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Considering the Use of Epoxies in the Repair of Historic Structural
Timber

Abstract
Wood is one of the earliest and most common building materials on the planet. However wood also quickly
decays under normal service conditions, and thus the repair of historic structural elements pose a difficult
challenge to preservation professionals who aim to also preserve the authenticity of the element. Since the
1970s, numerous studies have looked at the use of epoxy with respect to historic timber repair. Epoxy, for the
purposes of structural repair, serves as a substitution type repair for deteriorated wood. In this study focuses
on the compatibility of historic structural timber members and epoxy repairs by the means of a reviewing and
analyzing the state of the art of epoxy and wood durability and structural functional performance over the past
couple of decades as a means to reconsider epoxy use in the preservation of historic structural timber
members. Epoxy repairs to historic timber members are categorized by their application; consolidation,
structural adhesive and gap-filling structural adhesive. The intent of this approach is designed to consider how
the increase in the unit volume of epoxy to wood ratio affects the properties that affect the structural
performance and compatibility of such repairs.
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Chapter 1 - Introduction  

 

The objective of this thesis is to assess the compatibility of historic structural timber members 

and epoxy repairs by the means of a reviewing and analyzing the state of the art of epoxy and 

wood durability and structural functional performance over the past couple of decades as a 

means to reconsider epoxy use in the preservation of historic structural timber members. Epoxy 

repairs to historic timber members are categorized by their application; consolidation, structural 

adhesive and gap-filling structural adhesive. The intent of this approach is designed to consider 

how the increase in the unit volume of epoxy to wood ratio affects the properties that affect the 

structural performance and compatibility of such repairs. The first chapter provides a literature 

review of the state of the art.  Next, a review of the history of epoxy repairs to structural timber 

is provided.  The following two chapters examine the properties of historic structural timber and 

epoxy, respectively. Finally, the last two chapters present both a discussion of the how these 

material properties perform with respect to both epoxy application category and environmental 

conditions in order to provide a conclusion on their compatibility.   

Historic Wood  

Wood is one of the earliest and most common building materials on the planet. It is 

particularly interesting because, unlike many building materials, it is orthotropic, meaning that 

its properties vary based on the direction of the considered axis.  However, at the chemical level 

all wood is composed of wood cells which are made of lignin, which binds the fibers together, 
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and cellulose, a linear polymer that comprises the cell walls.1  In addition to lignin and cellulose 

other chemicals such as hemi-cellulose, extractives and ash vary with species and add to its 

chemical, mechanical and physical properties.  However, the major determinant of chemical 

composition is a tree’s subdivision, which is classified as either a hardwood or softwood.2    

Hardwoods are generally higher in cellulose than softwoods.  However, softwoods have a 

greater amount of lignin. A wood species’ chemical composition is the primary contributing 

factor to the resistance to decay. This is of importance because decay negatively affects 

mechanical properties, resulting in loss of functional performance.3 Although there are 

hundreds of wood  species in the northeastern United States, Hoadley found that the majority 

of historic structures in this region were built of either oak, chestnut or hard pine.4 

For historic structural timber, the chemical composition, state of decay, and functional 

performance are not the only considerations that define historical value.   Graham identified 

eight characteristics associated with historic timber and categorized them as either an 

emotional value or a matter of historical record.  Under emotional values, he identified “delight 

of an authentic structure retaining a maximum of historic fabric”, “patina and aesthetics”, 

“color/finish”, and “historic graffiti.”  He identified “carpenters’ marks”, “timber conversion 

methods”, “carpentry methods”, and “dating by dendrochronology” as items that are a matter 

of historical record.5  Although there appears to be some overlap in is categories, he has done a 

good job of distinguishing between features that add age value versus those that reveal the 

                                                             
1 Keith F. Faherty, Thomas G. Williamson, and Harry E. Humphreys Book Fund., Wood engineering and 
construction handbook, 3rd ed., 1 vols. (New York: McGraw-Hill, 1997). 
2 Thomas Nilsson and Roger Rowell, "Historical wood – structure and properties," Journal of Cultural 
Heritage 13, no. 3, Supplement (2012). 
3 Ibid. 
4 R. Bruce Hoadley, Identifying wood : accurate results with simple tools  (Newtown, CT: Taunton Press, 
1990). 
5 Tony Graham, "Resin Bonded Timber Repair and the Preservation of Historic Timber Surfaces" 
(University of Bath, 2004). 
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structure’s building technology.  Graham goes on to argue that “the timber surface articulates 

these values.” Thus, he is ultimately arguing that the conservation of that surface wood is more 

valuable that wood beneath the surface.  Regardless of this argument, Graham correctly 

identifies that historic wood, as opposed to new wood, not only tells the structure’s story but 

adds to the age value of the structure.   Graham’s thesis notably omits structure as contributing 

to the historic value; however, his thesis attempts to find a solution to reestablish functional 

performance while maintaining the aforesaid historic values. Although, he doesn’t identify the 

epoxy bonded pieces of salvaged veneer as contributing to the structure, they would, in fact, 

add additional section to the replacement timber and thus contribute to the structural 

performance.   

Historic Timber Repair Methods   

Wheeler and Hutchinson (1998) summarized available timber repair methods into the following 

three categories: (1) Traditional/Vernacular Repairs, (2) Mechanical Methods and (3) Resin 

Repair.6  In a traditional repair, carpentry of the age is replicated with new wood to repair a 

timber structural member.  In mechanical repair methods, another structural element is 

typically attached or bolted to the decayed timber.  And in resin repair, epoxies are used to 

augment the damaged or deteriorated timber in order to reinstate its mechanical properties.  

Epoxies were initially patented in the 1930sI.7  However, it was not until the 1960s and 1970s 

did the technology of epoxy resins was applied to timber repairs.  In 1978, Morgan Phillips and 

Dr. Judith Selwyn, both from the Society for the Preservation of New England Antiquities, 

completed a report on the use of epoxy for the repair of wood on historic structures.  The 

                                                             
6 A. S. Wheeler and A. R. Hutchinson, "Resin repairs to timber structures," International Journal of 
Adhesion and Adhesives 18, no. 1 (1998). 
7 H.Q; Marks Pham, M.J., "Epoxy Resins," in Ullmann's Encyclopedia of Industrial Chemistry (Freeport,TX: 
Dow Chemical, 2012). 
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objective of their study was to research and carry out a preliminary testing program on epoxies.  

Their research was primarily focused on epoxy formulations for consolidation and patching 

timber. However, they identified the following as possible areas where epoxies might be used in 

the field of architectural conservation:  plaster consolidant, flexible adhesive, clamp-free 

adhesive, gap-filling adhesive, elastomeric sealant, glazing compounds or as a soil consolidant. 

Although these ‘possible’ uses of epoxies were never tested, they attest that Phillips and Selwyn 

valued epoxy’s consolidation and adhesive properties.   

Epoxy repairs to timber can be categorized by the ratio of epoxy by volume compared to the 

wood volume restored.  In order of increasing epoxy to wood volumetric ratio, these epoxy 

repair categories are: as a consolidant, as an adhesive, and as a gap-filling (patching) adhesive.8   

Epoxy Resin as an Adhesive  

In his paper on the application of epoxy resins for historic structures, Paul Stumes (1971) 

claimed that “epoxy by itself is a fairly good adhesive with 100 to 150 psi shear strength and 

perfect weather resistance.”9  However, by the time that Stumes’ made such claims, the 

Gougeon Brothers, Inc., founders of the West System®, had been already using epoxies as a 

structural adhesive in the wooden boat industry for over a decade. Wheeler and Hutchinson 

(1998) found that epoxy resins were capable of bonding wood with moisture contents up to 22% 

without any negative effect to bond strength.10  Of greater interest, they stated their tests could 

not prove that epoxy bonds would be as durable as other timber repair methods or were 

appropriate for fully exposure to environmental conditions. Broughton (2001) reported a similar 

                                                             
8 Morgan W. Phillips and Judith E. Selwyn, Epoxies for Wood Repairs in Historic Buildings  (Washington: 
Office of Archeology and Historic Preservation, Heritage Conservation and Recreation Service, U.S. Dept. 
of the Interior, Technical Preservation Services Division : for sale by the Supt. of Docs., U.S. Govt. Print. 
Off., 1978). 
9 Paul Stumes, "The Application of Epoxy Resins for the Restoration of Historic Structures," Bulletin of the 
Association for Preservation Technology 3, no. 1 (1971). 
10 Wheeler and Hutchinson, "Resin repairs to timber structures." 
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conclusion that “high, strength joints can be made with epoxy resins adhesives” and “that the 

effect of high timber moisture contents, both prior and following bonding, has minimal effect on 

the integrity of epoxy-bonded joints.”11 Lavisci, Berti, Pizzo, Triboulot and Zanuttini (2001) 

tested the shear strength of timber joints with 10 different adhesives and varying joint 

thicknesses prior to, and after, accelerated weathering. By comparing these values to solid wood 

shear strengths they were able to comment on the ratio of dry (un-weathered) to wet 

(weathered) strength.  They found only two adhesives that exhibited both a wet strength and 

dry strength greater than that of a comparable solid wood specimen, thus contradicting the 

claim made by Broughton and Hutchinson and giving proof that weathering may have a 

significant negative effect on structural performance of an epoxy repair.12  Lavisci, Berti, Pizzo, 

Triboulot and Zanuttini stopped sort of making any recommendation for requirements for 

structural wood adhesives.    

Epoxy Resin as a Consolidant  

When epoxy was used in a manner to consolidate historic timber, Phillips and Selwyn (1978) 

determined that an epoxy should exhibit low shrinkage, a reliable curing mechanism, durability, 

reversibility, adjustable strength, low toxicity, low viscosity and good paint retention.13  

Although they acknowledged that thermosetting compounds, such as epoxies, are not reversible 

to any practical extent, they conceded that the ‘greater strength and increased resistance to 

some aspects of weathering’ were advantages that allowed for its use in historic timber.   They 

stated that the high viscosity of epoxies was the primary drawback when used to consolidate 

timber. Phillips and Selwyn did not quantify their research results regarding the use of epoxies 
                                                             
11 J. Broughton, Hutchinson, A., "Adhesive systems for structural connections in timber," International 
Journal of Adhesion & Adhesives 21(2001). 
12 P. Lavisci et al., "A shear test for structural adhesives used in the consolidation of old timber," Holz als 
Roh- und Werkstoff 59, no. 1-2 (2001). 
13 Phillips and Selwyn, Epoxies for Wood Repairs in Historic Buildings. 
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to consolidate timber.  However, they provided the following guidelines for application:  exploit 

the end grain, avoid trapping air, prevent leakage of the epoxy, use slow curing epoxies to 

prevent heat buildup and take care to use compatible wood preservatives with an epoxy 

consolidator.14   Unfortunately, Phillips and Selwyn did not conduct extensive weathering tests 

or load tests on their consolidated samples as it appeared they were primarily concerned with 

the effect that epoxy consolidation would have on the durability of painted surfaces. 

Munnikendam (1972) explored the dilution of mono-functional and bi-functional epoxy 

compounds in order to lower the viscosity of epoxies and thereby improving flow and 

penetration into the wood and improving consolidation. Mono-functional epoxy compounds 

have only one epoxide group while bi-functional epoxies have two. Because mono-functional 

epoxy compounds only have one reactive epoxide group, they are unable form cross links. Thus 

Munnikendam concluded that mono-functional dilution compounds reduce the cured strength 

of the epoxy if the dilution with mono-functional epoxy compounds is greater than 10% by 

volume.15  He did, however, find the best success using a bi-functional dilution compound mixed 

with both a slow-curing amine agent and a flexible plasticizer.  Neither Phillips and Selwyn nor 

Munnikendam tested the effects of weathering, humidity, wood moisture content, or 

consolidation depth of the epoxy resins.   Stumes (1971) stated that it is “very difficult to 

saturate woods with epoxy” and “equally difficult to measure the uniformity of saturation.”16 

However, Sadd and Curran (1982 tested the effect of epoxy impregnation of wood on its Mode I 

fracture toughness. In fracture mechanics there are three modes of failure with regards to 

fracture toughness. Mode I toughness deals with tensile forces perpendicular to the crack; 

                                                             
14 Ibid. 
15 R. A. Munnikendam, "Low Molecular Weight Epoxy Resins for the Consolidation of Decayed Wooden 
Objects," Studies in Conservation 17, no. 4 (1972). 
16 Stumes, "The Application of Epoxy Resins for the Restoration of Historic Structures," 63. 
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Mode II deals with resistance to crack opening under shear forces; and Mode III deals with 

resistance to crack opening with tearing forces.  Materials with high fracture toughness will 

resist crack opening whereas low fracture toughness denotes very little resistance to crack 

propagation. They concluded that epoxy consolidation at the leading edge of a crack increased 

the fracture toughness, or the resistance to opening, of the crack.17  However, there tests were 

only limited to Mode I failure.   

