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1   |   INTRODUCTION

The colloidal phenomenon has been known since the 
19th century (Graham, 1861). The rapid oscillation of the 
plant pollen of Clarkia pulchella in water (i.e., Brownian 

motion) and the visible route generated when light beams 
cross smoke (i.e., Tyndall effect) are both because of the 
colloidal nature of the dispersion system—a dispersing 
medium with tiny insoluble particles is the distinct feature 
for both cases. More specifically, the modern definition of 
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Abstract
Colloidal contaminants and pathogens are widely distributed in soil, whose tiny 
sizes and distinct surface properties render unique environmental behaviours. 
Because of aging, colloids can undergo dramatic changes in their physicochemi-
cal properties once in the soil environment, thus leading to diverse or even un-
predictable environmental behaviour and fate. Herein, we provide a state-of-art 
review of colloid aging mechanisms and characteristics and implications for risk 
mitigation. First, we review aging-induced formation of colloidal contaminants 
and aging-associated changes. We place a special focus on emerging nanoplas-
tic (NP) contaminants and associated physical, chemical, and biological aging 
processes in soil environments. Second, we assess aging and survival features of 
colloidal pathogens, especially viruses. Viruses in soils may survive from several 
days to months, or even several years in groundwater, depending on their rates of 
inactivation and the reversibility of attachment. Furthermore, we identify impli-
cations for risk mitigation based on aging mechanisms. Hotspots of (photo)chem-
ical aging of NPs, including plastic gauzes at construction sites and randomly 
discarded plastic waste in rural areas, are identified as area requiring greater re-
search attention. For COVID-19, we suggest taking greater care in regions where 
viruses are persist for long periods, such as cold climate regions. Soil amendment 
with quicklime (CaO) may act as an effective means for pathogen disinfection. 
Future risk mitigation of colloidal contaminants and pathogens relies on a better 
understanding of aging mechanisms and more sophisticated models accurately 
depicting processes in real soil environments.
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colloid is given by the International Union of Pure and 
Applied Chemistry (IUPAC), which describes a colloid as 
a system where particles with “at least in one direction a di-
mension roughly between 1 nm and 1 μm” are dispersed in a 
medium (Jones et al., 2009). However, the concept is often 
extrapolated to particles larger than 1  μm (for instance, 
bacteria) (Steenhuis et al., 2011; Vissers et al., 2018).

Although the colloidal phenomenon was originally 
used to describe a chemical state of a suspension, this 
concept has been widely extrapolated, and adopted in 
soil studies. For instance, colloid-facilitated transport de-
scribes the natural process where contaminants such as 
heavy metals and organic compounds adsorb to, and co-
migrate with, detached soil particles in porous media (de 
Jonge et al., 2004; Zhang et al., 2017; Zou & Zheng, 2013). 
The term “colloidal contaminant” refers to a particulate 
pollutant (e.g., TiO2, fullerene), including nanoplastic 
(NP), whose size falls within the nanometre range, which 
forms a colloidal suspension in the pore water (Khan & 
Şengül, 2016; Reynaud et al., 2022; Williams et al., 2020). 
What distinguishes a colloidal contaminant or pathogen 
is the fact that it has the potential to migrate rapidly in 
environmental compartments, causing severe human 
health and ecological risks (Flury & Aramrak,  2017; 
Liu et al., 2021; Molnar et al., 2015). Their tiny sizes re-
sult in high specific surface areas, which enables them 
to act as vehicles for adsorbed contaminants (Cortés-
Arriagada, 2021; J. Liu et al., 2019) and induces toxicity to 
organisms (Sasidharan et al., 2018; Sun et al., 2020).

Dynamic surface properties (such as abundant 
oxygen-containing functional groups, the presence of eco-
corona, etc.) impacts on their fate (Fadare et al., 2020; Liu 
et al.,  2022; Schultz et al.,  2021). Because of their colloi-
dal nature, the stability of these contaminants in aqueous 
suspension was believed to be the most critical factor con-
trolling their environmental behaviours. Aggregation, there-
fore, has been extensively investigated and reviewed (Gerba 
& Betancourt,  2017; Mao et al.,  2020). However, aging of 
colloidal contaminants can change their physiochemical 
properties with time, leading to more dynamic and unpre-
dictable fates.

For instance, mechanical abrasion increases their sur-
face roughness and alters porous structure, thus chang-
ing their interactions with solutes in pore water (Wang, 
Wu, et al., 2021; Yang et al., 2021); surface oxidation in-
creases their hydrophilicity, thus changing the total in-
teraction energy with the soil matrix (Gao et al.,  2022; 
J. Liu et al.,  2019); microbial colonization changes the 
microbial community structure, altering the mineraliza-
tion process of these tiny contaminants (Amaral-Zettler 
et al., 2020; C. Wang et al., 2022). In particular, when col-
loidal contaminants and pathogens are released into soil 
environments (including surface soil, the vadose zone, 

and groundwater), the heterogeneity and complexity of 
various physical, chemical, and biological processes that 
occur in the matrix will significantly alter the colloids 
(Alimi et al.,  2021; Wang et al.,  2020), making it much 
more difficult to predict their fate in soil when compared 
with freshwater systems.

This review, therefore, investigates the aging phe-
nomenon of colloidal contaminants and pathogens in 
soil. Herein, unsaturated and saturated zones are col-
lectively referred to as the soil environment (Al-Kaisi & 
Lowery, 2017; Briaud, 2013), as an understanding of both 
zones is needed for risk mitigation. Note that several stud-
ies relied on quartz sand as a proxy for soil porous media, 
whose results are also included and discussed. Based on 
the IUPAC definition of a colloid, NPs and viruses were 
selected as representative of colloidal contaminants and 
pathogens, respectively. We also mention aging mech-
anisms of other colloids with similar properties, includ-
ing carbonaceous nanomaterials and natural inorganic 
nanoparticles to reach a better understanding of their 
environmental behaviours. Following discussions on the 
aging processes, special focus is paid to the implications 
for NP and COVID-19 risk mitigation. We report that 
aging can form colloids, change colloids, and damage 
colloids. It is suggested that aging features may not be a 
coincidence. Instead, they can be described (semi-)quan-
titatively. Implications for risk mitigation and future re-
search directions are also put forward.

2   |   COLLOIDAL CONTAMINANT 
(TRANS)FORMATION—THE KEY 
ROLE OF PHYSICAL, CHEMICAL 
AND BIOLOGICAL AGING

2.1  |  Aging leads to colloidal 
contaminant formation

It has long been acknowledged that in a natural porous 
media without human disturbance, soil components, 
such as clay minerals and metal oxides are released from 
the solid matrix, forming natural colloids in pore water 
(Figure 1). It can be modelled in a quantitative manner, 
in which a first-order kinetic model describes the pro-
cess (Equation 1) (Grolimund et al., 2001; Grolimund & 
Borkovec, 2006):

where q refers to the particle concentration on the solid sur-
face and krel is the release or detachment rate coefficient. 
When a certain particle is attached to the solid surface then 

(1)�q

�t
= − krelq
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the value of krel depends on the energy barrier to detach-
ment, E (Equation 2) (Grolimund & Borkovec, 1999):

 where krel,0 represents a “fast release rate coefficient”, RT 
refers to the thermal energy in molecular units. Interaction 
energy calculations can be used to estimate the value of 
E as the sum of the energy barrier height and the depth 
(magnitude) of the energy well minimum (Bradford & 
Torkzaban, 2015; Torkzaban & Bradford, 2016).

