Model 243 Service Regulators

243 Service Regulators

These large capacity service regulators are designed and built for commercial, industrial, and gas distribution work. They are right at home in such places as factories and foundries, district regulator stations, commercial laundries and laundromats, motels, hotels and apartments, bakeries, restaurants, schools, churches, and hospitals.

The versatile 243 is used for all kinds of gas fueled equipment such as boilers, burners, furnaces, ovens, heaters, kilns, engines, air conditioners, etc.

Remarkable field versatility results from the union connection between the fully interchangeable bodies and diaphragm-case assemblies. They are easy to install, adjust, inspect, and service in all kinds of piping arrangements.

While used primarily for natural gas services, Model 243 regulators perform equally well on LPG vapor, air, dry CO₂, nitrogen, and other inert gas applications. Contact your representative for special construction which may be available for certain corrosive gases.

Basic Models

<table>
<thead>
<tr>
<th>243-12 Model Numbers</th>
<th>Variation</th>
<th>243-8 Model Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>243-12-1</td>
<td>Standard* Regulator</td>
<td>243-8-1</td>
</tr>
<tr>
<td>243-12-2</td>
<td>Regulator with Internal Relief Valve (IRV)</td>
<td>243-8-2</td>
</tr>
<tr>
<td>243-12-4</td>
<td>Regulator with Low Pressure Cut-Off (LPCO)</td>
<td>243-8-4</td>
</tr>
<tr>
<td>243-12-6</td>
<td>Regulator with both IRV and LPCO</td>
<td>243-8-6</td>
</tr>
<tr>
<td></td>
<td>High Pressure Regulator</td>
<td>243-8HP</td>
</tr>
<tr>
<td></td>
<td>Pressure Loaded Regulator</td>
<td>243-8PL</td>
</tr>
</tbody>
</table>

Outlet Pressure Ranges and Springs

<table>
<thead>
<tr>
<th>Spring Color</th>
<th>Outlet Pressure Range</th>
<th>Spring Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-Black</td>
<td>3½" to 6½" w.c.</td>
<td>143-82-021-00</td>
</tr>
<tr>
<td>Blue-Black</td>
<td>5½" to 8½" w.c.</td>
<td>143-82-021-01</td>
</tr>
<tr>
<td>Green-Black</td>
<td>6" to 14" w.c.</td>
<td>143-82-021-02</td>
</tr>
<tr>
<td>Red</td>
<td>3½" to 6½" w.c.</td>
<td>143-16-021-03</td>
</tr>
<tr>
<td>Blue</td>
<td>5½" to 8½" w.c.</td>
<td>143-16-021-04</td>
</tr>
<tr>
<td>Green</td>
<td>6" to 14" w.c.</td>
<td>12" to 28" w.c.</td>
</tr>
<tr>
<td>Orange-Black</td>
<td>10" to 18" w.c.</td>
<td>143-16-021-11</td>
</tr>
<tr>
<td>Orange</td>
<td>12" to 28" w.c.</td>
<td>1 to 2 psi</td>
</tr>
<tr>
<td>Black</td>
<td>1 to 2 psi</td>
<td>2 to 4½ psi</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1½ to 3 psi</td>
<td>3 to 5 psi</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1½ to 3 psi</td>
<td>3 to 6½ psi*</td>
</tr>
<tr>
<td>Cadmium</td>
<td>—</td>
<td>6 to 10 psi*</td>
</tr>
<tr>
<td>White†</td>
<td>—</td>
<td>143-16-021-13</td>
</tr>
</tbody>
</table>

† White is nested inside Cadmium
*Model 243-8HP only
§Model 243-8-2 (IRV) only

Pipe Sizes

<table>
<thead>
<tr>
<th>Model</th>
<th>Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>243-12-1 and 243-12-2</td>
<td>1½", 1½" and 2"</td>
</tr>
<tr>
<td>243-8-1 and 243-8-2</td>
<td>1½", 1½" and 2"</td>
</tr>
<tr>
<td>243-8HP</td>
<td>1½", 1½" and 2"</td>
</tr>
</tbody>
</table>

Temperature Limits

The Model 243 regulator may be used for flowing gas temperatures from -20ºF to 150ºF.

Buried Service

The Model 243 regulator is not recommended for buried service.
Model 243 Service Regulators Construction and Design Features

Fixed Factor Billing

Regulator accuracy is essential to measurement accuracy. Because the 243 is so precise, it is ideal for pressure factor measurement, pressure compensated metering, fixed factor Billing, etc.

The table below gives the pressure accuracies obtainable with 243-12 and 243-8 regulators at the capacities in the tables on pages 6 to 22.

The 243 will hold outlet pressure within the indicated percentage limits from set flow (250 scfh) to the flows given in the capacity tables. Percentages are all based on absolute pressure using 14.4 psia as atmospheric.