Epoxy Resin as a Structural Gap-Filling Adhesive  

The use of gap-filling and prosthetic epoxy repairs for historic timber began in the early 1970s 

and remains in use. Wheeler and Hutchinson (1998)  summarized the available techniques by 

repair situation as follows: (1) beam end repair, (2) trussed rafter and foot repair, (3) column 

repair, (4) fissure repair, and (5) upgrading beam.18  

 Early use of epoxy for augmenting structural wood elements was codified by Paul Stumes in the 

Association for Preservation Technology (1979) publication on the Wood Epoxy Reinforcement 

(WER) method, which was developed from the testing Stumes conducted on wood epoxy 

reinforcement systems in the early 1970s .19  Klapwijk’s (1975) BETA method for restoring a 

beam was developed and patented in the same period as the WER method.  Stumes’ WER 

method presented techniques for beam end repair as well as for upgrading the structural 

capacity of the beam by means of embedded rods or flitch plates.  Klapwijk’s BETA method was 

limited to the repair of beam ends and accomplished this through the replacement of decayed 

wood with cast epoxy and embedded rods to transfer the loads between new cast epoxy and 

                                                             
17 Martin H. Sadd and Daniel R. Curran, "Mode I fracture toughness of epoxy impregnated wood," 
Mechanics Research Communications 9, no. 5 (1982): 334. 
18 Wheeler and Hutchinson, "Resin repairs to timber structures," 6. 
19 Paul Stumes, "Testing the Efficiency of Wood Epoxy Reinforcement Systems," Bulletin of the Association 
for Preservation Technology 7, no. 3 (1975). 
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remaining sound wood.20  The use of epoxy mortar to reconstitute beam ends was also 

examined by Van Gemert and Bosch in the 1980s. They found that bond strength between the 

epoxy and wood depended on the moisture content of the wood and even stated that “the 

bond between wood and epoxy mortar is limited and generally does not reach the cohesion 

strength of the wood .”21 Based on their findings, they questioned the durability of epoxy/wood 

bonds under varying temperature and humidity and recommended such repairs only be 

“executed with a sufficient degree of safety.”22  Interestingly, from the field of object 

conservation, Grattan and Barclay (1988) recommended that “the surface of the wood to be 

filled is always coated to allow easy removal of the filler should the need arise.”23 Apparently 

driven by the desire for reversibility of the repair, this recommendation almost immediately calls 

into any question the effectiveness of the bond between wood and epoxy, without which such a 

repair would be rendered useless in a load-bearing application.  

The Durability of Epoxy Repairs 

All of the previously cited literature on the epoxy repair of wood raises the question of 

durability.  In order to address this question, Richard Avent published his results in the late 

1980s and early 1990s. In one of his first studies regarding the weathering of epoxy-repaired 

timber, Avent tested two types of weathered joints, sound timber joints that were repaired with 

epoxy and also weathered wood joints that were repaired with epoxy concluded that “in both 

                                                             
20 Dick Klapwijk. Method of Restoring a Wooden Beam. United States Patent 3,900,541, filed June 18 
1975, and issued August 19,1975. 
21 D.;Vanden Bosch Van Gemert, M., "Structural restoration of wooden beams by means of epoxy resin," 
Materials and Structures 20(1987). 
22 Ibid. 
23 D. W. Grattan and R. L. Barclay, "A Study of Gap-Fillers for Wooden Objects," Studies in Conservation 33, 
no. 2 (1988). 
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cases, the epoxy repair responded well.”24  Although he also stated that “when practical, it 

usually better to replace seriously weathered and decayed timber.”25  A couple of years after his 

study on the effects of weathering, he published research regarding the factors affecting the 

strength of epoxy repaired timber.  He concluded in this study that the parallel grain shear 

strength of the wood, lap length and grain orientation had the greatest effect on the strength of 

epoxy bonded members.26  In the same year Avent also  published design criteria in order to aid 

engineers compute the actual stresses and the allowable stresses after repair.  More recently, 

Custódio, Broughton et al. (2009) published their review of factors affecting the durability of 

bonded joints in timber.  They summarized a bonded joint essentially a “system of layered 

interfaces, all of which respond in different ways to externally applied load and environmental 

conditions .”27    

Summary and Thesis 

Over the past 40 years various researchers have been studying the compatibility of epoxy and 

wood repairs.  A review of the literature indicates that the durability of epoxy-repaired timber 

has not been rigorously assessed since its introduction to the field of preservation of timber 

structures.  The lack of assessment of the long-term performance of epoxy-repaired timber and 

the significant differences between the properties of wood, a hygroscopic organic material, and 

those of epoxy, an impermeable plastic should raise concern.  The question of mechanical 

compatibility of the two materials has been researched, but there are disconcerting results of 

the effects of temperature and moisture on epoxy’s bulk properties.  This thesis sets to examine 

                                                             
24 R. Richard Avent, "Decay, Weathering and Epoxy Repair of Timber," Journal of Structural Engineering 
111, no. 2 (1985): 340. 
25 Ibid. 
26 R. Avent, "Factors Affecting Strength of Epoxy‐Repaired Timber," Journal of Structural Engineering 112, 
no. 2 (1986). 
27 João Custódio, James Broughton, and Helena Cruz, "A review of factors influencing the durability of 
structural bonded timber joints," International Journal of Adhesion and Adhesives 29, no. 2 (2009). 
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this adhesive relationship between wood and epoxy in order to answer this question of 

compatibility based on the current knowledge.  In order to accomplish this task, the thesis 

focuses on the structural compatibility of these two materials.  Furthermore, it narrows the 

wood species in question to white oak, American chestnut, and southern yellow pine or those 

determined by Hoadley as being the dominant species used in historical structural timber 

elements in the United States. 
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Chapter 2 –Historic Timber Restoration and Epoxy Repairs 

“Where traditional techniques prove inadequate, the consolidation of a monument can be 
achieved by the use of any modern technique for conservation and construction, the efficacy of 
which has been shown by scientific data and proved by experience.” – Article 10, The Venice 
Charter 1964 
 
 The use of epoxy in the restoration of structural properties of deteriorated structural 

timber elements is only one of the several repair options available. Other repair methods 

include replacement in kind with new timber, substitution of the timber with new material such 

as steel, and circumventing the load path by the insertion of a new structural support system. 

The debate for the or against their use in timber structures stirs strong opinions about their 

appropriateness and durability that polarizes architects, engineers, craftsmen, and 

preservationists.  The professional attitudes towards epoxy repair methods reflect its lack of 

acceptance as a modern repair method combined with a healthy dose of skepticism with 

regards to its long term performance.  Although epoxies were first developed in the 1930s, it 

was not until 1958 that Gougeon Brothers, Inc. introduced epoxy resins into the wood industry 

as structural adhesives.28,29 However, it was not until the 1971 that conservation professionals, 

such as Elizabeth Schaffer and Paul Stumes, began to test their use in historic timber 

structures.30,31   By 1994, epoxy use in historic timber structures distressed the professional 

preservation community so much that ICOMOS specifically adopted the following principle at 

the 12th General Assembly,  

“Contemporary materials, such as epoxy resins, and techniques, such as structural steel 
reinforcement, should be chosen and used with the greatest caution, and only in cases 
where the durability and structural behavior of the materials and construction 
techniques have been satisfactorily proven over a sufficiently long period of time.”  

                                                             
28 Meade Gougeon, The Gougeon Brothers on Boat Construction: Wood and West System Materials, 5th 
ed. (Bay City, Michigan: Gougeon Brothers, Inc., 2005). 1. 
29 Pham, "Epoxy Resins." 
30 E. Schaffer, "Consolidation of Softwood Artifacts," Studies in Conservation 16, no. 3 (1971). 
31 Stumes, "The Application of Epoxy Resins for the Restoration of Historic Structures." 
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Despite this cautionary note, there are preservation professionals who continue to promote its 

use and thus continue to test its performance over time and under adverse conditions to 

determine its effectiveness.    

Options for Structural Repair of Historic Timber  

Repair of structural timber can be broken down into six different approaches: 

Abstention, Mitigation, Reconstitution, Substitution, Circumvention, and Acceleration.32  

Abstention is straightforward and means electing to not undertake any repair.33  Mitigation 

includes attempts alter the environment supporting the deterioration mechanism.34  Mitigative 

treatments focus on the environment and not on the actual structural element, and may include 

actions such as attempting to control the relative humidity or removing a structural load. 

Reconstitution focuses on the replacing the fabric of the timber element “in kind, size and 

location.”35 Under this repair approach the decayed or failed element is removed and replaced 

with timber.  Substitution, on the other hand, is “the direct replacement of a material with 

another material for the purposes of enhancing its performance.”36 This approach aims to 

reestablish of the load capacity of the original member, but with a new and possibly different 

material.  Epoxy repairs of historic structural timber typically fall under the approach of 

substitution.  Circumvention requires focuses on changing “the manner in which the original 

material functioned” and thus disregards the both the original material and its structural 

performance.37 This approach entails the installation of new structural support to completely or 

                                                             
32 Samuel Y. Harris, Building Pathology : Deterioration, Diagnostics, and Intervention  (New York: J. Wiley, 
2001). 39-40. 
33 Ibid., 40. 
34 Ibid., 41. 
35 Ibid., 42. 
36 Ibid. 
37 Ibid., 43. 
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partially bypass the original member.  In effect, this option allows the timber member to remain 

in its current state while redirecting the load path.   The last type of approach, acceleration, 

includes the structural demolition and essentially entails “doing a controlled manner what will 

happen in an uncontrolled and potentially catastrophic, dangerous manner.”38 This approach 

aims to prevent harm to the public when a structure or element has been declared structurally 

unsafe and no resources are available for repair.  Based on its finality, this approach is typically 

resisted with historic structures.  The selection of the appropriate approach from the above 

listed options is dependent upon of the desired level of authenticity, intervention, reversibility 

and durability .   

Conservation Guidance and Timber Repairs  

 The authenticity of an object is derived from the credibility and truthfulness it imparts 

as an information source of the values attributed to a particular cultural heritage. Values 

associated with historic timber are primarily attributed to their aesthetic, historic and age 

values.  Specifically, as noted by Graham, historic timber is valued for its (1 patina and aesthetic, 

(2) color/finish, (3) markings and symbols, (4) joinery, (5) age (as determined by 

dendrochronology) .  As discussed above, the degree of intervention with an historic structure 

can range from full dismantling to repairing in situ . The acceptable level of intervention is 

typically a function of desired authenticity, budget and the guiding conservation philosophy for 

the historic resource as a whole.  From proceedings of the 12th General Assembly on historic 

timber structures, the International Council on Monuments and Sites (ICOMOS)  recommends 

that “any proposed intervention should (i) follow traditional means, (ii) be reversible, (iii) at 

least not prejudice or impede future work whenever this may be necessary and (iv) not hinder 

                                                             
38 Ibid., 44. 
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the possibility of later access to evidence incorporated in the structure. ”39   ICOMOS also 

encourages that all interventions should consider the timber structure as a whole and “that the 

minimum intervention in the fabric of a historic structure is ideal. ” In contrast, they recognize 

that sometimes the minimum intervention sometimes requires partial or full dismantling and 

reinstallation.  The ideal intervention is fully reversible; however, a fully reversible repair is very 

difficult to achieve in practice. Furthermore, ICOMOS recommends that materials such as epoxy 

resins should “be chosen and used with greatest caution and only in cases where the durability 

and structural behavior of the materials …have been satisfactorily proven.”40  Thus reversibility 

along with authenticity, degree of intervention and durability are criteria that guide the 

selection of the repair approach.  

Taking into account the aforementioned approaches and conservation guidance applied, 

the available types of repair options can be compared.   Table 1 compares the repair approaches 

with the conservation guidance and provides some context for the choice of repair types.   

Comparing and analyzing the different repair approaches based on the four aforesaid guidance 

favors methods such as either reconstitution or circumvention as those methods are able to 

achieve a consistent and high degree of authenticity, reversibility, and durability.  Abstention 

and acceleration, as noted above, are generally not considered because they preservation 

focused.  Epoxy repairs, which fall under the substitution approach, are typically approached 

with caution due to the lack of consistency when it comes to taking into account the guidance 

criteria.  For example, they are not reversible and, as discussed in the first chapter, their 

functional performance and durability has not been rigorously assessed to provide to be 

considered satisfactorily proven.  This thesis focuses on rigorously assessing epoxy repairs to 

                                                             
39 International Council on Monuments and Sites, "Principles for the Preservation of Historic Timber 
Structures" (paper presented at the 12th General Assembly, Mexico, 1999). 
40 Ibid. 