However, it was not until recent years that the direct 
release of colloidal nanoparticles to the soil environment 
(including the vadose and saturated zones) raised increas-
ing concerns (Figure  1). The emergence of engineered 
nanoparticles, such as elemental silver nanoparticle [Ag(0)] 
(Li et al.,  2019), gold nanoparticle [Au(0)] (McGivney 
et al., 2019), titanium dioxide nanoparticle (TiO2) (Pradas 
Del Real et al., 2018), nanoscale zero-valent iron (nZVI) 
(Fajardo et al.,  2015), and fullerene (e.g., C60) (Avanasi 
et al.,  2014) have been found in porous media. Notably, 
primary NPs as intentionally-manufactured products can 
be released to the soil environment (Domínguez-Jaimes 

et al., 2021). These primary colloids act as toxic contami-
nants themselves, and carriers for other soil contaminants 
such as heavy metals and organic contaminants (Figure 1).

Compared with primary colloidal nanoparticles and 
primary NPs, most NP colloids (i.e., secondary NPs) are 
formed via the aging of larger plastic pieces (Figure  1). 
The aging-induced formation mechanisms of NPs are 
summarized in the following sections.

2.1.1  |  Physical fragmentation

Physical fragmentation is an important, yet often over-
looked aging mechanism that involves the breaking down 
of macroplastics and microplastics (MPs) into smaller 
plastic pieces (Table  S1). Evidence from artificial aging 
approaches in the lab confirms the critical role of me-
chanical abrasion in NP formation. Experiments involv-
ing mixing polystyrene (PS) macroplastics with water 
in a blender for 5  min resulted in rapid formation of 
PS–NPs (125 nm diameter). However, in natural condi-
tions, physical aging will not be so intense. Mild mixing 
is, therefore, needed to simulate fragmentation process. 

(2)krel = krel,0e
−E∕RT

F I G U R E  1   Various ways in which colloid enter or form in natural porous media. (a) Engineered nanoparticles released to soil directly. 
(b) Wastewater irrigation, sludge application and droplets result in viruses entering the soil, which will either attach to the soil matrix until 
inactivation, or transport as a biocolloid in the liquid phase. (c) Secondary NPs formed via the fragmentation of MPs. (d) Minerals and soil 
organic matter (SOM) released from soil aggregates, thus forming natural colloids that can facilitate contaminant transport in porous media.
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Wet grinding of 106 μm microplastic pieces of polybu-
tyrate adipate-co-terephthalate (PBAT) and low-density 
polyethylene (LDPE) for 24 h resulted in the formation of 
NPs (<400 nm) (Astner et al., 2019). It's noteworthy that 
this fragmentation process did not significantly change 
the physicochemical properties such as thermal stabil-
ity and crystallinity, suggesting mechanical abrasion did 
not result in chemical transformation. Similarly, El Hadri 
et al. (2020) also used a wet grinding process to produce 
NPs (below 500 nm) from secondary MPs that were col-
lected from a beach environment.

By modelling the fragmentation process, it was found 
that the fragmentation phenomenon is controlled by con-
ditional probability (Equation 3) (Wang, Li, et al., 2021):

 where X represents the plastic size (mm), a and b are two 
parameters (a: mm−b−1, b: dimensionless). The equation in-
dicates that the probability of plastics (with original diameter 
over x) that would be fragmented within x and x + Δx is axb, 
which is dependent on the size (Wang, Li, et al., 2021). The size 
distribution of MPs separated from different land use types, 
including residential areas, farmlands, roadside soils, forests, 
and parks followed this rule well, suggesting that historical 
fragmentation may have contributed to the current presence 
of plastics in soil. However, to what extent this model can be 
applied to smaller-sized NPs remains to be explored.

2.1.2  |  (Photo)chemical transformation

Photochemical transformation is a potent force leading to 
plastic downsizing (Table  S1). Out-door exposure to sun-
light irradiation of expanded polystyrene (EPS) for 2 years 
led to the formation of 3.4 × 107–5.7 × 108 NPs cm−2, which 
was approximately 1 magnitude higher than that for MPs 
(Song et al., 2020). Soaking different polymers in water with 
UV irradiation for 112 days also resulted in formation of 
NPs, whose downsizing ability is highly dependent on the 
polymer type, i.e., polylactic acid (PLA) > polyethylene tere-
phthalate (PET) (Lambert & Wagner, 2016). Formation of 
reactive oxygen species (ROS) is the main process in photo-
chemical transformation of polymers. ROS will induce the 
chain scission process of plastics, leading to downsizing into 
NPs (Figure 2) (Gewert et al., 2015; Y. Liu et al., 2019). Its 
evident for polymers with a C-C backbone [e.g., PS, PE, and 
polypropylene (PP)] that initiation, propagation and termi-
nation downsizes the plastics (Figure 2). At the initiation 
stage, the main polymer chain is broken by light to gener-
ate a free polymer radical. After that oxygen reacts with 
the as-formed polymer radical to generate a peroxy radical. 

Autoxidation process happens apart from the formation 
of hydroperoxides. During this propagation process, chain 
scission takes place. Finally, termination occurs when two 
radicals are combined, thus forming inert products (Gewert 
et al.,  2015). For polymers with heteroatoms in the main 
chain [e.g., PET, polyurethane (PU)], hydrolysis also played 
a vital role assisting in photochemical transformation 
(Gewert et al., 2015). It is of note that a majority of previous 
works have been done in the aqueous solution. In real soil 
environments, the exact concentrations of ROS may not be 
as high as those generated in the lab. The concentration of 
soil oxidants generated via photosensitization of soil organic 
matter (SOM) and metal oxides, such as superoxide (O2·−) 
and hydrogen peroxide (H2O2) are typically extremely low 
(i.e., within the nmol g−1 range) (Georgiou et al., 2015). To 
what extent these ROS species in soil break plastics into NPs 
remains to be explored.

In comparison, current evidences suggest that chem-
ical oxidation alone may not be able to break MPs into 
NPs, at least in a shorter term. As a representative of 
chemical oxidation process, Fenton oxidation even has 
been extensively used for plastic separation from solid 
media, although it does generate ROS (Hurley et al., 2018; 
Vermeiren et al., 2020). In the soil environment, however, 
the chemical oxidation of macroplastics and MPs are 
largely unknown.