As an example, referring to page 9, a 1½" Model 243-12-2 with 1" orifice, 30° valve, 15 psig inlet, and 11" w.c. setpoint (green spring) at 2" w.c. droop has a gas capacity of 9800 scfh. Per the table below, this regulator at these conditions will hold outlet pressure at 11" w.c. ± ½% (2" w.c.) from 250 to 9800 scfh (based on absolute pressure).

For higher outlet pressures, greater capacities, increased accuracies, and excessive inlet pressure variations, use the 243-RPC pilot operated regulator (see page 5).

<table>
<thead>
<tr>
<th>Setpoint</th>
<th>Droop</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>6" w.c.</td>
<td>1" w.c.</td>
<td>+ ½% and -½%</td>
</tr>
<tr>
<td>7" w.c.</td>
<td>1" w.c.</td>
<td>+ ½% and -½%</td>
</tr>
<tr>
<td>11" w.c.</td>
<td>2" w.c.</td>
<td>+ ½% and -½%</td>
</tr>
<tr>
<td>18" w.c.</td>
<td>3" w.c.</td>
<td>+ 1% and -1%</td>
</tr>
<tr>
<td>1 psi</td>
<td>0.3 psi</td>
<td>+ 1% and -2%</td>
</tr>
<tr>
<td>1 psi</td>
<td>0.2 psi</td>
<td>+ 1% and -1%</td>
</tr>
<tr>
<td>2 psi</td>
<td>0.6 psi</td>
<td>+ 1% and -4%</td>
</tr>
<tr>
<td>3 psi</td>
<td>0.3 psi</td>
<td>+ 1% and -2%</td>
</tr>
<tr>
<td>3 psi</td>
<td>0.6 psi</td>
<td>+ 1% and -3½%</td>
</tr>
</tbody>
</table>

*External Control Regulator Only.

Maximum Inlet Pressure, psig

<table>
<thead>
<tr>
<th>Regulator Model and Size</th>
<th>1¼"</th>
<th>1½"</th>
<th>2"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30°</td>
<td>10°</td>
<td>30°</td>
</tr>
<tr>
<td>1¼", 243-12</td>
<td>15</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>1½", 243-12</td>
<td>15</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>2", 243-12</td>
<td>15</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>1¼", 243-8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1½", 243-8</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>2", 243-8</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1¼", 243-8HP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1½", 243-8HP</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>2", 243-8HP</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
</tbody>
</table>
Model 243-8-1

CAUTION
Turn gas on slowly. If an outlet stop valve is used, it should be opened first. Do not overload the diaphragm with a sudden surge of inlet pressure. Monitor the outlet pressure during start-up to prevent an outlet pressure overload. Refer to RM-1306 for more detailed start-up procedures.

Model 243-12-1 Travel Stop

A travel stop is located in the 243-12-1 and the 243-12-4 to provide overpressurization protection.
Operation of the Internal Relief Valve

The internal relief valve (IRV) is optional (refer to Basic Models Table, page 1).

The IRV is built into the center of the diaphragm assembly as shown in the illustration and works in essentially the same way as standard relief valves.

It opens when outlet pressure exceeds the setpoint by approximately 9” w.c. thereby allowing excess gas to escape through the vent to atmosphere. An optional spring is available on the 243-8-2 for relieving at approximately 20” w.c. above setpoint. A cross-section of a complete 243 with IRV is shown on page 5.

Performance is given on the curves below. The IRV will prevent the outlet pressure from exceeding the value shown by the curves upon regulator failure at the conditions specified.

The IRV is a proven design of quality construction. Within its capacity limits it adds a measure of safety protection to the outstanding and dependable performance of the 243.

CAUTION

Note that an IRV, like any other relief valve, must be sized carefully. If the curves indicate that outlet pressure can exceed the maximum safe limit it is essential to provide an additional relief valve carefully sized to handle the difference.
243 Variations

Internal Relief Valve

The 243 is available with an internal relief valve (IRV), which is a built-in safety device for providing a limited level of overpressurization protection.

Like any relief valve, an IRV must be carefully sized.

A more complete description plus performance data is given on page 4. For Basic Models, refer to the table on page 1.

Internal relief valves are not available in the high pressure Model 243-8HP.

Monitoring and External Control Line

This 243 is used for the first regulator (upstream regulator) in a monitor set or for other applications requiring an external downstream control line.

A throat block with an o-ring stem seal isolates the lower diaphragm chamber which has a ½” FNPT connection for the external control line.

Use of this regulator for monitoring is shown on page 23. Capacities with the external control line are provided on pages 13 and 14.

