Future Work

Figure 7.9 show maps of the relative difference between the new maps and

the current maps provided in ASCE 7-16, excluding western states with state-

specific standards that have been adopted in ASCE 7-16. Many current ASCE

7-16 snow load zones have different prescribed loads for different layers of

elevation. The mapped comparisons in Figure 7.9 only compare to the primary

ASCE 7-16 load, which explain the large relative increases design loads in the

Appalachian Mountains. Many of the difference between current and design-

loads are a result of the move to RTLs and are not due to differences in the

mapping approach.

Future work may consider the use of different climate variables besides

temperature and winter precipitation for making predictions. Additional efforts

may also be devoted to understand the rate of increase in design snow loads

in areas with highly volatile elevations. For example, large changes in design

loads were noted along the benches of the municipalities of Missoula, MT and

Park City, UT. While increases in design loads are expected in mountain bench
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Figure 7.7: Mean and median absolute errors for each ecoregion (showing error

magnitude).

neighborhoods, greater scrutiny could be devoted to ensuring that the rate of

increase in these unique situations is consistent with expectations given local

knowledge. Regardless, the newly proposed RGAM models play a key role in

eliminating the case study regions that current exist in the ASCE 7-16 design

ground snow load maps.
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Figure 7.8: Mean and median relative error for each ecoregion. The relative error is

calculated as (Predicted - Actual) / (Predicted + Actual).
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Chapter 8

Conclusions

This report has summarized the efforts of the 2020 National Snow Study to :

1. Significantly reduce the number of case study regions through a modern,

universal, and reproducible approach for generating design ground snow

loads for the conterminous United States.

2. Directly estimate reliability-targeted design ground snow loads (RTLs)

for each Risk Category, resulting in both a reduction of the snow load

factor from 1.6 to 1.0 and the elimination of importance factors.

This effort quantified the effect that changes to design provisions, as well as an

evolving understanding of the distributions of resistance members and snow

loads, have on the original load factor calibrations. Additionally, the move

to direct predictions of RTLs identified the influence that snow accumulation

patterns have on the difference between the 50-year snow load and the RTL.

Locations whose peak snow loads are characterized by a few, large storms

tend to have larger design snow loads than those currently defined in ASCE

7. Conversely, locations whose peak snow loads are characterized by the accu-

mulation of many storms throughout the the snow season tend to have lower

requirements than those currently defined.

The pursuit of a uniform method for estimating RTLs resulted in novel

approaches for estimating snow load from snow depth (Chapter 5, leverag-
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ing information at surrounding locations to improve distribution tail estimates

(Chapter 6), and smoothing mapped values across a partition of regions (Chap-

ter 7). These methods were designed to be reproducible, and the computer code

underlying each step is available upon request. This framework allows for quick

updates to estimated values as improved information becomes available with

little marginal cost.

Tables 8.1 and 8.2 compare the new and current design snow load require-

ments for Risk Category II buildings with heated flat roofs in normal exposure

conditions in cities across the country. These cities match those explored in Lee

and Rosowsky [2005], though western state locations have been omitted since

their ASCE 7-16 design snow loads are derived from state-specific studies. Note

that the current requirements in these two tables are obtained by multiplying

the 50-year snow load available in ASCE 7-16 by 1.6. Loads rose the most

mid-latitude areas whose typical winters have little snow, but whose extreme

winters have substantial snow. Loads fell slightly in areas that consistently ex-

perience high snow load winters every year. Figure 8.1 shows a boxplot of the

ratio between the new and current requirements at these 65 locations. The av-

erage ratio is 1.12 with a standard deviation of 0.26, indicating a modest rise,

on average, in design snow load requirements. The modest increase in design

loads is consistent with expectations based on changes to design provisions

since the original calibration.

The new snow load maps reduce the number and size of case study regions

by 91% from what they were in ASCE 7-16 and 96% of what they were in ASCE

7-10. The remaining “case-study regions” have elevations exceeding all mea-

surement locations and are virtually devoid of structures. This substantially

reduces the burden, disproportionately carried by the topographically complex
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Figure 8.1: Boxplot of the ratio between new and current requirements at the 65

locations specified in Tables 8.1 and 8.2.

western states, of specifying design load requirements in the previously defined

case study regions. A natural benefit of this effort is the elimination of the dis-

crepancies in design load requirements that exist between the independently

developed state-specific studies.

This research effort owes its success to the many state and national studies

that preceded it. Many of the authors of those previous studies were directly

involved in the steering committee that collaborated on this effort. Their col-

lective knowledge and experience, coupled with the computational abilities of

modern statistical software, result in a new, uniform, and reproducible set of

design snow load requirements for the conterminous United States.
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Table 8.1: Comparison of new and current design ground snow load requirements
for Risk Category II buildings in the United States.