2.1.3  |  Biological aging

Soil fauna contribute potently to NP formation. 
Earthworms turned PE-MPs into NPs effectively in 21 days 
via ingestion and cast excretion, while simultaneously 
suffering from damages to reproductive organs (Kwak & 
An, 2021). Gut microbiome may have played a vital role, 
as confirmed by Huerta Lwanga et al. (2018) through ex-
tracting microorganisms from the gut, and using them for 
PE fragmentation in vitro. It was found that Gram-positive 
bacteria belonging to Actinobacteria and Firmicutes phyla 
contributed to biological fragmentation. But biological 
fragmentation of conventional non-biodegradable poly-
mers will not directly lead to degradation. For biodegrad-
able polymers such as PBAT and PLA, earthworms assist 
in their microbial degradation in unique ways, that is, 
creating a suitable habitat for the proliferation of micro-
organisms (Figure  3) (Sanchez-Hernandez et al.,  2020). 
This is accomplished via vermicomposting, during 
which organic matter is transformed into vermicompost 
with the help of gut microbiome. Certain species of the 
genera Streptomyces, Paecilomyces, Trichoderma, and 
Paenibacillus, which are abundant in vermicompost, were 
found to facilitate biodegradation of these polymers si-
multaneously (Sanchez-Hernandez et al., 2020).

(3)lim
Δx→0

P
(

(x ≤ X ≤ x +Δx
)

∣ X > x)

Δx
= axb
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In general, earthworms may affect the fate of plastic 
debris via different ways. Firstly, the middens generated 
on the surficial soil enhance plastic fragmentation and 
degradation. Secondly, the burrow walls contain a high 
content of organic matter, acting as a hotspot for MP deg-
radation. Thirdly, earthworm cast consists of gut micro-
biome for biodegradation. Furthermore, biodegradable 
MPs can be directly depolymerized in the gut (Figure 3) 
(Sanchez-Hernandez et al., 2020). The role of soil micro-
organisms in MPs fragmentation into NPs has been re-
ported and reviewed thoroughly. For detailed discussion 

on the microorganism-induced fragmentation of plastics, 
readers are referred to Matjašič et al. (2021) and K. Zhang 
et al. (2021).

2.2  |  Aging-induced transformation in 
as-formed colloids

Once formed in porous media, colloidal contaminants suf-
fer from progressive aging. On the one hand, abiotic aging 
forces, such as freeze–thaw cycling and UV irradiation 

F I G U R E  2   Abiotic degradation pathways for PE (R = H), PP (R = CH3) and PS (R = aromatic ring); after initiation by photolytic 
cleavage of a C–H bond on the polymer backbone (P = polymer backbone). Reproduced with permission from Gewert et al. (2015) under 
CC-BY 3.0 licence.
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attack colloids, leading to physicochemical changes 
(Figure 4, Table S2). On the other hand, coating with soil 
humic substances and microbial extracellular polymeric 
substances in turn protect the colloids via the formation 
of eco-corona. The following sections will critically as-
sess aging-induced changes in colloids, including NPs and 
other colloidal contaminants.

2.2.1  |  Weathering

Recently, evidence has emerged showing that colloidal 
NPs are susceptible to physical aging in porous media. 
Freeze–thaw aging of PS-NPs decreased the stability of 
the colloidal suspension, leading to colloid aggregation 
(Figure  4). This phenomenon was attributed to the sol-
ute rejection mechanism, where ice rejects incorpora-
tion of insoluble nanoparticles during freezing, resulting 
in elevated concentrations of inorganic ions and NPs in 

still-unfrozen water (Alimi et al., 2021). Enhanced aggre-
gation because of freeze–thaw aging caused greater reten-
tion of NPs during migration in the quartz sand media.

Although our understanding on physical aging pro-
cess of NPs in the terrestrial environment are still lack-
ing, wet-dry and freeze–thaw-induced changes from 
other nanoparticle colloids, including natural or artifi-
cial ones, may provide us with fresh insights. Historical 
wet-dry cycling events in the Chinese Loess Plateau pre-
vented nanomagnetite (a mixed Fe2+/Fe3+ ferrimagnet) 
from oxidation, thus leading to enrichment of this mag-
netic soil mineral in the interglacial/interstadial-stage 
fossil soil layer formed 3  million years ago (namely, 
paleosols) (Ahmed & Maher,  2018). Historical mon-
soon climate in this region was believed to have caused 
this phenomenon. In wet summer, a sharp depletion of 
dissolved oxygen content prevented it from oxidation, 
whereas in dry winter, an elevation in soil pH also re-
tarded magnetite oxidation (Figure S1). It is interesting 

F I G U R E  3   Pictorial representation of the earthworm impact on the environmental fate of mesoplastics and microplastics, and potential 
microhabitats for polymer biodegradation. Reproduced with permission from Sanchez-Hernandez et al. (2020). Copyright 2020 American 
Chemical Society.
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that wet-dry cycle as a physical force would induce redox 
and pH changes, thus slowing down colloid oxidation in 
soil. Another study by Ermolin et al.  (2019) found that 
wet-dry cycling favoured the formation of water-stable 
soil aggregates that can immobilize colloids, thus de-
creasing the mobility of CeO2 and ZnO nanoparticles. 
As for freeze–thaw cycling, similar observations that 
this aging force enhanced aggregation and slowed down 
the transport of colloids in quartz sand have been made 
for TiO2 nanoparticles because of the same reason men-
tioned for NPs (Farner et al., 2020). When it comes to the 
natural soil, however, release of clay colloids will be sig-
nificant when compared with the modelled quartz sand. 
In this case, clay colloids released during freeze–thaw 
cycling would in turn facilitate the transport of metal 
oxide nanoparticles (G. Xu et al., 2021).

Photochemical transformation causes intense oxida-
tion and morphological changes in as-formed NPs. Higher 
surface oxygen content (49.4% vs. 4.2% as confirmed by 
XPS analysis) together with much rougher morphology 
were observed for PS-NPs suffering from mercury lamp 
(500 W) irradiation for 12 h, suggesting that UV is a pow-
erful aging force for this kind of NP (J. Liu et al., 2019). 
Oxygen-containing functional groups (e.g., carboxyl) 
formed during photochemical transformation may have 
played a vital role in aggregation performances. For 

example, aggregation in monovalent NaCl environment 
was inhibited (indicating higher mobility) because of en-
hanced electrostatic repulsion, whereas in divalent CaCl2 
environment it was promoted (indicating lower mobility) 
because of the bridging effect between Ca2+ and carboxyl 
(Y. Liu et al., 2019).