Low Pressure Cut-Off

The low pressure cut-off (LPCO) is used for automatic gas shutoff when inlet pressure is too low for the required gas flow. Once closed, it must be manually reopened and reset.

Basic Models are given in the table at the bottom on page 1. Note: There is an LPCO version that also includes the internal relief valve.

Outlet pressures range from 4” w.c. to 30” w.c. and available orifices are ½”, ¾” and 1”.

Pilot Operated Regulator

The 243-RPC is a genuine pilot operated regulator.

Like its bigger brothers, it not only provides remarkably precise pressure regulation but it maintains that high level of accuracy even for wide variations in inlet pressure.

The 243-RPC can be used for any outlet pressure from 3½” w.c. to 35 psig with capacity ranging as high as 75,000 scfh.
Model 243 Capacity Tables

2” Models 243-12-1 and 243-12-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>1/2”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Selpoint 6” w.c.

1” w.c. Drop

Red Spring

3/8” to 6/12” w.c.

143-16-021-03

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>1/2”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Selpoint 7” w.c.

1” w.c. Drop

Blue Spring

5” to 8/12” w.c.

143-16-021-04

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>1/2”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Selpoint 11” w.c.

2” w.c. Drop

Green Spring

6” to 14” w.c.

143-16-021-05

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1/2</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

2” Models 243-12-1 and 243-12-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>1¼"</th>
<th>1"</th>
<th>¾"</th>
<th>½"</th>
<th>¼"</th>
<th>⅛"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2500</td>
<td>2000</td>
<td>1400</td>
<td>1200</td>
<td>950</td>
<td>650</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4200</td>
<td>3400</td>
<td>2700</td>
<td>2400</td>
<td>1500</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8000</td>
<td>7100</td>
<td>5600</td>
<td>4700</td>
<td>2800</td>
<td>1800</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>12000</td>
<td>12000</td>
<td>10500</td>
<td>7500</td>
<td>4800</td>
<td>2900</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>13500</td>
<td>14500</td>
<td>15000</td>
<td>9500</td>
<td>6500</td>
<td>3900</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>16500</td>
<td>20000</td>
<td>11500</td>
<td>9200</td>
<td>5300</td>
<td>2300</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>20000</td>
<td>13500</td>
<td>12000</td>
<td>7500</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>15000</td>
<td>13000</td>
<td>10000</td>
<td>4400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>14000</td>
<td>12000</td>
<td>7000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12000</td>
<td>12000</td>
<td>7000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 18” w.c.

3" w.c. Drop Orange Spring
12” to 28” w.c.
143-16-021-06

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>1¼"</th>
<th>1"</th>
<th>¾"</th>
<th>½"</th>
<th>¼"</th>
<th>⅛"</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>6500</td>
<td>5000</td>
<td>4000</td>
<td>4000</td>
<td>2000</td>
<td>1300</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8000</td>
<td>7500</td>
<td>6000</td>
<td>6000</td>
<td>4000</td>
<td>2200</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>9000</td>
<td>8500</td>
<td>8000</td>
<td>8000</td>
<td>5500</td>
<td>3000</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>12000</td>
<td>11000</td>
<td>10000</td>
<td>10000</td>
<td>7000</td>
<td>4000</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>13500</td>
<td>12500</td>
<td>11500</td>
<td>9500</td>
<td>5500</td>
<td>2400</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>14000</td>
<td>13000</td>
<td>11000</td>
<td>7400</td>
<td>3300</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>15000</td>
<td>13500</td>
<td>10000</td>
<td>4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>15000</td>
<td>13000</td>
<td>6000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>16000</td>
<td>14000</td>
<td>7000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
<td>12000</td>
<td>7000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 1 psi

0.31 psi Drop Orange Spring
12” to 28” w.c.
143-16-021-06

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>1¼"</th>
<th>1"</th>
<th>¾"</th>
<th>½"</th>
<th>¼"</th>
<th>⅛"</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>3350</td>
<td>3000</td>
<td>2000</td>
<td>1900</td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6800</td>
<td>5900</td>
<td>4200</td>
<td>3900</td>
<td>2400</td>
<td>1600</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>11000</td>
<td>10000</td>
<td>7600</td>
<td>6500</td>
<td>4100</td>
<td>2800</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>13000</td>
<td>12000</td>
<td>9300</td>
<td>8300</td>
<td>5600</td>
<td>3800</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>15000</td>
<td>16500</td>
<td>11000</td>
<td>8500</td>
<td>5300</td>
<td>2400</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>20000</td>
<td>14000</td>
<td>12500</td>
<td>7500</td>
<td>3400</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>15500</td>
<td>13000</td>
<td>10000</td>
<td>4400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>14000</td>
<td>12000</td>
<td>5600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>14000</td>
<td>12000</td>
<td>7000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 1 psi