15 
 

structural historic structural timber with respect to the current state of the art and as such it is 

focused on the substitution repair approach.  

Conservation Guidance 

Re
pa

ir 
Ap

pr
oa

ch
es

 

  Authenticity Reversibility Level of 
Intervention Durability 

Abstention High N/A N/A Low 

Mitigation High N/A N/A Medium 

Reconstitution Medium High Medium Medium 

Substitution Varies Varies Varies Varies 

Circumvention High High High High 

Acceleration Low Low High N/A 
Table 1: Comparison of Repair Approach and Conservation Criteria 

.   

The Development and Types of Epoxy Repairs for Historic Structural Timber 

From their development in the 1930s, epoxy resins were introduced into a variety of 

industries, including as construction, aerospace and electronics industries.41  As epoxies came 

into use for fabrication of wooden boats, preservation professionals took notice and 

investigated epoxy repair methods for historic structural timbers in the 1970s.  From the  early 

introduction of epoxy as a structural adhesive in the wooden boat-building  industry, today use 

of epoxy for structural timber repair have expanded and can be categorized as a consolidant, 

structural adhesive, or structural gap-filling adhesive.   

Epoxy as a Structural Adhesive 

The development of the West System® by the Gougeon Brothers, Inc. is one of the 

earliest applications of epoxy in the wood industry.  Jan and Meade Gougeon were introduced 

                                                             
41 Pham, "Epoxy Resins," 157-58. 
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to epoxy when Jan apprenticed under Vic Carpenter as a boat builder in 1958.  By the 1960s, 

they experimented with epoxies in wood fabrication, and although they experienced mixed 

results, they were impressed by epoxy’s ability to bond with wood, metal, and fiberglass 

reinforcement .  The possible advantages were sufficient that the brothers continued to work 

with epoxy.  Eventually, working with Dow Chemical Company, they developed their own epoxy 

formula for use as a water-resistant coating for their boats.42  Shortly after the Gougeon 

brothers introduced their product on the market other professionals, such as Canadian 

structural engineer Paul Stumes, began exploring the use of the as a repair strategy for timber 

elements. 

As Paul Stumes began publishing his tests on the W.E.R. system, a reinforcing beam with 

epoxy embedded steel was not thought to be necessarily economical.  Tivadar Szabo, in 

discussion with Paul Stumes, developed an alternative method in which plywood would serve as 

the reinforcement.43  In this variation, a dado is cut into the decayed wood and a piece of one-

half inch thick plywood is inserted and adhered to the original member with epoxy (Figure 1).  

The beam is then capped with more plywood, which is also adhered via epoxy. This method is 

attractive in comparison to the W.E.R. method because it reduces the amount of structural 

epoxy adhesive as well as replaces costly tensile reinforcement.   Szabo’s testing reported that 

such a method increased the modulus of elasticity by 22% and modulus of rupture by 17.7%  

and therefore concluded that “this plywood design may be considered” in actual application.44  

                                                             
42 Gougeon, The Gougeon Brothers on Boat Construction: Wood and West System Materials: 2. 
43 T. Szabo, "Plywood Reinforcement for Structural Wood Members with Internal Defects," Bulletin of the 
Association for Preservation Technology 9, no. 1 (1977): 12. 
44 Ibid., 15. 
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Figure 1: Plywood Reinforcement of a Deteriorated Beam with Structural Epoxy Adhesive 

In 1999, a technique called Resin Bonded Timber Repair was developed the Weald and 

Downland Open Air Museum in the United Kingdom and has subsequently been implemented 

with reported success. In this method, the deteriorated timber’s veneer is salvaged and adhered 

to new structural timber and replaces the old timber.  Thus, the principle of the resin bonded 

timber repair “is to splice in sufficient timber behind the historic timber surfaces to restore 

structural performance.” .  This repair is interesting because the authenticity of the visible 

surface of a timber member can be preserved (Figure 2).  
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Figure 2: Resin-Bonded Timber Repair.  The thick veneer of the original fabric is preserved and adhered to a new 
structural piece of wood. Method attempts to preserve authenticity of the member by retaining  its visible surfaces 

while replacing the deteriorated timber with a new piece of structural timber.  

Epoxy as a Consolidant 

While building professionals where experimenting with epoxies as gap-filling adhesives, 

objects conservators had already began to explore the possibilities of epoxies for wood 

consolidation. Wood consolidants fill the voids in decayed timber and thus restore all the 

mechanical properties of the original piece to some extent. Paul Stumes was introduced to the 

possibilities epoxy resins through Erika Schaffer, a conservation chemist.45  Prior to the testing of 

epoxies as consolidants, a number of other materials were used as consolidants such as animal 

glue, molten wax, drying oil and natural resin.  In 1971, Schaffer tested a low viscosity epoxy 

manufactured by Union Carbide; she diluted the resin with 10% butyl glycidyl ether and applied 

it to pine wood and was able to satisfactorily conclude that “depending on the size of the object 

                                                             
45 Stumes, "The Application of Epoxy Resins for the Restoration of Historic Structures," 59. 
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and the depth of the decayed area, the composition of the liquid can be chosen … that the 

required penetration, and thus consolidation, will be attained.” 

 In 1978, epoxy’s potential as consolidant was explored by Dr. Judith Selwyn and Morgan 

Phillips as part of a commission they received from U.S. Department of the Interior.  Their study 

aimed to “present the results of a preliminary research and testing program on epoxy 

consolidants and patching compounds.” As a basis of their evaluation, they determined that a 

satisfactory architectural wood consolidant shall (i) exhibit low shrinkage, (ii) have a controllable 

curing mechanism, (iii) be durable, (iv) be reversible, (v) have adjustable strength properties, (vi) 

exhibit a low viscosity, (vii) be of a low toxicity and (viii) be able to retain paint . As a 

consolidant, the epoxy resin and hardener impregnate the wood by filling the voids; however, 

because epoxies they begin to cure as soon as they are applied which limits the depth of 

penetration.  Because of this, low viscosity epoxies are desirable and diluents are typically added 

to extend the curing time and thereby maximizing the depth of impregnation of the epoxy 

consolidant.46   

Epoxy as a Structural Gap-Filling Adhesive  

The third category of epoxy repairs to historic structural timber is as a gap-filling 

adhesive.  In this type of repair, cast epoxy serves as an integral, large volume, cast-in-place part 

of the timber element.  This category of repair is best represented by both the W.E.R and BETA 

Systems. Paul Stumes, in 1971, wrote that “the discovery of the new synthetic resins in the past 

decade changed the technology of wood restoration decisively.” He attributed his exposure to 

epoxy resins to Erika Schaffer, a conservation chemist from the National Museum of Canada 

that was testing the viability of epoxy resins as a wood consolidant.  Stumes saw great potential 

                                                             
46 Schaffer, "Consolidation of Softwood Artifacts," 110-11. 
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in epoxy further by lauding its potential as a “preservative, a structural stabilizer, a protective 

coating, a paint substrate, artificial wood, etc., with no other limit but our own resourcefulness.”  

Encouraged by potential, Stumes led research and testing throughout the 1970s in order to 

determine the weak points of reinforcing timber with epoxy and to establish design parameters 

for other engineers and restoration professionals.  

At this point, Stumes had already conceived the W.E.R (Wood Epoxy Reinforcement) 

system as a valid repair methodology.  The W.E.R system, as he described it, was “the 

replacement of the disintegrated parts of the wood with epoxy resin, and reinforcement with 

high tensile inserts.” The high tensile inserts conceived by Stumes included rebar, metal plate 

and fiberglass rods. By 1979, Stumes published the W.E.R System Manual detailing several 

variations of a W.E.R repair.  The manual not only detailed the repairs but provided engineers 

with a methodology to calculate the required size and amount of tensile reinforcement needed.  

In his manual, Stumes described the role of epoxy as two-fold, (i) replacement of decayed wood 

and (ii) adhesive between wood and reinforcement material. Although he claimed that the 

epoxy had two to three times the strength of wood and thus made a good replacement 

material, the additional strength was not accounted for in his calculations. Based on the design 

methodology, the epoxy functioned as structural gap-filling adhesive between a new piece of 

embedded structural reinforcement and sound wood as depicted in Figure 3. 
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Figure 3: Wood Epoxy Reinforcement System Repair with Steel Plate Tensile Reinforcement 

In the BETA system repair, developed in the Netherlands by Dick Klapwijk, the decayed 

and rotten end of a member is removed and replaced with cast epoxy that is tied to the sound 

wood by means of reinforcing rods comprised of either steel or fiberglass.  Although the epoxy 

also doubles as an adhesive around the reinforcing bars, a large section of cast epoxy forms the 

bearing surface for the repaired beam.   The BETA system and the W.E.R. system are very similar 

in approach.  The W.E.R. provides two things that the BETA system does not.  First, it covers 

several repair situations including the replacement of the middle and end sections of a 

structural beam.  Additionally, the W.E.R. provided designers with quantitative way in which to 

calculate the required tensile reinforcement.  The BETA system focused primarily on replacing a 

beam end with a standard design (Figure 4) 
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Figure 4: BETA System Epoxy Repair 

Interestingly, Klapwijk, a plastics research chemist, invented this repair system because 

of issues he experienced during the restoration of his own home in Brielle, Netherlands in the 

early 1970s.  Shortly after he had purchased his home he quickly discovered that it was in need 

of stabilization as the majority of the enormous wooden roof beams had rotten ends. At that 

time, he did not want to proceed with the costly removable and replacement of the beam ends 

with new wood, so by combining his knowledge of plastics and epoxies his BETA system was 

conceived and then patented.47  

 

 

                                                             
47 Dick Klapwijk, "Bureau Beta, Restoration techniques in the plastic age," Netherlands American Trade, 
no. November (1977): 11. 
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Chapter 3 –Material Composition and Properties:  Wood 

Timber is a building material that has been long valued for its comparable strength in both 

tension and compression which gives it the distinction of being one of the only natural building 

materials suitable for use in beams.  However, its mechanical properties vary significantly by 

species, grade, moisture content, and grain orientation.  With regard to epoxy-wood repairs, 

Paul Stumes recommended epoxies because they could be easily and safely transported, it could 

be applied with simple utensils, and “epoxy can perform a wide variety of tasks” including use a 

“preservative, a structural stabilizer, a protective coating, a paint substitute, artificial wood, 

glue, etc., with no other limit but our own resourcefulness.”48  Ultimately, the compatibility of 

wood with adhesive-bonded materials such as epoxies requires the mechanical, physical, and 

surface properties of wood to be examined in detail. The scope of this thesis is limited to the 

species to white oak, American chestnut and southern yellow pine, which were the species of 

wood primarily used in framing of historic timber structures in the United States.49   

The following sections of this chapter present the wood’s composition and its aforementioned 

properties. The last section of this chapter presents these properties as they apply to the 

aforementioned historic timber species under consideration.   

Wood Composition  

The basic building block of all species is the wood cell, which is typically comprised of a cell wall 

and cell cavity.50  The arrangement and chemical composition of the wood cells impart the 

overall physical and mechanical properties of the wood member.  A wood cell can be described 

                                                             
48 Stumes, "The Application of Epoxy Resins for the Restoration of Historic Structures," 59. 
49 Hoadley, Identifying wood : accurate results with simple tools: 178. 
50 Ibid., 7.  The discussion of wood composition does not include a discussion of the gross anatomical 
features such as growth rings.  The reader is directed to the cited sources for a detailed discussion on such 
macro identification features and their significance.  
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in the context of its three components: a middle lamina, a primary wall, and three layers 

comprising the secondary wall (Figure 5), all enclosing a space referred to as the lumen.  

 

Figure 5: Physical structure and composition of a wood cell.  The cell wall is comprised of a 
middle lamina (ML), which separates individual cells; a primary wall (P) and a secondary wall 
made up of three layers (S1, S2, S3).  Fibrils comprise the cell walls. Cellulose orientation and 
wall thickness varies between layers depending on the orientation and volume of fibrils 
present.  The hemicellulose and cellulose are bound together with lignin. (Source: Chapter 2, 
Archeological Wood; Original figure redrawn by author for clarity)51.  