It appears that UV-induced aging is limited to the 
surface of NPs. Tian et al. (2019) also noticed a similar 
phenomenon, that XPS (provided information within 
the surface layer, several nanometres) suggested the 
occurrence of surface oxidation, whereas FTIR spectra 
did not show any significant oxidation in bulk moi-
eties. Simultaneous analysis of water-soluble products 
during UV irradiation suggested that small molecules 
possessing condensed aromatic moieties, with side-
chains containing carbonyl or hydroxyl, could be con-
tinuously released from the PS-NP to the aqueous phase. 
In other words, UV irradiation “peeled out” small mol-
ecules from the surface of NPs (also leading to smaller 
hydrodynamic diameters as shown in Figure  4) (Tian 
et al., 2019). Evidence has also shown that there exists 
a linear relationship between second-order reaction ki-
netic constant of UV-induced photodegradation (kdeg) 
and the square of the PS-NP diameter (d2) (Bianco 
et al., 2020). It can be explained by the fact that hydroxyl 
radical (·OH) generated during UV irradiation reacts 

F I G U R E  4   Aging-induced changes in hydrodynamic diameter and ζ-potential of NPs. (a) Freeze–thaw aging leads to aggregation 
because of the increased concentration of NPs and soluble salts in still-unfrozen water. Sometimes formation of eco-corona reversed the 
ζ-potential of NPs, but in most cases, natural organic matter was not that powerful in turning the ζ-potential. In comparison, both UV 
irradiation and ozone oxidation enhanced the stability of NP colloids, while simultaneously decreasing the hydrodynamic diameter via 
the peeling effect. Data sources: freeze–thaw (Alimi et al., 2021), ozone oxidation (J. Liu et al., 2019), UV irradiation (J. Liu et al., 2019; 
Y. Liu et al., 2019; Y. Xu et al., 2021), eco-corona formation (Fadare et al., 2020; Giri & Mukherjee, 2021; Natarajan et al., 2020; Saavedra 
et al., 2019; Song et al., 2019). (b) The key role of solution ionic strength. The higher the ionic strength, the lower the absolute value of ζ-
potential (because of double layer compression), therefore, the higher the hydrodynamic diameter. Data retrieved from J. Liu et al. (2019). 
Detailed information regarding aging treatments, and aging-induced changes are provided in Table S2.
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with the surface sites of PS-NPs (more specifically, the 
aromatic moieties), rather than the inner polymer bulk 
(Bianco et al., 2020).

UV-induced changes are much more complicated for 
other colloidal contaminants, though. Several types of 
engineered nanoparticles are even designed to be UV-
sensitive photocatalysts (Ahluwalia et al.,  2016; Xu 
et al., 2019). For those colloids which are out designed 
for photocatalysis, similar results have been observed. 
For instance, C60 stability after UV irradiation was also 
higher in NaCl but lower in CaCl2 for the same mecha-
nisms discussed above (Qu et al., 2010).

2.2.2  |  Eco-corona formation

The interactions between colloidal contaminant and or-
ganic matter are critical in determining the fate and toxic-
ity of nanoparticles. Sorption of dissolved organic matter 
to nanoparticle surface results in formation of a coating, 
namely, eco-corona (Lynch et al.,  2014). In the soil en-
vironment, this process occurs in the pore water, which 
is composed of a mixture of dissolve organic carbon spe-
cies, including humic substances, lipid components, 
amino acids and polysaccharides (Schultz et al.,  2021). 
Although reasons why organic matter tends to accumu-
late on the surface of colloids may vary, there is one thing 
in common, that is, in order to form an corona, the over-
all free energy must decrease (according to the second 
law of thermodynamics) (Equation 4) (Lynch et al., 2014; 
Norde, 2011):

where ΔadsG is the net changes in Gibbs energy of adsorp-
tion, ΔadsH refers to the net changes in enthalpy, ΔadsS rep-
resents the net changes in entropy, and T is the absolute 
temperature. More specifically, four processes account for 
this change in Gibbs energy (Norde,  2011), which are as 
follows:

 
Charge redistribution: Typically, both natural organic 
matter and the nanoparticle possess a colloidal nature, 
suggesting that they are electrostatically charged with 
double layer. During the sorption process, interactions 
between electrical double layers are therefore inevitable, 
leading to charge redistribution.

 
Dispersion interaction (London-van der Waals in-
teraction): This kind of interaction is always attrac-
tive. When atoms approach, their electron obits would 

influence each other, thereby inducing a subtle dipole 
moment that causes electromagnetic attraction.

 
Dehydration: Many low free energy surfaces are hy-
drophobic, therefore, dehydration promotes adsorption 
of components from the aqueous solution. The dehydra-
tion process of apolar surfaces acts as a driving force for 
adsorption, increasing the entropy by water molecules 
released from interactions with hydrophobic side groups.

 
Conformational changes: Rearrangement of the struc-
ture decreases the ordered secondary structure and may 
either enhance or break intramolecular hydrogen bond-
ing. For instance, soft protein that underwent this process 
would result in a conformational entropy gain, which may 
be large enough to make it sorb onto a polar, electrostati-
cally repelling surface.

It should be noted that these criteria were origi-
nally proposed for protein corona formation on colloids. 
Considering the similarity between protein corona and 
eco-corona formation (both of which describes a pro-
cess where organic matter adsorbs onto the nanoparticle 
colloid), it is proposed that for eco-corona formation on 
NPs, electrostatic and van der Waals interactions, and 
hydrophobic interactions also dominate this process, 
whose goal is to decrease the overall free energy of the 
NP-organic matter system. However, there is currently no 
evidence whether NPs can interact with all types of nat-
ural organic matter and organic contaminants in the soil 
environment, which is an interesting topic that deserves 
further investigation.

Eco-corona protects NPs from other aging forces, such 
as UV irradiation, by acting as a “filter” that can absorb 
photons in the UV range, thus diminishing the peeling ef-
fect as mentioned above (Natarajan et al., 2021). Corona 
formation will either enhance or reduce their NPs mo-
bility depending on their susceptibility to several factors. 
The type of organic macromolecule determines whether 
NPs will be mobilized or settled after eco-corona forma-
tion. Dissolved black carbon acted as a bridge between PS-
NPs, promoting their settlement via aggregation, whereas 
humic acid addition increased their mobility by inhibit-
ing aggregation, whose causes remain to be explored (Y. 
Xu et al.,  2021). The surface charge of NPs also matters 
(Figure 4). Much more significant changes in aggregation 
behaviour have been found in positively charged PS-NPs 
after humic acid coating, when compared with negatively 
charged ones (Saavedra et al.,  2019). It was attributed 
to the fact that negatively charged humic acid reversed 
the ζ-potential of positively charged aminated PS-NPs 
from +50 to −47 mV, thus leading to heteroaggregation 

(4)ΔadsG = ΔadsH − TΔadsS < 0
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and settlement (Figure  4). The as-formed eco-corona 
has strong implications for the risk mitigation of NPs 
(Table S3, Section 4.1).

3   |   COLLOIDAL PATHOGENS' 
RELEASE AND INACTIVATION IN 
SOIL

Nano-sized viruses are abundant in soil, with reported 
numbers ranging from 2.2 × 103 virus g−1 in hot deserts 
to 5.8 × 109 virus g−1 in humid forest soils (Williamson 
et al.,  2017). “Native” viruses, such as bacteriophages, 
infect soil bacteria and act as drivers of microbial com-
munity regulation and nutrient cycling (Kuzyakov & 
Mason-Jones,  2018). Human pathogenic viruses mainly 
pollute soil as a result of application of contaminated or-
ganic matter (e.g., sewage sludge, animal waste) (Gessel 
et al.,  2004; Horswell et al.,  2010) or surface water 
(Parashar et al., 2011) (Figure 1). During the COVID-19 
pandemic, other potential contamination pathways of 
viruses have also drawn much attention. For instance, 
droplets from infected individuals may bring virus to the 
soil when infected individual coughs or sneezes (Figure 1) 
(Klompas et al., 2020; Li et al., 2020). Aerosols containing 
COVID-19 may also result in virus deposition to the soil 
(D. Zhang et al., 2021). There is currently a heated debate 
whether human infection can occur from exposure to soil 
with pathogens (namely, indirect transmission) (Anand 
et al., 2021; WHO, 2020a).