0.2 psi Drop Black Spring
1 to 2 psi
143-16-021-07

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>1¼"</th>
<th>1"</th>
<th>¾"</th>
<th>½"</th>
<th>¼"</th>
<th>⅛"</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>3350</td>
<td>3000</td>
<td>2000</td>
<td>1900</td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6800</td>
<td>5900</td>
<td>4200</td>
<td>3900</td>
<td>2400</td>
<td>1600</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>11000</td>
<td>10000</td>
<td>7600</td>
<td>6500</td>
<td>4100</td>
<td>2800</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>13000</td>
<td>12000</td>
<td>9300</td>
<td>8300</td>
<td>5600</td>
<td>3800</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>15000</td>
<td>16500</td>
<td>11000</td>
<td>8500</td>
<td>5300</td>
<td>2400</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>20000</td>
<td>14000</td>
<td>12500</td>
<td>7500</td>
<td>3400</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>15500</td>
<td>13000</td>
<td>10000</td>
<td>4400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>14000</td>
<td>12000</td>
<td>5600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>14000</td>
<td>12000</td>
<td>7000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

2” Models 243-12-1 and 243-12-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 1/4”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
</tr>
<tr>
<td>5</td>
<td>8200</td>
<td>7400</td>
</tr>
<tr>
<td>10</td>
<td>12500</td>
<td>11300</td>
</tr>
<tr>
<td>15</td>
<td>15500</td>
<td>14500</td>
</tr>
<tr>
<td>25</td>
<td>18000</td>
<td>16500</td>
</tr>
<tr>
<td>40</td>
<td>20000</td>
<td>16500</td>
</tr>
<tr>
<td>60</td>
<td>16500</td>
<td>15500</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>16000</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>16000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
</tr>
</tbody>
</table>

Setpoint 2 psi 0.6 psi Droop Cadmium Spring 1 1/2 to 3 psi 143-16-021-08

5	3500	3000	2000	1800	1400	1100	750
10	8000	7000	5500	5000	3000	2000	1100
15	10500	10000	8000	7000	4000	3000	1600
25	11500	9800	9000	5600	4500	2000	
40	21500	20000	10500	7500	3500		
60		21000	14500	10500	4500		
80		18000	13500	6000			
100		20500	16400	7500			
125		19000	9000				

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1 1/2” Models 243-12-1 and 243-12-2 in SCFH of Natural Gas

(0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/4”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2800</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6100</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>8200</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>9300</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>11000</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>10500</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td>Selpoint 6” w.c.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1” w.c. Drop Red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring 3/4” to 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2” w.c. 143-16-021-03</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>1800</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2600</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3800</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5700</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>8200</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>9300</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>11000</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>10500</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>11500</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td>Selpoint 7” w.c.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1” w.c. Drop Blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring 5” to 8 1/2” w.c. 143-16-021-04</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>2700</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2700</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6000</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>8800</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>11500</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>11500</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>12500</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td>Selpoint 11” w.c.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2” w.c. Drop Green</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring 6” to 14” w.c. 143-16-021-05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2700</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6000</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>8800</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>11500</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>11500</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>12500</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1½" Models 243-12-1 and 243-12-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
</tr>
<tr>
<td>1</td>
<td>1800</td>
<td>1300</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>2800</td>
</tr>
<tr>
<td>5</td>
<td>5600</td>
<td>5200</td>
</tr>
<tr>
<td>10</td>
<td>8600</td>
<td>7700</td>
</tr>
<tr>
<td>15</td>
<td>10000</td>
<td>9300</td>
</tr>
<tr>
<td>25</td>
<td>11500</td>
<td>9100</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>11000</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>12500</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>12500</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>13000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>11000</td>
</tr>
</tbody>
</table>

Setpoint 18" w.c.

3" w.c. Drop Orange Spring

12" to 28" w.c. 143-16-021-06

<table>
<thead>
<tr>
<th>Inlet Pressure psi</th>
<th>1800</th>
<th>1300</th>
<th>1100</th>
<th>800</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6500</td>
<td>5000</td>
<td>4000</td>
<td>2000</td>
<td>1300</td>
</tr>
<tr>
<td>5</td>
<td>8000</td>
<td>7500</td>
<td>6000</td>
<td>4000</td>
<td>2200</td>
</tr>
<tr>
<td>10</td>
<td>9000</td>
<td>8500</td>
<td>8000</td>
<td>5500</td>
<td>3000</td>
</tr>
<tr>
<td>15</td>
<td>12000</td>
<td>11500</td>
<td>10000</td>
<td>7000</td>
<td>4000</td>
</tr>
<tr>
<td>25</td>
<td>13500</td>
<td>11500</td>
<td>9500</td>
<td>5500</td>
<td>2400</td>
</tr>
<tr>
<td>40</td>
<td>13000</td>
<td>11000</td>
<td>7400</td>
<td>3300</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>15000</td>
<td>13500</td>
<td>10000</td>
<td>4500</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>15000</td>
<td>13000</td>
<td>6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>16000</td>
<td>14000</td>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>14000</td>
<td>8500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 1 psi 0.31 psi Droop Orange Spring