Location New Current Ratio

Bridgeport, CT 42 48 0.88

Hartford, CT 50 56 0.89

Washington, DC 61 40 1.52

Des Moines, IA 45 40 1.12

Dubuque, IA 53 48 1.1

Sioux City, IA 65 48 1.35

Waterloo, IA 49 48 1.02

Chicago, IL 53 40 1.32

Moline, IL 43 32 1.34

Peoria, IL 33 32 1.03

Rockford, IL 52 40 1.3

Springfield, IL 28 32 0.88

Evansville, IN 22 24 0.92

Fort Wayne, IN 33 32 1.03

Indianapolis, IN 29 32 0.91

Wichita, KS 23 24 0.96

Covington/Cincinnati, KY 29 32 0.91

Boston, MA 62 64 0.97

Worcester, MA 71 80 0.89

Baltimore, MD 62 40 1.55

Caribou, ME 139 160 0.87

Portland, ME 85 80 1.06

Alpena, MI 65 80 0.81

Detroit, MI 38 32 1.19

Grand Rapids, MI 58 56 1.04

Houghton Lake, MI 67 80 0.84

Lansing, MI 44 48 0.92

Sault Ste. Marie, MI 108 112 0.96

Duluth, MN 81 96 0.84

International Falls, MN 67 80 0.84

Minneapolis–St. Paul, MN 58 80 0.72

Rochester, MN 55 80 0.69
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Table 8.2: Comparison of new and current design ground snow load requirements
for Risk Category II buildings in the United States (continued).

Location New Current Ratio

Bismarck, ND 72 56 1.29

Fargo, ND 62 80 0.78

Norfolk, NE 52 40 1.3

Omaha, NE 52 40 1.3

Scottsbluff, NE 33 24 1.38

Atlantic City, NJ 38 32 1.19

Newark, NJ 44 40 1.1

Reno, NV 42 24 1.75

Albany, NY 66 64 1.03

New York, NY 47 32 1.47

Rochester, NY 70 64 1.09

Akron, OH 32 32 1

Cleveland, OH 39 32 1.22

Columbus, OH 32 32 1

Mansfield, OH 37 32 1.16

Toledo, OH 35 32 1.09

Philadelphia, PA 35 32 1.09

Pittsburgh, PA 53 40 1.32

Providence, RI 49 48 1.02

Aberdeen, SD 95 80 1.19

Rapid City, SD 41 32 1.28

Sioux Falls, SD 80 64 1.25

Burlington, VT 83 64 1.3

Green Bay, WI 58 64 0.91

La Crosse, WI 46 64 0.72

Madison, WI 54 48 1.12

Milwaukee, WI 57 48 1.19

Beckley, WV 58 32 1.81

Charleston, WV 40 32 1.25

Huntington, WV 32 32 1

Casper, WY 44 24 1.83

Cheyenne, WY 46 32 1.44

Sheridan, WY 47 32 1.47
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Appendix A

Relevant Software

This project was primarily completed in R 3.6 [R Core Team, 2019] with the

help of the following ancillary packages.

• gstat [Pebesma, 2004, Gräler et al., 2016]: For kriging and inverse distance

weighting.

• maps [code by Richard A. Becker et al., 2018]: For state and county shapefiles

in visualizations.

• mgcv [Wood, 2003, 2004, 2011, 2017, Wood et al., 2016]: For generalized

additive models.

• randomforest [Liaw and Wiener, 2002]: For random forest models.

• rdgal [Bivand et al., 2020]: For spatial projections.

• rgeos [Bivand and Rundel, 2020]: For coastal distance calculations.

• sf [Pebesma, 2018]: For spatial distance calculations.

• sp [Pebesma and Bivand, 2005, Bivand et al., 2013]: For reprojections of

spatial data.

Bibliography

Bivand, R., Keitt, T., and Rowlingson, B. (2020). rgdal: Bindings for the

’Geospatial’ Data Abstraction Library. R package version 1.5-18.

161



Bivand, R. and Rundel, C. (2020). rgeos: Interface to Geometry Engine - Open

Source (’GEOS’). R package version 0.5-5.

Bivand, R. S., Pebesma, E., and Gomez-Rubio, V. (2013). Applied spatial data

analysis with R, Second edition. Springer, NY.

code by Richard A. Becker, O. S., version by Ray Brownrigg. Enhancements by

Thomas P Minka, A. R. W. R., and Deckmyn., A. (2018). maps: Draw

Geographical Maps. R package version 3.3.0.
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