Viruses are attached to the soil matrix through adsorp-
tion after entering the soil, suffering from inactivation in 
the long-term (Table 1) (Armanious et al., 2016; Kuzyakov 
& Mason-Jones, 2018). Inactivation occurs when the virus 
losses its ability to infect the host because of degradation of 
the viral genome or disruption of the capsid (protein coat 
surrounding the nucleic acid) (Gerba,  1984). An under-
standing of factors that influence inactivation of human 
pathogenic viruses is crucial for risk management in soils.

Existing literature frequently assumes that inactivation 
of pathogenic viruses in soil follows a first-order process, 
which predicts an exponential decline in virus concentra-
tions with time (Figure 5). Equation (5) describes the first-
order inactivation kinetics as:

where k (d−1) is the inactivation rate constant and N is the 
virus concentration per volume or gram (whose unit may 
vary, such as RNA/DNA copies per unit volume or gram, 
PFU per unit volume or gram, or TCID50 depending on 
the analysis methods used). Integration of Equation  (5) 

yields the relationship between the initial number of vi-
ruses (N0) and the number of viruses at a given time (Nt) as 
(Equation 6):

 where t (d) is the time. This exponential expression is quite 
similar to Chick's law which has been extensively used to 
describe the inactivation of microorganisms during disinfec-
tion (Chick, 1908; Dalrymple et al., 2010; Yao et al., 2020). 
The differences between Chick's law and Equation (6) lie in 
the fact that virus inactivation in soil is a natural process, in 
which temperature, humidity, sunlight, and adsorption act 
as “disinfectants”. A higher rate constant k indicates that en-
vironmental conditions are harsher for virus survival.

Under ideal conditions, pathogenic viruses may stay 
in the soil-groundwater system for a long-term (e.g., over 
3 years) (Table 1), threatening human health via contam-
inating the water source. The rate constant for viruses in 
soil vary greatly from 0.03 d−1 for poliovirus 1 (in a nat-
ural sandy soil) (Hurst et al., 1980) to 6.8 d−1 (for Highly 
Pathogenic Asian Avian Influenza A subtype H5N1 in 
room temperature with low humidity) (Wood et al., 2010) 
(Figure  5). Virus inactivation can occur both in water 
and when attached to solid surfaces. However, differ-
ent rates of inactivation have commonly been reported 
(John & Rose, 2005; Schijven & Hassanizadeh, 2000; Zhao 
et al., 2008). The inactivation rate has been reported to be 
higher for attached viruses (Ryan et al., 2002; Sasidharan 
et al., 2018), but the opposite result has also been observed 
(Liew & Gerba,  1980; Straub et al.,  1993). These differ-
ences can be explained by the complex dependency of 
inactivation on a wide variety of physical, chemical, and 
biological conditions (Bradford et al.,  2013). The long-
term aging features of viruses in soil are highly dependent 
on environmental factors and soil properties.

Temperature is one key factor determining the inac-
tivation of soil viruses (John & Rose,  2005; Schijven & 
Hassanizadeh,  2000). Current findings suggest that a 
low temperature contributed to longer survival of viruses 
(Figure 5a,d). For instance, poliovirus 1 and coxsackievi-
rus B1 cannot survive in soil during 12 days' incubation 
at 37°C; however, when temperature was 4°C both vi-
ruses were still detectable even after 180 days (Yeager & 
O'Brien,  1979a). Viral components that are required for 
host recognition and infection may experience more dam-
aged at higher temperatures because of viral genome deg-
radation, conformational changes in proteins (Harvey & 
Ryan, 2004), or strong activities of soil enzymes (e.g., pro-
teinase) (Kimura et al.,  2008). In addition, a fluctuating 
temperature was not favourable for the survival of viruses 
in soil, which was possibly because of lower adaptability of 

(5)−
dN

dt
= kN

(6)
Nt
N0

= e−kt
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viruses in a changing environment (Parashar et al., 2011). 
The temperature dependence of inactivation can be ac-
counted for by making k a function of temperature using 
the Arrhenius equation (Stumm & Morgan, 2012).

Harvey and Ryan  (2004) proposed that virus inac-
tivation may occur when they attach in an interaction 
energy minimum. This implies that virus inactivation 
increases with the strength of adhesion. This can ex-
plain the high rates of solid phase inactivation when 

negatively charged viruses strongly attach on the sur-
faces of positively charged metal oxides (Bradford 
et al., 2006; Ryan et al., 2002) or when solution chem-
istry conditions produce attachment in a strong pri-
mary minimum (e.g., higher ionic strength and lower 
pH) (Harvey & Ryan,  2004). Nanoscale roughness 
and charge heterogeneity are known to locally reduce 
or eliminate the energy barrier between like charged 
surfaces, and to alter the depth of the interaction 

T A B L E  1   Survival of pathogenic viruses in the soil environment

Virus Environment
Longest survival 
time Key factors affecting the survival Reference

Somatic coliphages (as 
indicators of enteric 
viruses)

Manure-applied soil 130 days The higher the manure application rate, 
the higher abundance the viruses 
would be introduced to the soil, 
rendering longer survival time till full 
inactivation

Gessel et al. (2004)

Adenovirus Sewage sludge-
applied soil

Not mentioned The amount of virus that can be leached 
out by artificial rain was much lower 
than that of bacteria, suggesting 
the strong adsorption (retention) of 
adenovirus by soil

Horswell 
et al. (2010)

Poliovirus 1 Different natural 
soils

75 days Temperature: a low temperature of 4°C 
favoured virus survival. Oxygen 
content: under aerobic conditions soil 
bacteria may have contributed to virus 
inactivation. In contrast, anaerobic 
soil microorganisms did not affect 
virus survival

Hurst et al. (1980)

Hepatitis A virus (HAV) 
and hepatitis E virus 
(HEV)

Natural soil 13 weeks for 
HAV at 37°C, 
10 weeks for 
HEV at 37°C

Fluctuating temperature in the real 
environment shortened the survival 
time when compared with constant 
temperature incubation

Parashar 
et al. (2011)

Enteroviruses Sewage sludge-
applied soil

2 weeks High activities of other microorganisms 
may have contributed to rapid 
inactivation of enteroviruses

Pourcher 
et al. (2007)

Model enterovirus BE-1 Septic tank-affected 
groundwater

2 months Lower temperature rendered lower 
inactivation rate

Scandura and 
Sobsey (1997)

Adenovirus Biosolids-amended 
soil with wheat 
cultivation

Over 180 days The higher survival time of adenovirus 
when compared with bacteria was 
possibly because of the protection 
effect induced by adsorption to soil 
solid matrix

Schwarz 
et al. (2014)