12" to 28" w.c. 143-16-021-06

<table>
<thead>
<tr>
<th>Inlet Pressure psi</th>
<th>2800</th>
<th>2450</th>
<th>1500</th>
<th>1200</th>
<th>850</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5500</td>
<td>5100</td>
<td>3700</td>
<td>2400</td>
<td>1600</td>
</tr>
<tr>
<td>5</td>
<td>8000</td>
<td>7500</td>
<td>5700</td>
<td>4000</td>
<td>2700</td>
</tr>
<tr>
<td>10</td>
<td>8000</td>
<td>9100</td>
<td>7100</td>
<td>5300</td>
<td>3700</td>
</tr>
<tr>
<td>15</td>
<td>10000</td>
<td>9300</td>
<td>7300</td>
<td>5100</td>
<td>2400</td>
</tr>
<tr>
<td>25</td>
<td>11000</td>
<td>9300</td>
<td>7100</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>11000</td>
<td>9300</td>
<td>7100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>12500</td>
<td>11000</td>
<td>9300</td>
<td>4600</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>12500</td>
<td>10500</td>
<td>5600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>13000</td>
<td>11000</td>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>11000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 1 psi 0.2 psi Droop Black Spring

1" to 2 psi 143-16-021-07

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1½” Models 243-12-1 and 243-12-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1¼”</td>
<td>1”</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>5</td>
<td>3500</td>
<td>3000</td>
</tr>
<tr>
<td>10</td>
<td>7000</td>
<td>6000</td>
</tr>
<tr>
<td>15</td>
<td>9000</td>
<td>8000</td>
</tr>
<tr>
<td>25</td>
<td>10000</td>
<td>8000</td>
</tr>
<tr>
<td>40</td>
<td>11500</td>
<td>6500</td>
</tr>
<tr>
<td>60</td>
<td>14000</td>
<td>8000</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>9000</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>Setpoint 3 psi</td>
<td>0.35 psi Drop</td>
<td>Cadmium Spring</td>
</tr>
<tr>
<td>5</td>
<td>6000</td>
<td>5300</td>
</tr>
<tr>
<td>10</td>
<td>10000</td>
<td>9300</td>
</tr>
<tr>
<td>15</td>
<td>13000</td>
<td>12000</td>
</tr>
<tr>
<td>25</td>
<td>14500</td>
<td>11000</td>
</tr>
<tr>
<td>40</td>
<td>13500</td>
<td>11000</td>
</tr>
<tr>
<td>60</td>
<td>15000</td>
<td>13500</td>
</tr>
<tr>
<td>80</td>
<td>15000</td>
<td>12000</td>
</tr>
<tr>
<td>100</td>
<td>16000</td>
<td>12000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>12000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1¼”, 1½” and 2” Model 243-12-1 with External Control Line in SCFH of Natural Gas

(0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>10° 10° 10° 10° 10° 10°</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2200 1900 1600 800 500</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3600 3200 2300 1300 850 400</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5600 4700 3500 2000 1400 600</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10500 8200 5700 3500 2200 1000</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15000 12000 8900 5200 3000 1500</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>19000 16000 12000 6700 4000 1750</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>22000 20000 16000 9000 5200 2400</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>24000 21000 12000 7500 3200</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>27000 15500 10000 4400</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000 13500 7000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>19000 13500 7000</td>
</tr>
</tbody>
</table>

Selpoint 6” w.c.

1” w.c. Droop

Red Spring

3½” to 6½” w.c.

143-16-021-03

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>10° 10° 10° 10° 10° 10°</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2000 1700 1500 700 450</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3100 2600 2000 1100 750 400</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000 3800 3000 1700 1200 600</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7800 6500 5000 3100 2000 1000</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>13000 10000 7000 4800 2900 1500</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>15000 14000 9000 6400 4000 1750</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>20000 17000 13500 8500 5200 2400</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>21000 19000 15000 10000 4400</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>27000 17000 12000 5700</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000 13500 7000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>19000 13500 7000</td>
</tr>
</tbody>
</table>

Selpoint 7” w.c.

1” w.c. Droop

Blue Spring

5” to 8½” w.c.