Chemical Composition.  Cellulose, hemicellulose and lignin are the primary chemical compounds 

that comprise the fibrils which make up the wood cell layers. The content of each of these 

chemical compounds varies based on the tree genus and species and the cell’s location within 

the tree (i.e. latewood/earlywood, heartwood/sapwood).  Cellulose and hemicellulose, organic 

polymers of sugars, make up the carbohydrate content of the wood, with values typically 

ranging between 55-65% by volume of the wood cell.52  Lignin, another highly complex organic 

                                                             
51 Per Hoffmann and A. Jones Mark, "Structure and Degradation Process for Waterlogged Archaeological 
Wood," in Archaeological Wood, Advances in Chemistry (American Chemical Society, 1989). An in-depth 
discussion of wood chemistry is outside the scope of this thesis but the reader is directed to the cited 
source for detailed chemical content and descriptions of the types of lignin, cellulose and hemicellulose 
found in wood cells.  
52 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material, 1 vols., General Technical Report (Madison, WI: Forest Products Laboratory ; 
Madison Washington, D.C. : Supt. of Documents, U.S. GPO, 2010). 



25 
 

polymer, bonds the cellulose and hemicellulose together.  Lignin comprises approximately 20-

30% by volume of the wood cell.53 Figure 6 depicts the molecular relationship among the hemi-

cellulose, cellulose and lignin within the fibrils that comprise the cell walls.   

 

Figure 6: Chemical composition of a cell wall (Source: Journal of Cultural Heritage, 2012)54 

Finally a small percentage of extractives are found in the wood cell’s lumens and are primarily 

responsible for the distinctive color, smell and durability (resistance to decay) of a species.55   

Wood Properties 

Mechanical Properties  

Because wood is an orthotropic material, its mechanical properties vary with each of its 

principal orthogonal directions; longitudinal, radial, and tangential (Figure 7).   The mechanical 

properties vary in value depending on whether the wood is loaded parallel or perpendicular to 

                                                             
53 Ibid. 
54 Nilsson and Rowell, "Historical wood – structure and properties," 58.  
55 Roger M. Rowell, Handbook of wood chemistry and wood composites  (Boca Raton, Fla.: CRC Press, 
2005). 53. An in-depth discussion of wood chemistry is outside the scope of this thesis but the reader is 
directed to the cited source for detailed chemical content and descriptions of the types of lignin, cellulose 
and hemicellulose found in wood cells. 
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the grain (or fiber direction).  The major mechanical properties that are considered include: 

tensile strength, compressive strength, shear strength, flexural strength, the modulus of 

elasticity and the shear modulus.  All units of measurement regarding properties are reported in 

the US customary units.  

 

Figure 7: The three principal and orthogonal axes of wood.  (Source: Wood Handbook: Wood as an 
Engineering Material; Redrawn by author for clarity)56 

 

Tensile Strength.  The tensile strength of wood is defined as its resistance to opposing forces 

that act in one direction away from each other that tend to split or pull the wood apart.  Wood’s 

tensile strength parallel to the grain is one of its strongest properties while its tensile strength 

                                                             
56 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material: 5-1. 
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perpendicular to the grain is one wood’s weakest.57  It is expressed as pounds per square inch 

(psi) and determined in accordance with ASTM 143(Standard Test Methods for Small Clear 

Specimens of Timber).  

 

Figure 8: (a) Tensile load parallel to the grain (b) Tensile load perpendicular to the grain 

 

Compressive Strength.  The compressive strength is defined as its resistance to opposing forces 

that act in one direction toward each other and tend to crush the wood.  Like the tensile 

strength, the compressive strength is expressed in terms of pounds per square inch (psi) and 

determined in accordance with ASTM 143 (Standard Test Methods for Small Clear Specimens of 

Timber).  

                                                             
57 Faherty, Williamson, and Harry E. Humphreys Book Fund., Wood engineering and construction 
handbook: 1.14. 

 (a)  (b)
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Figure 9: (a) Compressive load parallel to the grain (b) Compressive load perpendicular to the grain. 

Shear Strength.  Shear strength is defined as wood’s resistance against internal slippage along a 

plane parallel to the direction of loading.  Shear strength of a wood across the grain is not 

considered in design, because shear failure will always occur parallel to the grain.58  Again it is 

expressed in pounds per inch (psi) and determined in accordance with ASTM 143 (Standard Test 

Methods for Small Clear Specimens of Timber).  

                                                             
58 Ibid., 1.15. 

 (a)  (b)
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Figure 10: Shear load parallel to the grain. 

 

Flexural Strength.  Flexural strength is defined as resistance to bending loads and is also known 

as the modulus of rupture.  Flexural strength values are limited to the elastic range of 

deformation under load.59  It is expressed in pounds per square inch (psi) and determined in 

accordance with ASTM 143 (Standard Test Methods for Small Clear Specimens of Timber).  

                                                             
59 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material: 5-3. 
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Figure 11: Flexural load 

 

Modulus of Elasticity.  The modulus of elasticity (E) is the relationship of load to deformation 

within the elastic range of a material.  The elastic region is the range in which the material will 

return to its original position once a load is removed.  Because of wood’s orthotropic nature, 

there are three moduli of elasticity associated with any given species.   Wood experiences a 

unique condition called creep.   Thus the unlike isotropic materials, like steel, it will continue to 

deform under a long term load yielding permanent deformation.60   The modulus of elasticity is 

the ratio of the axial stress over strain and expressed in kips per square inch (ksi).  The three 

moduli of elasticity are determined from the compressive tests in accordance with ASTM 143 

(Standard Test Methods for Small Clear Specimens of Timber).   

Shear Modulus. The Shear Modulus represents the resistance to deflection due to shear forces.  

Like the modulus of elasticity, there are three shear moduli per wood species, one per 

orthogonal axis. The shear modulus is also referred to as the modulus of rigidity (MOR).  

Qualitatively, the shear modulus is the ratio of shear stress to strain and typically expressed in 

                                                             
60 Faherty, Williamson, and Harry E. Humphreys Book Fund., Wood engineering and construction 
handbook: 1.15. 
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pounds per square inch (psi).  The shear modulus parallel to the grain is calculated from the 

results of the shear strength; while the tangential and radial shear moduli are typically 

calculated using the respective modulus of elasticity.  

Physical Properties 

Density & Specific Gravity. The density of a material is defined as the ratio of the mass to the 

volume.   Specific Gravity, typically denoted by G or SG, is typically calculated as the oven-dry 

mass to the volume of the material normalized by the density of water.  However, because 

wood’s volume and mass depend on its moisture content, as reference values for density are 

typically reported for the following moisture contents of a species: oven-dry(0%), green(30%) 

and 12% moisture content.  It is also important to note that other factors such proportion of a 

latewood to earlywood and presence of juvenile wood can affect density within the same 

species.  In general, however, higher density woods have a greater amount of wood cells and 

less cell cavity space.   

Coefficient of Thermal Expansion.  Wood, like other materials, expands when heated and 

contracts when cooled.  The rate at which this expansion and contraction occur is expressed in 

the coefficient of thermal expansion.  CoTE values parallel to the grain typically range from 1.7 

to 2.5 X10-6 in per degree Fahrenheit.61  Like its mechanical properties, the CoTE varies with 

each orthogonal axis.  The CoTE in the radial and tangential directions is proportional to the 

oven-dry specific gravity of the wood and related by the following equations62:   

Radial CoTE   𝛼𝑟 =  �18𝐺𝑜𝑣𝑒𝑛−𝑑𝑟𝑦 + 5.5�10−6  𝑖𝑛
℉

 

Tangential CoTE  𝛼𝑡 =  �18𝐺𝑜𝑣𝑒𝑛−𝑑𝑟𝑦 + 10.2�10−6  𝑖𝑛
℉

 

                                                             
61 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material: 4-14. 
62 Ibid., 4-15. 
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CoTE values in the radial or tangential are significantly greater than the CoTE parallel to the 

grain by an order of magnitude of up to 10 times. However, unless the subject timber is dry, the 

shrinkage and swelling that wood experiences due to changes in moisture content, rather than 

temperature, will dominate the magnitude of dimensional change.  

Moisture Content & Dimensional Stability.  As a hygroscopic material, wood absorbs water vapor 

from the air as well as absorbing liquid water in contact with it.  It is important to recognize that 

the moisture content of wood directly affects its other mechanical and physical properties.  

However, this dimensional instability when exposed to environmental moisture does have its 

limits.  Once all of the wood fibers (and on a molecular level the wood cells) have become 

saturated, no further volumetric change occurs.  This point, known as the fiber saturation point, 

varies with species but on average is reached at a moisture content of 30%.63  Any additional 

moisture content past this point is held as free water in the cell cavities; however, it will be 

limited by the volume of voids.  Species with higher specific gravities have less void spaces and 

thus lesser maximum capacity to hold water and vice versa.   

The dimensional, or volumetric, change that wood undergoes is not experienced equally 

amongst wood’s principal orthogonal axes.  Wood experiences the least volumetric change, on a 

magnitude of 0.1 to 0.2% in direction of the fibers, or the longitudinal axis.  It experiences the 

greatest change along the tangential axis with the radial shrinkage and swelling roughly half of 

the tangential.64  These differing rates of shrinkage and swelling among the tangential, radial 

and longitudinal axes result from the thickness and layer orientation of the secondary cell wall 

structure.  The significant effects of moisture content on the mechanical properties occur at 

moisture contents up to the fiber saturation point in which the bound water in the cell walls 

                                                             
63 Ibid., 4-2. 
64 Ibid., 4-5. 
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interfere with bonding of the organic polymers.65 High density woods, which contain a larger 

number of cells per unit volume than low density woods, are more greatly affected by changes 

in moisture content than lower density woods.   

Grain Orientation.  As it applies to mechanical properties, grain refers the orientation of the 

fibers.  Not all wood is sawn with perfectly straight grain, nor does all wood grow with perfectly 

straight grain.  Therefore, in structural application, an important consideration is the slope of 

the grain of a piece of wood, because that the direction of the loading of a timber will not be 

parallel or perpendicular to its longitudinal axis, thus negatively affect the value of its 

mechanical properties. As will be discussed in Chapter 5, the slope of the grain also affects 

bonding performance of wood when it is adhered with another structural member. 

Surface Properties.  

The surface properties of a wood member play a significant role in determining how well it is 

able to form an adhesive bond.  Surface properties can be divided into two categories: physical 

and chemical.   The primary physical properties include morphology, roughness, smoothness, 

specific surface area and permeability, while their chemical properties consist of the elemental 

and molecular composition of the exposed or surface wood cells.66 The timber specie is the 

primary factor that determines the surface properties.67  Specifically, higher density woods have 

thicker cell walls and thus smaller lumen limiting the ability of adhesives to form a mechanical 

interlock with the wood substrate or surface.  Additionally, higher concentrations of extractives 

tend to be found in higher density woods and may chemically interfere with the bonding68. 

However, the amount and type of extractives is a function of the timber species. Finally, the 
                                                             
65 Rowell, Handbook of wood chemistry and wood composites: 312. 
66 Ibid. 
67 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material: 16-2. 
68 Ibid., 10-6. 
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surface finish and condition greatly affect the bond performance with adhesives by either 

enabling or prohibiting the flow of the adhesive into the wood cells (Figure 12).  

 

Figure 12: Adhesive Bondlines in (A) a sound wood surface and (B) a poor, crushed, wood surface.  The depth of 
adhesive penetration is significantly affected by type of surface finish or condition. Source: Handbook of Wood 

Chemistry and Wood Composites, 200569 

                                                             
69 Rowell, Handbook of wood chemistry and wood composites: 231. 
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Property Values of Historic Woods Commonly Used in Historic Structural Framing in the 
United States 

This final section provides a summary of the mechanical and physical properties of wood species 

typically found in structural framing within historic structures within the United States.  These 

property values enable a comparison of the compatibility of materials in the chapters that 

follow.  All values were obtained using the 2012 edition of the Forest Products Laboratory’s 

Wood Handbook: Wood as an Engineering Material.  

 

Table 2: Properties of Wood Species Found in Historic Structures in the United States (Source:  Wood Handbook: 
Wood as an Engineering Material, 2010 70) 

                                                             
70 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material. 