Norwalk virus Groundwater Over 1266 days The long-term persistence of virus RNA 
in groundwater, as well as virus 
aggregation may have contributed to 
long-term survival and detection by 
RT-qPCR

Seitz et al. (2011)

Highly Pathogenic Asian 
Avian Influenza A 
(subtype H5N1)

Topsoil 13 days Low temperature plus high humidity 
favoured virus survival

Wood et al. (2010)

Poliovirus 1 Soil Over 180 days A moderate soil moisture (neither too 
high nor to low) favoured virus 
survival

Yeager and 
O'Brien (1979a)
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minimum (Bradford et al.,  2017). Furthermore, the 
adhesion strength can increase over time because 
of changes in the conformation of surface structures 
and creation of chemical bonds, and/or to change 
with the solution chemistry (Bradford et al.,  2021; 
Sasidharan et al., 2017). This is because the total inter-
action energy between a colloid and a surface is dom-
inated by joint effects of electric double layer, van der 
Waals, Born, and steric interaction energies (Bradford 
et al.,  2021). Chemical binding and solution changes 
following aging will decrease the total interaction en-
ergies (Norde,  2011). Similar to the release rate co-
efficient, these factors are expected to create spatial 
and temporal variability in the solid phase inactiva-
tion rate coefficient. This may explain the release of 
viable viruses from metal oxides with rough surfaces 
(Murray & Laband, 1979; Ryan et al., 1999) and dimin-
ished inactivation rates in geologic media with high 
clay content and organic matter (Liew & Gerba, 1980; 
Straub et al.,  1993). Note that adsorbed clays and or-
ganic matter alter the surface roughness properties 
and/or mask charge heterogeneity from metal oxides 
and may thereby decrease the strength of adhesion 
and solid phase inactivation (Liang et al.,  2021; Ryan 
et al., 2002). Clay minerals and organic matter in soil 
also may protect viruses physically from aging forces 
such as enzyme attack or sunlight (Jin & Flury, 2002).

Soil water content also affects virus survival 
(Figure 5b). The rate constant for poliovirus in dry soils 
(moisture content 0.6%) was the highest (i.e., 1.8 d−1), 
while increasing the soil moisture decreased this con-
stant. It is noteworthy that a moderate moisture con-
tent (i.e., 4.7%) was more favourable for virus survival 
than a high moisture content (i.e., 18%) (Figure  5b). 
During the drying process, irreversible binding between 
the virus capsid with the soil matrix occurred, leading 
to conformational changes. In comparison, in a very 
humid environment, the high activities of the RNAse 
accelerated the degradation of the viral RNA (Yeager & 
O'Brien, 1979b).

Biological factors that influence virus inactivation 
include the virus type (John & Rose,  2005; Schijven & 
Hassanizadeh, 2000), viral subpopulations that are more 
resistant to disinfectants (Chrysikopoulos & Vogler, 2004; 
Molin & Cvetkovic,  2010), the microbial community 
(Deng & Cliver,  1995), and the presence of biofilms 
(Von Borowski & Trentin, 2021). For example, a diverse 
microbial community thrives in nutrient-rich envi-
ronments with high organic matter contents (Bamdad 
et al.,  2022; Nelson & Wear,  2014; Sofo et al.,  2022; Z. 
Zhang et al.,  2022). The presence of organic matter can 
therefore have an antagonistic effect on viruses because of 
the production of proteolytic enzymes, which degrade the 

viral genome (Deng & Cliver, 1995). This may explain why 
Schijven et al. (1999) found that inactivation of MS2 and 
PRD1 (bacteriophages) were increased by 34-fold when 
native groundwater was used as the liquid medium com-
pared with a saline solution containing peptone. Another 
contributing factor can be the presence of presence of dis-
solved metal ions that can greatly enhance virus inactiva-
tion (Sagripanti et al., 1993).

In these complex cases, separate virus inactivation 
rates are needed for liquid and solid phases, and virus 
inactivation is expected to exhibit spatial and temporal 
variability. Some of these challenges can be overcome 
using a distribution or multiple first-order inactiva-
tion rates for different phases and environmental con-
ditions (Schijven & Hassanizadeh,  2000) and/or time 
dependent inactivation coefficients (Chrysikopoulos 
& Vogler,  2004; Molin & Cvetkovic,  2010; Sim & 
Chrysikopoulos, 1996). However, these inactivation rate 
coefficients are expected to be functions of temperature, 
solution and solid chemistry, water content, nanoscale 
heterogeneities, clay content, organic matter, and mi-
crobial community dynamics. Many of these functional 
relationships still have not yet be experimentally deter-
mined or mathematically described.

4   |   IMPLICATIONS FOR RISK 
MITIGATION

Soil contamination is a “hidden reality” when compared 
with air and water pollution (FAO,  2018). Therefore, 
identification of hotspots for NP and COVID-19 contam-
ination is crucial for establishing risk mitigation meas-
ures so that accelerated mineralization or inactivation 
is achieved.

4.1  |  Nanoplastic

Because of the recalcitrant nature of plastic, it may take 
centuries for NPs made from conventional polymers to 
reach full mineralization by native microorganisms in soil 
(Chamas et al., 2020; SAPEA, 2020). The slow degradation 
rate, plus continuous input of plastic waste from various 
sources (including mulching films, dumping, wastewater, 
etc.) leads to their unidirectional accumulation in the ter-
restrial environment. Two strategies may slow down or 
reverse this trend. Firstly, a proper product design for a 
conventional polymer, along with a high recovery rate of 
used plastics from the soil environment directly decreases 
aging-induced NP generation (Figure  6). For instance, 
poor selection and retrieval of a plastic mulching film 
may lead to significant levels of plastic residues left in the 
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field. A recent report released by Food and Agriculture 
Organization of the United Nations (FAO) suggested that 
the probability of a PE mulching film to age and gener-
ate MPs/NPs (which will be retained in the soil) is directly 
related to its thickness. When this value increases from 
10 to 25 μm, the proportion that can be recovered from 

the field increases sharply from 32% to 90% (FAO, 2021). 
Therefore, a thicker mulching film that is more resistant 
to field aging is recommended to realize a high recovery 
rate, which may also indicate fewer NPs entering soil. The 
Chinese government has also set the ambitious goal that 
the recovery rate of mulching films should reach 85% by 
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2025 (NDRC and MEE, 2021). A proper plastic product se-
lection is critical to reach that goal.