143-16-021-04

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>10° 10° 10° 10° 10° 10°</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3200 2500 1900 1100 700 350</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5200 4200 3200 1800 1300 550</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8500 7200 5200 3200 2000 1000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>13500 11000 8000 5000 3000 1500</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16000 14000 11000 6500 4000 1750</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>20000 17000 14000 9000 5200 2400</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>24000 21000 12000 7500 3200</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>25000 15000 9800 4400</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>27000 17000 12000 5700</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000 13500 7000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>19000 13500 7000</td>
</tr>
</tbody>
</table>

Selpoint 11” w.c.

2” w.c. Droop

Green Spring

6” to 14” w.c.

143-16-021-05

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>10° 10° 10° 10° 10° 10°</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3600 3200 2300 1300 850 400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5600 4700 3500 2000 1400 600</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10500 8200 5700 3500 2200 1000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>15000 12000 8900 5200 3000 1500</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>19000 16000 12000 6700 4000 1750</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>22000 20000 16000 9000 5200 2400</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>24000 21000 12000 7500 3200</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>27000 15500 10000 4400</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>19000 13500 7000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000 13500 7000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>19000 13500 7000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

* 2” Body Only.

NOTE: The performance data is based on normal testing at 70ºF flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1¼”, 1½” and 2” Model 243-12-1 with External Control Line in SCFH of Natural Gas

(0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1¼”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10°</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6500</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11000</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14500</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>18000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>21000</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>17000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>15000</td>
</tr>
</tbody>
</table>

Setpoint 18” w.c. 3” w.c. Drop Orange Spring 12” to 28” w.c.

143-16-021-06

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1¼”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6500</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11000</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14500</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>18000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>21000</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>17000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>15000</td>
</tr>
</tbody>
</table>

Setpoint 1 psi 0.2 psi Drop Black Spring 1 to 2 psi

143-16-021-07

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1¼”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6500</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11000</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14500</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>18000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>21000</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>17000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>15000</td>
</tr>
</tbody>
</table>

Setpoint 2 psi 0.6 psi Drop Cadmium Spring 1½ to 3 psi

143-16-021-08

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1¼”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6500</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11000</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14500</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>25000</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>25000</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>17000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>19000</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>15000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

* 2” Body Only.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Service Regulators Construction and Design Features

Model 243 Capacity Tables
1½” and 2” Model 243-8-1 and 243-8-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
</tr>
<tr>
<td>Setpoint 6” w.c. 1” w.c. Droop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-Black Spring 3½” to 6½” w.c.</td>
<td>143-82-021-00</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1950</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3200</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5200</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>7400</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>9100</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>12500</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>10500</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>11000</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>11500</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>11000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>8000</td>
</tr>
</tbody>
</table>

Setpoint 7” w.c. 1” w.c. Droop | Blue-Black Spring 5” to 8½” w.c. 143-82-021-01
1/2		1000	750	650	400	
1		1600	1150	900	650	300
2		2700	1800	1350	950	450
5		4800	3500	2350	1600	770
10		7000	5400	3900	2500	1250
15		9100	7000	5000	3500	1700
25		12500	8700	6600	5100	2400
40		10500	9000	7100	3200	2100
60		11000	9300	4400	2900	
80		11500	10500	5600	3700	
100		11000	7000	7000	4500	
125		8000				

Setpoint 11” w.c. 2” w.c. Droop | Green-Black Spring 6” to 14” w.c. 143-82-021-02
1		1650	1150	1000	650	300
2		2700	2000	1400	1000	450
5		4800	3800	2800	1750	900
10		7000	5400	4200	2800	1300
15		9000	7400	5500	3600	1700
25		11000	8800	7500	5100	2400
40		11000	9600	7100	3200	2100
60		11000	9300	4400	2900	
80		11500	10500	5600	3700	
100		11000	7000	7000	4500	
125		8000				