Scientific Name Pinus Palustris Quercus Alba Castanea Dentata
Common Name Longleaf Pine White Oak American Chestnut
Perpendicular to Grain 470 800 460
Parallel to Grain ND ND ND
Perpendicular to Grain 960 1070 620
Parallel to Grain 8470 7440 5320

Shear Strength, psi Parallel to Grain 1510 2000 1080
Flexural Strength, psi Modulus of Rupture 14500 15200 8600

Longitudinal 1980 1780 1230
Radial 202 290 ND
Tangential 109 128 ND
GLR 141 153.08 ND
GLT 119 ND ND
GRT 24 ND ND

Specific Gravity Oven-Dry 0.62 0.68 0.43
Longitudinal See Note 2 See Note 2 See Note 2
Radial 0.000017 0.000018 0.000013
Tangential 0.000021 0.000022 0.000018
Radial 5.1 5.6 3.4
Tangential 7.5 10.5 6.7
Volumetric 11 16.4 11.6

1 All Strength Values are at 12% MC

2
3 ND = No Data Available 

Tensile Strength, psi 

Compressive Strength, 
psi

Modulus of Elasticity 
(E), ksi 

Shear Modulus (G), psi

Properties of Wood Species found in Historic Structures in the United States

Coefficient of Thermal  
Expansion, in/°F

Dimensional Change 
(from Green to 

Ovendry MC)

Wood Species

Notes

Coefficient of Thermal Expansion parallel to the grain ranges from 1.7 to 2.5 X10-6 in/°F
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Chapter 4 –Material Properties:  Epoxy 

 In the United States, production of epoxies soared from 10 million tons in 1955 to more 

than 433 million tons in 1994.71   This boom highlights that epoxies have become highly useful in 

industry for their properties such as their “toughness, low shrinkage, high adhesion and good 

alkali resistance.”    As such, epoxies are used today for surface coatings, adhesives, electronic 

component encapsulation, laminates and road surfacing.  Of note, the adhesive industry use of 

epoxy comprises approximately 35% of the market production.72 Other industries that utilize 

epoxy resins include electrical and electronic, laminate and glass-fiber reinforced plastics, 

aerospace, and tool manufacturing.  As discussed in Chapter Two, epoxy’s functionality as an 

adhesive makes it effective in repairs for wood.   This chapter discusses the properties that allow 

epoxy to obtain high adhesion with wood.   

Epoxies are compounds formed by the chemical reaction between a resin and curing or 

hardening agent which results in a polymer. The term polymer refers to a chemical structure of 

“a compound in which a large number of identical or similar atoms or groups of atoms are united 

by primary chemical bonds.”73  Specifically, an epoxy must also contain a functional group called 

an epoxide (Figure 13) which is composed of a triangular structure of one oxygen atom and two 

carbon atoms.  The two lines “projected from the two carbon atoms indicate bonds to other 

atoms in the molecule.”74 As opposed to thermoplastic polymers which can be melted down, 

epoxies undergo a thermosetting reaction forming cross-linked polymers which cannot be either 

dissolved or melted.  Due to this chemical-set or curing, epoxies exhibit little to no shrinkage 

unlike other polymerization processes.   

                                                             
71 Pham, "Epoxy Resins," 159. 
72 Ping L. Ku, "Epoxy resins: Their manufacture and applications," Advances in Polymer Technology 8, no. 1 
(1988): 88. 
73 Phillips and Selwyn, Epoxies for Wood Repairs in Historic Buildings: 3. 
74 Ibid., 4. 
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Figure 13: Epoxide Functional Group. As the epoxy cures the carbon atoms bond with nitrogen atoms in 
the amines (hardeners) which ‘opens’ up the epoxy ring.  When the nitrogen atom bonds with the 
carbon atom it gives up a hydrogen atom which bonds with the oxygen.  The number of hydrogen 
atoms that an amine has available to lose corresponds to the number of available sites for the epoxide 
to bond to. Thus amines with higher numbers of hydrogen atoms can achieve a greater degree of cross 
linked polymerization.  

The mechanical, physical, and working properties of an epoxy can be varied by varying the 

number of polymer groups between epoxides. For example, a large number of polymer groups 

between epoxides yields a higher viscosity and a higher heat deflection temperature.   

With regards to adhesive bonding in structural applications, there are several variables 

that affect the overall durability and overall performance of the epoxy bond.   These variables 

can be grouped as properties that relate to the epoxy resin and the conditions during adhesive 

process including the required service conditions.75 The first category of epoxy resin properties 

can be summarized as those that are internal to the actual resins which include both its physical, 

mechanical and working properties. Critical epoxy resin physical and working properties include 

the type, viscosity, molecular weight, hardener, pot life, cure time, fillers, and any solvent 

system if applicable. Mechanical properties include those such as the strength, shear modulus, 

swell-shrink resistance, and ultraviolet resistance of the cured epoxy.  The other category of 

variables relates to the adhesive process.  These factors are properties external to the epoxy 

                                                             
75 Rowell, Handbook of wood chemistry and wood composites: 222. 
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resin such as adhesive amount, distribution, and environmental conditions such as relative 

humidity and temperature.   

This chapter focuses on the properties that relate to the epoxy resin.  The next chapter 

will consider the variables associated with adhesive process and required service conditions 

within the context of compatibility with historic wood conservation and repair.  

Physical and Working Properties 

Resin Type:  Typically, the resin type is selected to suit a specific application.   Liquid epoxy resin, 

or DGEBA (Diglycidyl Ether of Bisphenol A), is the type of resin used for wood conservation.  

Moreover, it is the base for which 75% of all other resins are derived.76  DGEBA is product of the 

reaction of epicholorohyrin with bisphenol A.  This basic resin can be modified further with 

diluents, fillers and other resins to vary its cured both cured and working properties.   

Viscosity. Viscosity is the resistance to flow of the resin.  Epoxies with low molecular weights 

have lower viscosity and thus flow more easily than those with higher viscosities.   Viscosity’s 

unit of measurement is the centipoise (Cps).   For context, the viscosity of water is 1 Cps while 

peanut butter has a viscosity of 250,000 Cps.77   Viscosity is an important property to consider as 

consolidation repairs require very low viscosities in order to penetrate the wood cells in contrast 

to gap-filling adhesives that require a high viscosity to maintain shape and form.  

Hardener Type.   Epoxy resins harden when they are reacting with a curing agent which enables 

crosslinking of the epoxy molecules.  Amines are the most common curing agents used with 

epoxy resins.  In this process the nitrogen of the amine group forms a bond with one of the 

carbons of the epoxy groups.78   

                                                             
76 Pham, "Epoxy Resins," 156. 
77 Mike Barnard, "Determining Epoxy's Physical Properties," Epoxyworks 2012, 1. 
78 Phillips and Selwyn, Epoxies for Wood Repairs in Historic Buildings: 6. 
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Pot Life. Pot life, or working life is the time interval between mixing resin and hardener and the 

gel formation of the material as it hardens.  Specifically, West Systems defines pot life as “the 

amount of time you have to work with 100 grams of epoxy in a small container at room 

temperature (72 °F).”79  This property is also defined by ASTM D1338. This property is 

dependent on the type of hardener used, size of container, volume of mixed and temperature.80   

Cure Time. The cure time of epoxy is generally accompanied by temperature and is the 

approximate time that it takes the epoxy to fully set and reach its maximum strength values.  

Heat Deflection Temperature / Glass Transition Temperature.  Both the heat deflection 

temperature (HDT) and the glass transition temperature are indications of the point at which 

the cured epoxy resin “changes from a glassy (solid) state to a soft, rubbery state.” When 

exposed to increasing temperature after hardening.81 The heat deflection temperature is 

determined through mechanical methods by means of flexure in accordance with ASTM D648. 

The glass transition temperature, represented by the symbol Tg, is a computerized measurement 

conducted in accordance with either ASTM E2602 (Digital Scanning Calorimetry), ASTM E1545 

(Thermomechanical Analysis), and ASTM E1640 (Dynamic Mechanical Analysis).  The heat 

deflection temperature and the glass transition temperature are related, so the value of one can 

easily be converted to the other.  In practice, the determination of the HDT takes much longer 

than the determination of the glass transition temperature.  For this reason, the glass transition 

temperature is reported for most products.  

                                                             
79 Barnard, "Determining Epoxy's Physical Properties," 1. 
80 Ibid., 2. 
81 Ibid., 3. 
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Mechanical Properties. 

Unlike wood, properly mixed and cured epoxies are homogeneous and thus their 

mechanical properties are the same in all directions.  However, these properties can 

vary significantly based on the resin composition, hardener and other modifications that 

manufacturers may make.  

Tensile Strength.  The tensile strength of epoxy is defined as its resistance to forces that act in 

one direction that tend to split or pull the epoxy apart. It is generally expressed as pounds per 

square inch (psi) and determined in accordance with ASTM D638 (Standard Test Method for 

Tensile Properties of Plastics).  

Compressive Strength.  The compressive strength is defined as its resistance to forces that act in 

one direction and tend to crush the epoxy.  Like the tensile strength, the compressive strength is 

determined in accordance with ASTM D695 (Standard Test Method for Compressive Properties 

of Rigid Plastics).  

Shear Strength.  The shear strength is defined as wood’s resistance against internal slippage 

along a plane parallel to the direction of loading.  It is determined in accordance with ASTM 

D732 (Standard Test Method for Shear Strength of Plastics by Punch Tool). 

Lap Shear Strength.  The lap shear strength is a more specific service condition loading when 

bonding two substrates in a single lap joint.   It generally reported by the manufacturers as a 

measure of the strength of a joint and is typically determined in accordance with either ASTM 

D3163/3164 or ISO 4587.  

Flexural Strength.  The flexural strength defined as epoxy’s resistance to bending loads and is 

also known as the modulus of rupture.  It is determined in accordance with ASTM D-790 
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(Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and 

Electrical Insulating Materials).  

Modulus of Elasticity/Tensile Modulus. The modulus of elasticity (MOE), denoted by E in 

engineering equations, represents the tendency a material to deform under load.   Epoxy 

manufacturers will also report this value as the tensile modulus.  A high tensile modulus 

indicates the stiffness of the material.  The MOE is determined from the tensile tests in 

accordance with ASTM D638 (Standard Test Method for Tensile Properties of Plastics).   

Tensile Elongation. Tensile elongation is defined as the “change in length of a sample when 

loaded to failure.”82 A higher tensile elongation value indicates that the epoxy will ‘stretch’ more 

as it is deformed.  Tensile elongation is expressed as a percentage and determined in 

accordance with ASTM D638 (Standard Test Method for Tensile Properties of Plastics).  

Properties of Epoxy Products for Wood Repair. 

There are numerous products on that are marketed for wood conservation and repair.  Table 3 

lists a range of products along with their intended use.   

 

Table 3: Epoxy Products for Wood Repair 

                                                             
82Ibid., 2..  

Epoxy 
Resin/Hardener Structural Type of Use
Araldite 1253 Maybe Adhesive
Sikdadur 32 Hi-Mod Yes Adhesive
West 105/205 Maybe Adhesive
Abatron LiquidWood Yes Consolidant
ConServ 100 No Consolidant
PC-Rot Terminator Yes Consolidant
Smith System CPES Yes Consolidant
ART FLEX-TEC HV Maybe Filler
Abatron WoodEpox Maybe Filler
Triton Trimol 36 Yes Filler
Rotafix Resiwood  TG6Yes Filler
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In order to demonstrate the variance in the range of properties, the following charts depict the 

reported properties from the epoxy products listed in Table 3.83  These values will be used in the 

next chapter to assess compatibility by repair category.  Of note from Figure 14 through Figure 

18 is the significant variation in both working and mechanical properties.  Moreover, not 

all manufacturers report the fundamental mechanical properties of their products.  

ConServ 100 is marketed to the wood conservation industry, but the product literature 

states that it is not intended for structural purposes, so it is logical that mechanical 

properties are omitted.    

 

 

Figure 14: Working Times of Epoxy Wood Repair Products 

 
                                                             
83 Product data sheets used to compile these charts have been consolidated in the Appendices. 
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Figure 15: Cure Time of Epoxy Wood Repair Products 

 

 
Figure 16: Tensile Strengths of Epoxy Wood Repair Products 
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Figure 17: Compressive Strengths of Epoxy Wood Repair Products 

 
 

 
Figure 18: Flexural Strengths of Epoxy Wood Repair Products  
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Chapter 5 –Structural Compatibility of Wood and  Epoxy 

The compatibility of two materials is a measure of how well they perform together in an 

intended service application without any their dissimilarities having a negative effect on overall 

performance. Thus compatibility is essentially the probability of success between the marriage 

of two materials. The primary relationship of importance between epoxy and wood in all repairs 

of historic wood is the quality of the adhesive bond.  The adhesive interface is where the 

structural compatibility of epoxy with wood must be assessed.   However, assessing the 

performance of adhesively bonded wood assemblies requires an understanding of interrelation 

of the mechanical and chemical aspects of the bond strength.  Furthermore, the compatibility of 

the two components of this adhesive relationship depends on variables such as the epoxy resin, 

the wood species, the adhesive process and the conditions and loads of service where and how 

the adhesive is employed.  Table 4 lists the mechanical and chemical factors that affect each of 

the primary variables.   Assessing compatibility epoxy and wood therefore requires isolating the 

dominant factors for a specific service application.  