Secondly, replacing conventional polymers (e.g., PE, 
PP) by a biodegradable one (e.g., PLA, PBAT) acceler-
ates the microbial degradation process to several months 
or years in soil (Figure  6). Note that biodegradability is 
a function of both polymer characteristics and the bio-
chemical nature of the end-of-life system (i.e., soil) (Law 

& Narayan, 2021). The term “biodegradable” also includes 
those polymers that are “compostable”, but cannot be de-
graded rapidly in the open environment. The most widely 
used standards to judge whether a polymer is “biodegrad-
able” are ASTM D6400 and EN 17033. The former uses 
composting, whereas the latter adopts soil incorporation 
to assess a polymers' biodegradability (Hayes, 2021). To se-
lect a suitable product for soil applications, it is crucial that 

F I G U R E  5   First-order inactivation kinetics-controlled survival features of different viruses in soil. (a) Effects of temperature on the 
survival of poliovirus 1, showing that a relatively low temperature favoured its survival with lower reaction rate constant (Hurst et al., 1980). 
(b) Effects of soil moisture on poliovirus 1 survival, suggesting a moderate water content being neither too low nor too high was favourable 
for virus survival in soil (Yeager & O'Brien, 1979a). (c) Manure application in different rates, namely, 50%, 100%, and 200% of the normal 
agronomic application rate of 37,000 L ha−1 resulted in different survival rates of the enteric virus indicator somatic coliphages (Gessel 
et al., 2004). (d) Low temperature plus high humidity favoured the survival of Highly Pathogenic Asian Avian Influenza A (subtype H5N1), 
whereas UV irradiation and temperature increase contributed to fact inactivation in soil (Wood et al., 2010). (e) Rate constants for different 
viruses in soil. Original data source: Somatic coliphage (Gessel et al., 2004), poliovirus 1 (Hurst et al., 1980; Yeager & O'Brien, 1979a), 
hepatitis A virus & hepatitis E virus (Parashar et al., 2011), enteroviruses (*total genome copies of all enteroviruses) (Pourcher et al., 2007), 
adenovirus (Schwarz et al., 2014), and H5N1 (**Highly Pathogenic Asian Avian Influenza A subtype) (Wood et al., 2010).

F I G U R E  6   Implications of colloid aging in the soil environment for risk mitigation. (a) A conventional PE mulching film should 
be thicker to reach a higher retrieval rate, thus decreasing NP release during its soil application. (b) Biodegradable polymer may replace 
conventional polymer to accelerate mineralization in soil. (c) Photochemical aging of plastic gauze and randomly discarded plastic waste 
poses elevated risk of colloid migration that threatens both drinking water safety and food security. (d) Tertiary treatment process in a 
wastewater treatment plant may generate considerable amount of chemically-aged NPs with high mobility. (e) Application of organic 
amendments reduces the risks via eco-corona formation. (f) COVID-19 in soil may cause indirect transmission. (g) COVID-19 may survive 
for a long time in soil and groundwater. (h) A low temperature enables long-term survival of COVID-19 in soil.
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a proper method be used. Besides, several existing studies 
have already noticed that a biodegradable polymer can 
also generate a considerable number of NPs during aging, 
which may also pose ecological risks (Haider et al., 2019; 
Qin et al., 2021). It is crucial that the speed of NP gener-
ation should not exceed that of biodegradation in soil, so 
that NPs derived from a biodegradable polymer will not 
accumulate with time.

(Photo)chemical oxidation is a potent aging force, which 
will not only result in considerable amount of NP gener-
ation but also mobilize as-formed NPs, whose higher mo-
bility are ascribed to increased hydrophilicity and surface 
charge negativity (i.e., enhanced electrostatic repulsion 
with negatively charged soil matrix) (Figure 4). Elevated 
risks of NPs following UV irradiation or chemical oxida-
tion should not be neglected. For instance, plastic gauzes 
are extensively used on construction sites or barren lands 
in China to prevent soil dust, which are usually left in soil 
for a long time without being retrieved (Mo et al., 2021). 
Randomly discarded plastic waste in rural areas also face 
a similar dilemma (Figure  6) (Zeng et al.,  2015). Long-
term photochemical aging of these poorly managed plas-
tic debris generates NPs that are highly mobile, which 
can migrate vertically to groundwater or horizontally to 
the rhizosphere, posing threat to both drinking water and 
food safety. Another hotspot for NP oxidation is the ter-
tiary treatment process in a wastewater treatment plant 
(WWTP) (Figure 6). Advanced oxidation processes (AOPs) 
(e.g., UV, ozone, Fenton oxidation) are often applied to pu-
rify wastewater passing through the biological treatment 
tank (namely, secondary treatment) (Bixio et al.,  2005; 
Rout et al., 2021). Although some scholars proposed that 
AOP should theoretically mineralize NPs with the aid of 
reactive oxygen species (ROS), current evidence suggested 
that unwanted surface oxidation of plastic particles oc-
curred instead of full mineralization (Ali et al., 2021; Kim 
et al., 2022). Therefore, elevated risks are expected when 
those oxidized NPs enter the soil environment via either 
irrigation or biosolid application. Worse still, chemically 
weathered NPs exhibit stronger adsorption capacity to-
wards other soil contaminants (such as heavy metals and 
herbicides) (Davranche et al.,  2019; Xiong et al.,  2020). 
In this context, aged NP serves as a vehicle for other con-
taminants, exhibiting more significant co-transport in soil 
when compared with fresh NP.

By contrast, aging with soil organic matter (SOM) 
tends to decrease the risks of NPs. Eco-corona can 
form in soils rich in native organic matter (e.g., humic 
substances) (Fadare et al.,  2020). As-formed organic 
coating immobilizes NP in soil pore water, protects 
NP from progressive UV aging, and reduces the ec-
otoxicity to organisms (Natarajan et al.,  2021; Y. Xu 
et al., 2021). Application of organic amendments serves 

as a promising strategy for risk mitigation of NPs with 
multiple processes and mechanisms. First of all, organic 
amendments (e.g., compost, manure and biochar) ap-
plied to the soil increase the SOM pool (Abagandura 
et al.,  2022; Armolaitis et al.,  2022; de Figueiredo 
et al.,  2021; Dong et al.,  2022), which may reduce NP 
mobility via enhanced eco-corona formation (Figure 6). 
Secondly, these amendments directly immobilize NP 
via heteroaggregation or adsorption (Abdoul Magid 
et al., 2021; Ayaz et al., 2022; Tong et al., 2020; L. Wang 
et al., 2022). Besides, it is widely accepted that fresh or-
ganic amendments will stimulate the activities of soil 
microorganisms, leading to an elevated mineralization 
rate of aged SOM (also known as the positive priming 
effect) (Cordova et al., 2022; Fontaine et al., 2003; Jiang 
et al., 2022; Kuzyakov et al., 2000; Y. Zhang et al., 2022). 
A wise use of this priming effect can therefore be pro-
posed, that addition of organic amendments may accel-
erate the mineralization of biodegradable NPs in soil 
(in this case, biodegradable NPs can be regarded as the 
“aged” SOM pool, since they enter the soil environment 
prior to organic amendments).

4.2  |  COVID-19

COVID-19 may enter the soil environment via different 
ways, including wastewater, sludge application, droplet or 
aerosol deposition (Núñez-Delgado,  2020; WHO,  2020b; 
D. Zhang et al., 2021). The risks of COVID-19 in soil is as-
sociated with its possible transmission route from soil to 
human beings, that is, indirect transmission through con-
tact with a fomite (i.e., the contaminated soil) (Figure 6) 
(WHO,  2020a). It is still unclear whether fomite trans-
mission from soil to humans is viable for COVID-19, but 
solid evidence shows that fomite transmission does occur 
for COVID-19 on other surfaces (Xie et al.,  2020; Yuan 
et al.,  2020). Our current knowledge on the aging and 
survival of COVID-19 and other human and animal coro-
naviruses suggest that non-porous surfaces lead to quick 
inactivation, whereas surfaces with well-developed porous 
structures favour their survival (Aboubakr et al., 2020).