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1½“ Models 243-8-1 and 243-8-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1"</td>
<td>¾"</td>
</tr>
<tr>
<td></td>
<td>½"</td>
<td>¼"</td>
</tr>
<tr>
<td></td>
<td>0.207"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>10°</td>
</tr>
<tr>
<td></td>
<td>10°</td>
<td>10°</td>
</tr>
<tr>
<td></td>
<td>10°</td>
<td>10°</td>
</tr>
<tr>
<td>Setpoint 18“ w.c. 3” w.c. Droop Green Spring 12” to 28” w.c. 143-16-021-05</td>
<td>1 1500 1100 800 550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 2100 1700 1300 900 450 350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 4500 3400 2000 1350 850 600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 6600 5700 3500 2400 1300 850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 8800 7100 5000 3400 1700 1050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 11500 9100 7100 5100 2400 1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 11000 9300 7100 5100 3200 2100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 11000 9400 7100 5600 2900 3700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 12000 10500 7100 5600 2900 3700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 11000 7000 4500 8000 6000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125 11000 7000 4500 8000 6000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 4000 3500 1800 1200 500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 6000 5000 3500 2200 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 7500 7000 5000 3000 1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 9000 8000 6500 4000 1850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 12000 10000 8000 5000 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 12500 11500 9500 6000 3000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 11500 9000 4500 3000 1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 12500 11500 6000 4500 3000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 12500 11500 6000 4500 3000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125 12500 11500 6000 4500 3000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 2100 1650 1200 850 450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 4000 3200 2100 1300 850 550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 6500 5200 3100 2200 1300 800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 8400 6500 4400 3000 1700 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 11000 8600 6500 4400 2400 1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 11000 8600 6700 3200 2100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 10500 9000 4400 2900 1850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 11500 10500 5600 3700 2400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 11000 7000 4500 8000 6000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125 11000 7000 4500 8000 6000</td>
<td></td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1½” Models 243-8-1 and 243-8-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>1”</th>
<th>¾”</th>
<th>¼”</th>
<th>⅜”</th>
<th>⅝”</th>
<th>⅞”</th>
<th>0.207”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3000</td>
<td>1800</td>
<td>1200</td>
<td>1100</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4000</td>
<td>2500</td>
<td>1800</td>
<td>1500</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5200</td>
<td>4000</td>
<td>2850</td>
<td>2000</td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7000</td>
<td>5200</td>
<td>3600</td>
<td>3100</td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
<td>5000</td>
<td>4200</td>
<td>2200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>8300</td>
<td>6500</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>10000</td>
<td>8500</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>9000</td>
<td>6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 3 psi 0.35 psi Drop

Black Spring

2 to 4¼ psi

143-16-021-07

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>1”</th>
<th>¾”</th>
<th>¼”</th>
<th>⅜”</th>
<th>⅝”</th>
<th>⅞”</th>
<th>0.207”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4400</td>
<td>3400</td>
<td>2400</td>
<td>1600</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7100</td>
<td>5900</td>
<td>3600</td>
<td>2400</td>
<td>1300</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9600</td>
<td>7500</td>
<td>4800</td>
<td>3400</td>
<td>1700</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>12500</td>
<td>10500</td>
<td>6500</td>
<td>5000</td>
<td>2400</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>13000</td>
<td>9600</td>
<td>7000</td>
<td>3200</td>
<td>2100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>12500</td>
<td>9300</td>
<td>4400</td>
<td>2900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>13500</td>
<td>11000</td>
<td>5600</td>
<td>3700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12000</td>
<td>7000</td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 3 psi 0.6 psi Drop

Black Spring

2 to 4¼ psi

143-16-021-07

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1¼” Models 243-8-1, 243-8-2, 243-12-1 and 243-12-2 in SCFH of Natural Gas

(0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring 243-12</th>
<th>Outlet Pressure and Spring 243-8</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>½”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10°</td>
</tr>
<tr>
<td>Setpoint 6” w.c. 1” w.c. Droop Red Spring 3½” to 6” w.c. 143-16-021-03</td>
<td>Setpoint 6” w.c. 1” w.c. Droop Red-Black Spring 3½” to 6½” w.c. 143-82-021-00</td>
<td>12</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>3550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>4800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>4600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>4600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>4250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>5300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>4850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>5850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>8000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: 1” x 30° and 1¼” x 30° orifice and valve angle are available on the 1¼” 243-12-1 and 243-12-2 models.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1¼" Models 243-8-1, 243-8-2, 243-12-1 and 243-12-2 in SCFH of Natural Gas