Previous chapters explored the variables related to the resin, wood and some service 

considerations.   The following sections consider the compatibility of historic timber and epoxy 

when used as either a consolidant, adhesive, or gap-filling adhesive.  This methodology allows 

for the assessment of this wood-epoxy relationship based on the volume of epoxy used and the 

intended service application.  This methodology considers each category of epoxy repair in order 

in order to understand how the compatibility of the historic woods and epoxy affected by bulk 

material properties and environmental conditions based on the application.    
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Table 4: List of variables that affect the bond performance of wood assemblies bonded with adhesives. Source: 
Handbook of Wood Chemistry and Wood Composites84  

Table 4 can be summarized with the following general equation85: 

𝐺𝑙𝑢𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

=  𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 ±�
𝐴𝑑ℎ𝑒𝑠𝑖𝑣𝑒 

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
𝑓𝑎𝑐𝑡𝑜𝑟𝑠

±�
𝑊𝑜𝑜𝑑

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦
𝑓𝑜𝑟𝑐𝑒𝑠

  ±�
𝑊𝑜𝑜𝑑

𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛
𝑓𝑎𝑐𝑡𝑜𝑟𝑠

  

±�
𝐴𝑑ℎ𝑒𝑠𝑖𝑣𝑒
𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑓𝑎𝑐𝑡𝑜𝑟𝑠

  ± �
𝑊𝑜𝑜𝑑

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦
𝑓𝑎𝑐𝑡𝑜𝑟𝑠

 ± �
𝑃𝑟𝑜𝑑𝑢𝑐𝑡
𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑓𝑎𝑐𝑡𝑜𝑟𝑠 

 

Compatibility with Respect to Epoxy Consolidants 

 In the case of consolidation, the performance and compatibility of epoxy consolidant depends 

upon the extent of epoxy penetration within the wood structure.   

This relationship can be quantified by the following equation86:  

𝑄 = 𝐾×𝐴×𝜌×𝑔
𝜇

× �𝜕ℎ
𝜕𝑠
�                                                        (Equation 1) 

                                                             
84 Rowell, Handbook of wood chemistry and wood composites: 24. 
85 Custódio, Broughton, and Cruz, "A review of factors influencing the durability of structural bonded 
timber joints," 174. 
86 Schaffer, "Consolidation of Softwood Artifacts," 111. 

Resin Wood Process Service
Type Species Adhesive amount Strength
Viscosity Density Adhesive distribution Shear modulus
Molecular weight distribution Mositure Content Relative Humidity Swell-shrink resistance
Mole Ratio of reactants Plane of cut Temperature Creep
Cure rate Heartwood vs. Sapwood Open assembly time Percentage of wood failure
Total Solids Juvenile vs. mature Wood Closed assembly time Failure type
Catalyst Earlywood vs. latewood Pressure Dry vs. wet
Mixing Reaction Wood Adhesive penetration Modulus of Elasticity 
Tack Grain Angle Gas-through Temperature
Filler Porosity Press time Hydrolysis resistance
Solvent System Surface roughness Pretreatments Heat resistance
Age Drying damage Posttreaatments Biological resistance 
pH Machining damage Adherend temperature Finishing 
Buffering Dirt, contaminants Ultraviolet resistance

Extractives
pH
Buffering capacity
Chemical surface 

Wood Bonding Variables
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Where Q is the volumetric flow of a fluid with a viscosity, µ, and density, r through a cross-

section with an area, A, having a permeability of K under a gravitational acceleration, g with a 

hydraulic gradient pressure in the direction of the flow, �𝜕ℎ
𝜕𝑠
�.   Because the performance of 

consolidation repairs depends upon the ratio of the volume of epoxy that fills to the volume of 

the voids in the deteriorated and sound sections of wood, understanding the variables that 

maximize the ratio is critical.  

As indicated by Equation 1, the permeability, or porosity, of the wood and the viscosity 

of the epoxy are critical parameters.  Either an increase in wood porosity or a decrease in epoxy 

viscosity will increase the epoxy/void ratio in the repair. .  

The porosity of the wood “is related to how internal cavities at the microscopic level 

communicate with each other.”87  Therefore, the primary determinant of compatibility depends 

on the micromorphology and anatomical features of the wood species and the .    

Micro Morphology of Southern Pine, White Oak & American Chestnut 

The anatomical features of wood structure vary widely between wood species.  

Softwoods are somewhat simple in structure and are comprised of only of longitudinal tracheids 

and rays.  These structures enable the wood to transport water both longitudinally up the tree 

and transversely.  Moreover, southern yellow pine also contains large resin canals.  Hardwoods 

are more complex in their structure, comprised of vessels, tracheids and fibers.  The vessels 

serve as the primary fluid transport conduit through the tree and vary in size with earlywood 

vessels being greater in size than latewood vessels. Although the tracheids and fibers allow for 

fluid transport, their cell walls are much thicker and thus limit such transport.  Pitting occurs 

between vessels and tracheids and the pit apertures vary in both shape and size depending on 
                                                             
87 Tomas Olsson et al., "Study of the transverse liquid flow paths in pine and spruce using scanning 
electron microscopy," Journal of Wood Science 47, no. 4 (2001): 282. 
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the wood species.  These anatomical features transport fluid laterally between vessels and 

tracheids.  However, both softwoods and hardwoods primary lateral fluid transport occurs 

through the rays which cross the tracheids, fibers and vessels.  These sub-anatomical features 

also serve as the primary transport pathways for epoxy consolidants as well as adhesives.  The 

depth of consolidation and penetration of any such consolidant is thus largely dependent upon 

these features.  

 

Figure 19: Cross section views of American Chesnut, Southern Yellow Pine and White Oak. The comparison shows 
the relative sizes of the vessels (chestnut/oak) and the tracheids and resin canals (southern pine).  Source: 
Identifying Wood, Bruce Hoadley, 1998.88 

Figure 19 depicts cross-sectional views of each of the three historic woods and allows for quick 

visual comparison of the available cross-sectional area available for fluid and epoxy flow.  Of 

note, both the American chestnut and the white oak have tyloses (or extractives present), the 

abundance in the white oak severely limits the flow of fluids and epoxy consolidants.  Olsson et 

al examined the transverse liquid flow paths in pine with epoxy under the scanning electron 

microscope.  They found the fluid retention in the ray tracheids in pine sapwood to 
                                                             
88 R. Bruce Hoadley, Identifying wood : accurate results with simple tools  (Newtown, CT: Taunton Press, 
1998). 
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Figure 20: Longitudinal/radial plane in pine sapwood showing the effect of flow through distorted window pit 
membranes. The tracheids marked a and b are unfilled, whereas the tracheids marked c-e contain varying amounts 

of epoxy. The uppermost window pit membrane in tracheid c is intact, whereas the middle (1) and right pits 
apparently provide a path for the flow through distorted window pit membranes.  The cross-field pit between ray 

tracheids and longitudinal tracheids are marked by 2; No evidence of transverse flow from ray tracheids is found in 
this micrograph. Source: Journal of Wood Science Volume 47, 2001.89 

be significantly greater that that found in pine heartwood as shown in Figure 21.  “The main 

mechanism accounting for the reduced permeability of the pine heartwood is believed to be 

deposits of higher molecular weight substances (extractives) on the cell walls.”90  Although 

spruce is not a considered wood species in this thesis, Olsson’s conclusion that thicker ray cells 

combined with smaller pits severely reduce the permeability of transverse flow is applicable. 

Thicker cell walls and a higher specific gravity are directly proportional, thus wood species with 

higher specific gravities generally have thicker cell walls.  Therefore a comparison of the specific 

gravities of the historic wood species will indicate a very general assessment of their  

 

                                                             
89 Olsson et al., "Study of the transverse liquid flow paths in pine and spruce using scanning electron 
microscopy," 285. 
90 Ibid., 288. 
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Figure 21: Fractional retention of epoxy in ray tracheids in both pine and spruce sapwood and heartwood. Source: : 
Journal of Wood Science Volume 47, 200191 

permeability and their compatibility with epoxy consolidants.  In decreasing order of ease of 

consolidation is American chestnut with an specific gravity of 0.43, followed by southern yellow 

pine with a specific gravity range between 0.51 and 0.61 followed by white oak with a specific 

gravity of 0.68.   

Factors Affecting Epoxy When Used as a Structural Adhesive 

An epoxy bonded joint represents “a layer system comprising different materials and 

interfaces, all of which respond in different ways to an externally applied load and/or change in 

environmental conditions.”92  The adhesive bond system can be idealized as shown in Figure 22, 

which is comprised of eight layers:  two wood layers; one adhesive layer; two adhesive 

interphase layers; two wood interphase layers; and two wood-adhesive interface layers.   

                                                             
91 Ibid., 284. 
92 Custódio, Broughton, and Cruz, "A review of factors influencing the durability of structural bonded 
timber joints," 184. 
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Figure 22: Idealized layers of a bonded wood joint in schematic form.  Source: The Wood Handbook93 (Figure re-
drawn and modified by Author for clarity) 

The glueline thickness is the summation of the thicknesses from all the adhesive phase layers 

minus any wood portions.  The current understanding of adhesion is based on the theory that 

“adhesion will occur between the adhesive and adherend because of physical forces established 

at the interface, as long as intimate contact is achieved.”94  It is generally accepted that 

“mechanical interlocking and valence forces” are now the “main mechanisms by which bonds 

between adhesive polymers and molecular structures of wood are formed.”95  

                                                             
93 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material: 10-2. 
94 Custódio, Broughton, and Cruz, "A review of factors influencing the durability of structural bonded 
timber joints," 174. 
95 Ibid. 
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At the wood-adhesive phase layer, the variation in bulk and surface characteristics of 

different species of timber can significantly affect adhesion.96  Specifically, these characteristics 

include: (1) wettability; (2) lack of contaminants/extractives; (3) surface roughness and porosity; 

(4) surface soundness; (5) surface uniformity; (6) adhesive compatibility; and (7) stability in the 

operating environment.97   Because mechanical interlocking is essential to the wood-epoxy bond 

penetration of the epoxy into the wood interphase layer is important and is affected by the 

same factors discussed for epoxy-wood compatibility in consolidation.   

In addition to the wood surface factors, the process and product service conditions must 

be taken into account. Of critical importance “in the design of a structurally bonded connection 

is the moisture content of the members.”98   The primary concern with moisture deals with “the 

movement [dimensional change] in the timber resulting from this change in moisture content 

[that] will induce stresses in the glueline.”99  Another critical factor in bond performance is 

temperature.  Temperature produces several comorbid negative effects.  First, because wood is 

hygroscopic, its equilibrium moisture content is dependent on both temperature and relative 

humidity.  In service, the structural wood member may see varying temperatures and relative 

humidity conditions.  As the temperature and relative humidity rise, the amount of moisture the 

wood cells absorb from the air will increase and they will swell.  In regards to application of 

epoxy, applying epoxy at a service temperature and relative humidity will result in less 

penetration as their will be less void space due to the swelling of the wood fibers. Conversely, 

apply it at a low temperature and relative humidity will induce significant compressive stresses 

on the epoxy as the wood swells as the temperature and relative humidity rise throughout the 

                                                             
96 Broughton, "Adhesive systems for structural connections in timber," 180. 
97 G. Davis, "The performance of adhesive systems for structural timbers," International Journal of 
Adhesion and Adhesives 17, no. 3 (1997): 249. 
98 Ibid., 253. 
99 Ibid., 251. 
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year.  Service temperature also directly affects structural performance; tests conducted by Cruz 

and Custódio found that “temperature may well limit the performance and durability of bonded 

structural joints if adhesives with low glass transition temperatures are used” and that even 

temperatures not higher than 45°C had effects that “may be critical for structural safety.”100  

The ultimate consideration is how these variables affect the penetration of the epoxy adhesive 

into the wood at the wood-adhesive interphase layer. A greater depth of penetration yields a 

stronger mechanical interlock between the two materials.  The general effects of these factors 

as well as cure rate of the epoxy and bond pressure are depicted in Figure 23. 

 

Figure 23: General effect of conditions on adhesive penetration.  Increasing temperature makes the adhesive more 
fluid until too much causes polymerization. At low wood moisture content the epoxy is able to easily fill the wood 
cell voids, while at high wood moisture content, water retards the penetration because the wood fibers swell and 
eventually free water in the voids prevents epoxy penetration.  Both an increase in bond pressure and a longer 
[cure] time promote adhesive penetration.  Source: Handbook of Wood Chemistry and Wood Composites101 (Figure 
re-drawn and modified by Author for clarity) 

                                                             
100 Helena; Custodio Cruz, Joao, "Thermal performance of epoxy adhesives in timber structural repair" 
(paper presented at the 9th World Conference on Timber Engineering, Portland, OR, USA, 2006). 
101 Rowell, Handbook of wood chemistry and wood composites: 239. 
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Wheeler and Hutchinson examined epoxy resin-bonded timber with the respect to various 

species and moisture contents and concluded that “epoxy resins were able to bond timber of up 

to 22% moisture content without any significant depreciation in bond strength or change in 

locus of failure.”102   

The grain angle of the epoxy-bonded wood has a significant impact on the joint 

performance. Avent (1986) examined the effect of grain angle on epoxy by testing samples of 

southern pine in a double shear test.  In order to assess the effect of the grain angle on the bond 

strength, the center piece was always loaded parallel to the fibers; however, the angle of the 

member was varied.  