Typically, the survival time of COVID-19 on different 
surfaces range from several hours to days (Marquès & 
Domingo,  2021; Van Doremalen et al.,  2020). Given the 
high porosity of the soil particle matrix, it is hypothesized 
that COVID-19 may also survive for a long time in soil 
when compared with smooth surfaces. However, there is 
currently no direct evidence on how long COVID-19 sur-
vives in the soil environment. Based on the current knowl-
edge, it is speculated that as an envelope virus, COVID-19 
may be more susceptible to death in the soil environ-
ment when compared with non-envelope viruses, such 
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as the Norwalk virus (Mancuso et al.,  2021; Vasickova 
et al., 2010).

In particular, extra care must be taken for certain 
circumstances that favour the survival of COVID-19 in 
soil. For instance, a lower inactivation rate occurs at low 
temperatures (Section 3) (Figure 6). In this context, high 
latitude regions may serve as long-term reservoirs of 
COVID-19. When thawing occurs it is likely that release of 
still-active viruses will pose a threat to humans. A recent 
study reported that temperature rise in polar regions may 
have contributed to accelerated COVID-19 spreading over 
the world (Hofmeister et al., 2021). It was hypothesized by 
Hofmeister et al. (2021) that hot Arctic summer may re-
lease large amount of both ancient viruses and COVID-19 
during extensive permafrost melting, which would be 
incorporated in polar air circulation in autumn, during 
which low temperature and limit sunlight enables viral 
survival (Hofmeister et al., 2021). Wet deposition occurs 
when the North Polar Jet stream meets warmer air and 
this releases infectious viruses to the terrestrial environ-
ment (Hofmeister et al., 2021).

More stringent monitoring of sludge quality for soil 
amendment purposes in winter is recommended – ev-
idence is mounting that COVID-19 RNA is present in 
sewage sludge from WWTPs (Balboa et al., 2021; Bogler 
et al., 2020). Another possible route of COVID-19 soil con-
tamination should also be assessed, that is, irrigation with 
wastewater. Risks associated with the use of untreated or 
partially treated wastewater for irrigation purposes ought 
to be carefully evaluated, especially in developing coun-
tries where this is a common practice (e.g., countries in 
Southeast Asia and Middle East) (Siddiqui et al., 2020).

For soil disinfection purposes a “typical” disinfectant 
for surfaces, such as quaternary ammonium, phenolic, 
and tetraacetyl ethylenediamine in List N of United States 
Environmental Protection Agency (US EPA)  (2021) may 
not be a suitable candidate because most disinfectants 
themselves are soil contaminants that can irreversibly 
damage soil health (Baveye,  2021; Lonigro et al.,  2017; 
Pateiro-Moure et al.,  2013). In this context, selecting a 
suitable soil amendment which can successfully kill vi-
ruses while maintaining soil functions is crucial (Wang, 
Rinklebe, et al., 2021). Elevating soil temperature, increas-
ing soil pH, and decreasing water content are all feasible 
means to inactivate soil viruses. Traditional soil amend-
ments (e.g., red mud, zeolite, phosphate rock, lime) that 
are originally applied to improve nutrient availability or 
immobilize heavy metals (Arrobas et al., 2022; Arwenyo 
et al., 2022; Battisti et al., 2022; Christensen et al., 2022; 
Doni et al., 2021; Yang et al., 2022) may disinfect COVID-19 
successfully, since all of them elevate soil pH so that cap-
sid (protein) can be destroyed. Among these amendments, 
liming with CaO may serve as a promising strategy for soil 

disinfection, since the aforementioned three disinfection 
mechanisms can be achieved simultaneously. Results in-
dicate that applying CaO to compost can effectively kill 
MS2 coliphage by capsid damage plus RNA exterioriza-
tion (Hijikata et al., 2016).

The European Lime Association (EuLA) suggests that 
using CaO can effectively prevent or disinfect avian influ-
enza in litter or manure in animal houses, with suggested 
application rate being 10 and 100 kg m−3 for prevention 
and treatment purposes, respectively (EuLA,  2009). For 
soil disinfection purposes, the optimum application rate 
is 0.5 kg m2, with water spraying following CaO applica-
tion to soil (EuLA, 2009). The US EPA also recommends 
the application of CaO to disinfect sewage sludge, which 
requires an elevation of pH to 12, and maintenance for 2 h 
(US EPA, 2003). Possible application of liming materials 
for the large-scale application of COVID-19-containing 
soils to reduce the risks of indirect transmission deserves 
further investigations.

5   |   FUTURE RESEARCH 
DIRECTIONS

Mechanisms of colloid aging in soil deserve further in-
vestigation. Our current understanding of colloid aging 
was mainly extrapolated from the aquatic environment. 
For instance, most studies that explored NP aging were 
conducted by exposing NP suspension to UV irradia-
tion. Existing studies on eco-corona formation were also 
mainly conducted to test whether organic matter in water 
bodies change the aggregation behaviour and NP toxic-
ity to aquatic organisms. In the soil environment, how-
ever, the crucial role of soil minerals and organic matter 
compositions cannot be neglected. Different texture and 
taxonomy, distinct soil pore water compositions, and 
unique microbial communities for different soils will also 
make aging processes much more complicated. It is sug-
gested that different soil types be selected (for instance, 
clay vs. sand in texture, Oxisol vs. Aridisol in taxonomy) 
to explore how soil properties change the aging patterns 
of colloids. Besides, characterization methods of col-
loids should go deeper to the molecular level so that an 
in-depth aging mechanism can be explored. In this way 
a more precise assessment of risks during aging can be 
made in a compound-specific manner.

Risks associated with colloid aging can, therefore, be 
modelled after reaching a comprehensive understanding 
of aging mechanisms in soil. Parameters directly asso-
ciated with aging, such as hydrodynamic diameter/zeta 
potential change, and inactivation rate constant, should 
be obtained with reliable experimental data. Again, pa-
rameters depicting soil properties must also be taken into 
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account, such as soil pH, Eh, total organic matter content, 
dissolved organic matter content, ionic strength of the 
pore water, etc. Established theory describing the envi-
ronmental behaviour of a colloid (e.g., DLVO or XDLVO 
theory) may be extrapolated with care for aging related 
parameters. For instance, in a DLVO calculation of inter-
action energy between colloid and soil using sphere-plate 
configuration, interfacial tension values should change 
after aging, resulting in a different Hamaker constant. 
Surface potential and radii parameters may also change 
during aging, both of which cause a different interaction 
energy between colloid and soil particle. Existing col-
loid transport models may also be extrapolated with care 
while assessing the risks of an aged colloid. Parameters 
related to contaminant retention (adsorption to solid ma-
trix) change with aging, while enhanced or suppressed 
aggregation after aging also affect the results. Besides, 
more sophisticated models can be established that may 
better depict aging-induced changes in the real soil 
environment.
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