 

                                                             
102 Wheeler and Hutchinson, "Resin repairs to timber structures," 12-13. 
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Figure 24: Effect of grain orientation on failure shear stress for No. 2 Southern Pine double shear joints (circles 
indicate average value for each test series).  Source: Journal of Structural Engineering 112, Issue 2, 1986. (Figure 
redrawn by Author for clarity).103  

 Avent discovered that the effect of grain angle on bond strength could be approximated using 

Hankinson’s formula.104  

𝑁 =  𝑃×𝑄
𝑃×𝑠𝑖𝑛2𝜃+𝑄×𝑐𝑜𝑠2𝜃

     (Equation 2) 

Where N is the shear strength at angle Q, and P is the shear strength of the member parallel 

to the grain and Q is the shear strength of the member perpendicular to the grain.  Figure 24 

depicts the results of his testing along with the line predicted by Hankinson’s formula.  Based on 

these tests, an increase in the grain angle yields a decrease in bond shear strength.   

Structural Adhesive Bonds with Respect to Historic Timber 

Independent of epoxy adhesives, the wood species will affect the ability to achieve an 

adhesive bond.  Recent testing of structurally bonded wood has focused primarily on White Oak.  

Specifically, the research is in agreement that acidic extractives that leach out of over time will 

negatively affect bond performance.105  However, because the performance of the bond is 

primarily a factor of mechanical interlocking at the adhesive-wood interphase layer, the surface 

characteristics discussed as part of the compatibility for historic wood and consolidation also 

apply to epoxy bonds with historic timber. Of note, the Wood Handbook classifies American 

chestnut as a species that bonds easily, southern pine as a species that bonds well and white 

oak as a species that bonds satisfactorily.106  ‘Bonds easily’ means indicates the species bonds 

easily with adhesives of a wide range of properties and a wide range of bonding conditions.  

Bonding well indicates that the species bonds well with a fairly wide range of adhesives under a 
                                                             
103 Avent, "Factors Affecting Strength of Epoxy‐Repaired Timber," 219. 
104 Ibid., 218. 
105Broughton, "Adhesive systems for structural connections in timber," 180. 
106 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material: 10-7. 
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moderately wide range of bonding conditions. A satisfactory bond indicates that the wood 

species will bond well with good-quality adhesives under well controlled bonding conditions.  

Factors affecting Epoxy When Used as a Structural Gap-Filling Adhesive 

Gap-filling epoxies must not only be able to form a good bond with the wood, but must also  

 
Figure 25: Typical beam-end repair with reinforcing bars inserted in holes drilled into end grain and bonded with 
epoxy resin.  Epoxy grout replaces removed timber. Source: Internatinal Journal of Adhesion and Adhesives Volume 
17 Number 3107 (Figure redrawn by Author for clarity) 

must have a high viscosity to maintain shape during curing and sufficient mechanical strength to 

serve as a replacement for the wood that has been removed.  Because the structural load must 

be transferred from the sound wood to the epoxy, typically some sort of embedded 

reinforcement is present to provide surface area for load transfer other than at the wood/epoxy 

interface.   “This requires the adhesive to bond to different substrates together, each of which 

                                                             
107 Davis, "The performance of adhesive systems for structural timbers," 253. 
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has considerably different strength properties and other characteristics.”108  Such a repair is 

depicted by Figure 25, and are characterized by large volumes of epoxy;  in these e applications, 

the epoxies are commonly referred to as epoxy grouts, presumably because of the inclusion of 

aggregates to reduce epoxy volume and exothermic curing  temperatures.109  The addition of 

reinforcement, in the form of plates or rods, relieves the epoxy from having to form a perfect 

adhesive bond at the wood interface, because the load transfer can also occurs through the 

reinforcement.  Research and testing by Stumes concluded in cases where the wood member 

had lost its structural strength “the entire load can be transferred to the epoxy and 

reinforcement.”110  

Similar to epoxy adhesives applications, wood moisture content and service 

temperature can both negatively affect the performance of the epoxy-wood repair.  Testing by 

Stumes indicated that “the great structural strength of epoxy quickly diminishes above normal 

room temperature” further noting that such temperatures can easily occur “in the vicinity of 

heating conduits, high wattage lighting fixtures or under an acute exposure to the sun.”111  More 

recently, testing by Hutchinson and Broughton has focused on the effect of wood moisture 

content on the bonded-in reinforcement rods, finding timber specimens, and more specifically 

white oak, exhibited reduced pull-out strengths, regardless of epoxy or rod type used at higher 

moisture contents.112  Specimens above 30% moisture content, corresponding to saturated 

wood, exhibited significantly reduced pull-out strength in the order of 60-65%.113 They also 

found that as the moisture content increased the locus and mode of failure “relocated from 

                                                             
108 Ibid., 252. 
109 Broughton, "Adhesive systems for structural connections in timber," 178. 
110 Stumes, "Testing the Efficiency of Wood Epoxy Reinforcement Systems." 
111 Ibid., 34. 
112 J.G.; Hutchinson Broughton, A.R, "Effect of timber moisture content on bonded-in rods," Construction 
and Building Materials 15(2001): 24. 
113 Ibid. 
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within a thin layer of the adhesive close to the rod/adhesive interface, to that of a mixed 

timber/adhesion failure or an apparent failure at the adhesive/timber interface.”114 Their 

findings indicate several points related to the performance of gap-filling epoxy adhesives.  First, 

when in a dry service state, the bond between the epoxy and the reinforcement dominates 

performance; second, as the wood becomes saturated, the bond between the wood and the 

epoxy begins to dominate the performance.    

With regard to service temperature, Custódio et al. “that the commercial epoxy 

adhesives displayed significantly different viscoelastic responses over the temperature range 

attained during normal service” and therefore “temperature-induced creep is a risk factor that 

needs to be considered cautiously.”115 This is especially significant for gap filling epoxy adhesives 

where they not only perform as an adhesive but also as a structural prosthetic.  

Summary of Factors Affecting Epoxy –Wood Structural Compatibility  

Structural epoxy-bonded connections with historic timber are affected by numerous factors.  

The compatibility between wood and epoxy begins with an understanding of the adhesive 

relationship, which occurs primarily through mechanical interlock from the penetration of the 

epoxy fluid into the wood’s cell structure.  By examining the current state of knowledge with 

respect to epoxy applied as a consolidant, adhesive and gap-filling adhesive, the critical factors 

influencing the performance and ultimately the compatibility of the two materials is better 

understood.  With regards to consolidation, the viscosity of the epoxy as well as the surface 

morphology and anatomical structure of the individual wood species determines the 

performance. When used as an adhesive, the critical factors include the surface properties and 

                                                             
114 Ibid. 
115 João Custódio, James Broughton, and Helena Cruz, "Rehabilitation of timber structures – Preparation 
and environmental service condition effects on the bulk performance of epoxy adhesives," Construction 
and Building Materials 25, no. 8 (2011): 3581. 
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anatomical structure of the wood species but both moisture content and service temperature 

become critical factors.  And when used in bulk as a gap-filling adhesive, service temperature 

and wood moisture content dominate the performance of the repair.    
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Chapter 6 –Conclusions & Recommendations 

.  This thesis has focused on examining the current state of knowledge of epoxy repairs for 

historic structural timber.  The woods species were limited to American Chestnut, White Oak, 

and Southern Pine because they were determined to be dominant in historic timber 

construction.  Epoxy was examined with respect to its compatibility with these timber species in 

structural repair applications.  Epoxy, for the purposes of structural repair, serves as a 

substitution type repair for deteriorated wood.  Thus, this thesis has endeavored to answer the 

question of compatibility between these two materials, one organic and the other plastic. 

Compatibility, as defined in this thesis, is an indication of how well the two materials perform 

together in an intended service application without allowing their dissimilarities to negatively 

affect overall performance. In his building pathology textbook, Samuel Y. Harris succinctly 

defined the problem with compatibility of substitution repairs in the following passage,  

‘The disadvantage of substitution is that the rate and deterioration mechanism of the 
replacement material is something of a gamble. Despite best efforts to predict 
performance, the peculiarities of the substitution condition are idiosyncratically specific, 
meaning that the substitute material brings with it a level of uncertainty as to 
performance.”116 
 

Therefore, this thesis sought to identify the peculiarities that both encourage and hinder 

the compatibility of wood and epoxy in repairs to historic structural timber.  In order to 

accomplish this assessment, epoxy repairs have been categorized as consolidation, structural 

adhesive or gap-filling adhesive.  The intent was to assess the compatibility of the two materials 

with respect to ratio of the volume of epoxy to the volume of wood void with consolidation with 

the lowest ratio and gap-filling adhesive with highest ratio.    

                                                             
116 Harris, Building Pathology : Deterioration, Diagnostics, and Intervention: 43. 
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 At its most fundamental level, the governing relationship between epoxy and wood is 

that of an adhesive.  This relationship is complicated because an “understanding how an 

adhesive works is difficult since adhesive performance is not one science of its own, but the 

combination of many sciences.”117 Furthermore, the interface between the wood substrate and 

the epoxy is best modeled as a system of layers.  The theories across the sciences for describing 

adhesive performance focus on some combination of mechanical and chemical aspects of 

bonding.  This thesis ascertained that within the framework of the current state of knowledge, 

mechanical interlock is the primary bonding mechanism.118 This framework thus refined the 

paradigm through which the compatibility between wood and epoxy would be assessed. At the 

global level compatibility would be assessed based on repair type followed by an examination at 

the micro or molecular level focused on the ability to obtain adequate mechanical interlocking.  

Finally, the external effects of the environment, including temperature and moisture, were 

examined to determine their effects on the compatibility.  

Conclusions 

Assessment of Structural Compatibility with Regards to Epoxy Use as a Consolidant  

With respect to consolidation, the porosity of the wood and viscosity of the epoxy 

dominate performance.  Wood species porosity is determined by the macro and micro features 

of the wood cell structure.  However, because all wood cells have the same density, the porosity 

of a species can be derived from its specific gravity.  Thus wood samples with lower specific 

gravities have more voids and therefore greater porosity.  Figure 26 illustrates the relative 

compatibility of the three historic wood species based on specific gravity.   

                                                             
117 Rowell, Handbook of wood chemistry and wood composites: 220. 
118 Custódio, Broughton, and Cruz, "A review of factors influencing the durability of structural bonded 
timber joints," 174. 
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Figure 26: Structural compatibility with regards to consolidation and wood species 

There are other micro anatomical wood cell features that may cause a variance in the 

porosity of a specific species such as the presence of extractives and features such as the shape 

and size the pitting between vessels and tracheid which allow transverse fluid flow.  However, 

specific gravity is still the best measure of porosity.  The research shows that epoxy viscosities in 

the range of 500-700 centipoises are adequate to allow the resin to penetrate the cell structure 

and achieve satisfactory consolidation.  In addition to viscosity, the working and curing times of 

an epoxy must also be taken into account. Longer working and curing times result in greater 

penetration as the epoxy is able to flow deeper into the cell structure before it begins to 

polymerize.  Of the products reviewed in this thesis, the ones marketed as consolidants had the 

greatest working and curing times which is consistent with this conclusion.  Furthermore, depth 

of penetration and thus performance is enhanced by application through the end grain which 

maximizes penetration through maximizing the exposure to the largest voids and natural uptake 

direction of the wood cells.   
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Although a low viscosity epoxy and porous wood are compatible structurally, their 

durability is negatively affected by consolidation.  As the decayed and surrounding sound wood 

is consolidated, the voids in the wood cells are filled. Thus a member that once allowed the free 

transport of water and water vapor throughout its structure becomes plugged, creating a 

moisture dam at the limit of epoxy consolidation. Because rot fungi require moisture, the 

creation of such a dam will eventually encourage rot at the interface of the consolidated wood 

and the sound wood. Because as higher moisture contents negatively affect the mechanical 

properties of the wood, this damming effect of the consolidation will actually lead to localized 

areas of decreased structural capacity. Even though structural compatibility, or the ability for 

epoxy to penetrate the wood’s cell structure, is possible; the overall durability, or long-term 

performance, is actually decreased as new rot takes hold at the interface.  Because of the lack of 

reversibility of the previous treatment which now serves to plug one end of the structural 

timber element, future treatments will have to be more invasive and destructive to the fabric.  

As a final note, the durability of consolidated wood would actually be the inverse of the 

structural compatibility with regards to specific gravity.  Because high specific gravities result a 

lesser degree of consolidation, they would then maintain some a greater degree of porosity in 

comparison to woods with lower specific gravities.  Accordingly, as the structural compatibility is 

increased based on wood species the long term durability is decreased.    

Assessment of Compatibility with Regards to Epoxy Use as a Structural Adhesive 

  ASTM D 907-12a: Standard Terminology for Adhesives defines a “structural adhesive as 

a bonding agent used for transferring required loads between adherends exposed to service 



64 
 

environments typical for the structure involved.”119 As the unit volume of epoxy to wood 

increases a shift from the surface and mechanical of properties of the wood to the bulk 

properties of the epoxy and environmental service conditions occurs.  Whereas in consolidation 

the wood cell structure of a species in combination with the epoxy viscosity determined the 

degree of consolidation, the bond performance when epoxy is used as a structural adhesive 

depends primarily upon the preparation of the wood surface, wood grain angle orientation, 

wood moisture content and service temperature.  Although other factors such as pressure 

during epoxy application and cure time affect the performance, the primary detriment to epoxy 

bond performance is water exposure. In studies “examining bondline failure for epoxy adhesives 

from both ASTM 2559 [Standard Specification for Adhesives for Bonded Structural Wood 

Products for Use Under Exterior Exposure Conditions] and D 905 (wet) [Standard Test Method 

for Strength Properties of Adhesive Bonds in Shear by Compression Loading], failure was often 

in the epoxy interphase layer.”120  Due to wood’s hygroscopic nature, it absorbs more water 

than the epoxy, and the resultant hygroscopic dimensional change in wood at the interface can 

cause stresses at the rigid epoxy bondline which eventually exceed the strength of the epoxy.121  

The structural compatibility is negatively affected by the rigid cross-linked structure of the epoxy 

bondline which is unable to distribute the stress throughout the adhesive.  Thus in humid and 

wet environments the application of epoxy as a structural adhesive can exhibit poor structural 

compatibility with wood. 

 However, at moisture contents less than 22%, moisture does have any detrimental 

effects on the bond strength.  Under these dry service conditions the surface preparation, grain 

                                                             
119 ASTM International., D907 Standard Terminology of Adhesives, (West Conshohocken, PA: American 
Society for Testing and Materials ,, 2012). 9. 
120 Frihart Charles R, "Are Epoxy-Wood Bonds Durable Enough?" (paper presented at the Wood adhesives 
2005, Holiday Inn on the Bay, San Diego, California, 2006 2005), 242. 
121 Ibid., 243. 
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orientation and service temperature are the critical factors and determinants of bond 

performance and durability. Because wood adhesive bonds are dependent on the mechanical 

interlocking of the epoxy into the cell structure, the surface preparation is critical to establishing 

a bond.  Like consolidation, the macro and micro cell structure features determine the depth of 

penetration and consequently the degree of mechanical interlock.  Wood bonded at an angle 

greater than parallel exhibited a decrease in bond strength that could be approximated with 

Hankinson’s formula.  However, it is the dissimilarities between wood and epoxy with response 

to service temperatures that leads to their structural incompatibility. Recent testing by Cruz and 

Custódio found that “temperature may well limit the performance and durability of bonded 

structural if adhesives with glass transition temperatures are used” with effects that  “may be 

critical for structural safety” in service temperatures not higher than 113°F.  The mechanical 

properties of wood increase as it dries under increasing temperatures and thus the wood 

become more rigid while the epoxy tends to plasticize, or become more flexible, as glass 

transition temperature is approached.  Therefore, it may be concluded that when used as a 

structural adhesive, epoxy exhibits poor structural compatibility even in dry conditions when 

service temperatures approach glass transition temperature.   

Assessment of Compatibility with Regards to Epoxy Use Structural Gap-Filling Adhesive 

 When used as a structural gap filling adhesive, the epoxy is paired with reinforcement in 

order to transfer the structural load from sound wood to the epoxy filler. The reinforcement is 

embedded in the epoxy filler as well as the sound wood. Additionally if the epoxy replaces an 

embedded beam end, the epoxy shear strength must be taken into account as a load bearing 

element. The epoxy also serves as the adherent between the embedded reinforcement and 

wood, each with different bulk properties.  Thus the adhesive relationship is further complicated 
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by the addition of a third structural material.   In this form of substitution, a significant portion 

of wood is removed and substituted with the epoxy adhesive.  As such, epoxy’s bulk property, 

the grass transition temperature, becomes the critical limitation in this type of repair.    

 In the same respect as structural adhesives, the replacement of timber with epoxy is 

negatively affected by both humid or wet service conditions as well as high service temperature.  

Hutchinson and Broughton has focused on the effect moisture content on the bonded-in 

reinforcement rods, finding timber specimens, and more specifically white oak, exhibited 

reduced pull-out strengths, regardless of epoxy or rod type used at higher moisture contents.122  

With regard to wet or humid service conditions, Hutchinson and Broughton tested on the effect 

moisture content on the bonded-in reinforcement rods, finding timber specimens, and more 

specifically white oak, exhibited reduced pull-out strengths, regardless of epoxy or rod type used 

at higher moisture contents.123  Even more significant was the finding that at wood moisture 

contents above 30% the pull-out strength was reduced by up to 65% and the failure of the 

epoxy bond moved from the rod/epoxy interface to the wood/epoxy interface.  Additionally, 

absorption of water moisture due to high levels of humidity can decrease the glass transition 

temperature of the epoxy.  Also in terms of initial epoxy curing, testing found that “the higher 

the percentage of relative humidity of exposure, the lower the residual heat of reaction.”124  

This means that higher levels of humidity at time of application can actually retard the cure and 

prevent complete polymerization yielding lower than expected strength. In regards to 

temperature, testing by Custódio et al., found that the significantly different viscoelastic 

properties of commercial epoxies combined with the expected temperature range during 

                                                             
122 Broughton, "Effect of timber moisture content on bonded-in rods," 24. 
123 Ibid. 
124 M; Frigione Lettieri, M., "Effects of humid environment on thermal and mechanical properties of a 
cold-curing structural epoxy adhesive," Construction and Building Materials 30(2012). 
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normal service made temperature-induced creep a critical risk factor.125  For the large scale 

replacement of whole timber sections, including beam ends, this potential of slow and 

permanent deformation poses structural safety issues.   

Summary of Conclusions regarding Compatibility with Respect to Epoxy Application 

 

Table 5: Summary of Structural Compatibility and Durability Assessment with regards to Epoxy Based Repairs for 
Wood and Service Condition 

Table 5 summarizes the assessment of the structural compatibility and durability in line with the 

current state of the art of knowledge regarding epoxy wood repairs.  The table illustrates that as 

                                                             
125 Custódio, Broughton, and Cruz, "Rehabilitation of timber structures – Preparation and environmental 
service condition effects on the bulk performance of epoxy adhesives," 3581. 

Application Service 
Condition 

Critical Wood 
Properties

Critical 
Epoxy 

Properties

Structural 
Compatibility

Durability / 
Long Term 

Performance

Structural 
Compatibility 

/Durability Concern

Consolidation
Dry                             
(MC <10%)

Wood Cell  
Structure, Specific 
Gravity

Viscosity, 
Cure Time Good Good

No concerns as long 
as keep dry 

Consolidation Wet/Humid
Wood Cell  
Structure, Specific 
Gravity

Viscosity, 
Cure Time Good Poor

Impermeable 
moisture dam at l imit 
of consolidation

Structural 
Adhesive

Dry                             
(MC <10%)

Wood Cell  
Structure, Surface 
Properties, Grain 
Orientation, 
Moisture Content

Glass 
Transition 
Temperature
, Shear 
Strength

Poor Poor

Reduced Bond 
performance/strength 
based on normal 
service temperature 
range

Structural 
Adhesive Wet/Humid

Wood Cell  
Structure, Surface 
Properties, Grain 
Orientation, 
Moisture Content

Glass 
Transition 
Temperature
, Shear 
Strength

Poor Poor

Incomplete cure of 
epoxy / Rigid epoxy 
not able to distribute 
stresses due to 
swelling of wood 

Structural Gap-
Filling Adhesive

Dry                             
(MC <10%)

Wood Cell  
Structure, Surface 
Properties, 
Moisture Content

Glass 
Transition 
Temperature
, Shear 
Strength, 

Poor Poor

Reduced Bond 
performance/strength 
based on normal 
service temperature 
range

Structural Gap-
Filling Adhesive

Wet/Humid

Wood Cell  
Structure, Surface 
Properties, 
Moisture Content

Glass 
Transition 
Temperature
, Shear 
Strength, 
Compressive 
Strength

Poor Poor

Reduced bond 
performance with 
embedded 
reinforcement / 
Decreased glass 
transition 
temperature
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the ratio of epoxy volume to wood void volume is increased there is a shift from wood adhesion 

factors such as surface preparation and wood cell structure to the bulk properties of the epoxy.  

This is significant in the case of structural gap filling epoxies, where the epoxy becomes a 

separate structural element.  In all cases, epoxies with low glass transition temperatures, as is 

the case with the current commercial epoxy products on the market, cause both significant 

structural compatibility and durability concerns.  Because epoxy repairs are marketed to 

consolidate, repair or replace rotted and deteriorated sections of wood, they are typically being 

used in locations of high moisture content.  Furthermore, the compounding effects of both 

moisture and temperature compound the compatibility concerns as both negatively affect the 

bulk properties of epoxy.  In order to increase the bulk properties of the epoxy, the molecular 

weight and consequently the size of the cross-linked polymer chains increase.  Thus epoxies with 

higher glass transition temperatures would be less capable of penetrating the wood cell 

structure and creating a satisfactory mechanical bond.  Therefore, based on the current 

research and marketed products epoxy repairs are not recommended for wood repairs, 

especially where structural loading requirements exist.  

 Only in the case of consolidation with epoxy in a dry environment, was a positive 

conclusion supported, as long as there is no chance of the wood getting wet.  This would only be 

applicable to the consolidation of wooden artifacts in environmentally controlled environments, 

such as museums.  However, in these cases there is no requirement for structural strength to 

support additional loading.  Research in this field has been carried out successfully by 

conservators; however, there has not been sufficient research to recommend the use of epoxy 

consolidants in cases where structural requirements were present.  

 Finally, the compatibility of the historic wood species with consolidants and adhesive 

products is summarized in Table 6.  American chestnut as a species bonds easily; southern pine 
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as a species that bonds well and white oak as a species bonds satisfactorily.126  ‘Bonds easily’ 

means indicates the species bonds easily with adhesives of a wide range of properties and a 

wide range of bonding conditions.  Bonding well indicates that the species bonds well with a 

fairly wide range of adhesives under a moderately wide range of bonding conditions. And a 

satisfactory bond indicates that the wood species will bond well with good-quality adhesives 

under well controlled bonding conditions.  These observations are tied to the wood species’  

 

Table 6: Summary of Historic Wood Species Bonding Compatibility. 

cellular anatomy and they take into account other factors such as the presence and abundance 

of extractives.  For example, in addition to the abundance of tyloses that block the vessels in 

white oak, it also contains acidic extractives that leach out of over time negatively affecting 

bond performance.127 The best predicator of compatibility with either consolidants or adhesives 

used with wood species is the species specific gravity as it is an indicator of porosity.   The 

conclusions regarding bonding compatibility are exclusive of the epoxy applications.  Although 

these historic wood species exhibit bonding potential, the dissimilarities in how both wood and 

epoxy react to the environmental factors of moisture and temperature are cause not to 

recommend epoxy as a valid repair method for historic structural wood elements.  

                                                             
126 Forest Products Laboratory (U.S.) and Benjamin Franklin Library Fund., Wood handbook : Wood as an 
Engineering Material: 10-7. 
127Broughton, "Adhesive systems for structural connections in timber," 180. 

Application Historic Wood Species Compatibility

Consolidation
American Chestnut - Best                
Southern Yellow Pine = Satisfactory         
White Oak  = Poor

Structural 
Adhesive

American Chestnut - Bonds Easily                
Southern Yellow Pine = Bonds Well          
White Oak  = Bonds Satisfactorily

Structural Gap-
Filling 
Adhesive

American Chestnut - Bonds Easily                
Southern Yellow Pine = Bonds Well          
White Oak  = Bonds Satisfactorily
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