(0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring 243-12</th>
<th>Outlet Pressure and Spring 243-8</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>⅛"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10°</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2250</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>2950</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>3450</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>4400</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>5300</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>4800</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>4850</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>6000</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td>8000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setpoint 18" w.c. 3" w.c. Droop Orange Spring 12" to 28" w.c. 143-16-021-06</th>
<th>Setpoint 18" w.c. 3" w.c. Droop Green Spring 12" to 28" w.c. 143-16-021-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1800</td>
</tr>
<tr>
<td>5</td>
<td>4000</td>
</tr>
<tr>
<td>10</td>
<td>5000</td>
</tr>
<tr>
<td>15</td>
<td>6000</td>
</tr>
<tr>
<td>25</td>
<td>7500</td>
</tr>
<tr>
<td>40</td>
<td>8000</td>
</tr>
<tr>
<td>60</td>
<td>8000</td>
</tr>
<tr>
<td>80</td>
<td>8500</td>
</tr>
<tr>
<td>100</td>
<td>8500</td>
</tr>
<tr>
<td>125</td>
<td>7000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setpoint 1 psi 0.31 psi Droop Orange Spring 12" to 28" w.c. 143-16-021-06</th>
<th>Setpoint 1 psi 0.31 psi Droop Green Spring 12" to 28" w.c. 143-16-021-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1800</td>
</tr>
<tr>
<td>5</td>
<td>2100</td>
</tr>
<tr>
<td>10</td>
<td>2700</td>
</tr>
<tr>
<td>15</td>
<td>3150</td>
</tr>
<tr>
<td>25</td>
<td>4150</td>
</tr>
<tr>
<td>40</td>
<td>5300</td>
</tr>
<tr>
<td>60</td>
<td>4600</td>
</tr>
<tr>
<td>80</td>
<td>4650</td>
</tr>
<tr>
<td>100</td>
<td>6000</td>
</tr>
<tr>
<td>125</td>
<td>8000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setpoint 1 psi 0.2 psi Droop Black Spring 1 to 2 psi 143-16-021-07</th>
<th>Setpoint 1 psi 0.2 psi Droop Orange Spring 1 to 2 psi 143-16-021-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1850</td>
</tr>
<tr>
<td>5</td>
<td>2100</td>
</tr>
<tr>
<td>10</td>
<td>2700</td>
</tr>
<tr>
<td>15</td>
<td>3150</td>
</tr>
<tr>
<td>25</td>
<td>4150</td>
</tr>
<tr>
<td>40</td>
<td>5300</td>
</tr>
<tr>
<td>60</td>
<td>4600</td>
</tr>
<tr>
<td>80</td>
<td>4650</td>
</tr>
<tr>
<td>100</td>
<td>6000</td>
</tr>
<tr>
<td>125</td>
<td>8000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: 1" x 30° and 1¼" x 30° orifice and valve angle are available on the 1¼" 243-12-1 and 243-12-2 models.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

1¼" Models 243-8-1, 243-8-2, 243-12-1 and 243-12-2 in SCFH of Natural Gas

(0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring 243-12</th>
<th>Outlet Pressure and Spring 243-8</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>¾"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10°</td>
</tr>
<tr>
<td>Setpoint 3 psi 0.35 psi Droop</td>
<td>Setpoint 3 psi 0.35 psi Droop</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Cadmium Spring 1¼ to 3 psi 143-16-021-08</td>
<td>Black Spring 2 to 4¼ psi 143-16-021-07</td>
<td>10</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Setpoint 3 psi 0.6 psi Drop</td>
<td>Setpoint 3 psi 0.6 psi Drop</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Cadmium Spring 1¼ to 3 psi 143-16-021-08</td>
<td>Black Spring 2 to 4¼ psi 143-16-021-07</td>
<td>10</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: 1" x 30º and 1¼" x 30º orifice and valve angle are available on the 1¼" 243-12-1 and 243-12-2 models.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

2" Models 243-8-1 and 243-8-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1" ¾" ⅜ " ¼ " ⅛ " ⅛ "</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30° 30° 10° 10° 10° 10°</td>
</tr>
</tbody>
</table>

Setpoint 18" w.c.

3" w.c. Drop
Green Spring
12" to 26" w.c.
143-16-021-05

<table>
<thead>
<tr>
<th></th>
<th>1"</th>
<th>⅜ "</th>
<th>⅛ "</th>
<th>⅛ "</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500</td>
<td>800</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1200</td>
<td>1100</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>5500</td>
<td>3700</td>
<td>3500</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td>9400</td>
<td>6000</td>
<td>6000</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td>12000</td>
<td>8100</td>
<td>8100</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>14500</td>
<td>10000</td>
<td>8200</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>20000</td>
<td>12000</td>
<td>11500</td>
<td>7400</td>
</tr>
<tr>
<td></td>
<td>13500</td>
<td>10000</td>
<td>10000</td>
<td>4600</td>
</tr>
<tr>
<td></td>
<td>14000</td>
<td>11000</td>
<td>11000</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>12000</td>
<td>7000</td>
<td>7000</td>
<td>7000</td>
</tr>
</tbody>
</table>

Setpoint 1 psi

0.31 psi Drop
Green Spring
12" to 26" w.c.
143-16-021-05

<table>
<thead>
<tr>
<th></th>
<th>2"</th>
<th>⅜ "</th>
<th>⅛ "</th>
<th>⅛ "</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500</td>
<td>800</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1200</td>
<td>1100</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>5500</td>
<td>3700</td>
<td>3500</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td>9400</td>
<td>6000</td>
<td>6000</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td>12000</td>
<td>8100</td>
<td>8100</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>14500</td>
<td>10000</td>
<td>8200</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>20000</td>
<td>12000</td>
<td>11500</td>
<td>7400</td>
</tr>
<tr>
<td></td>
<td>13500</td>
<td>10000</td>
<td>10000</td>
<td>4600</td>
</tr>
<tr>
<td></td>
<td>14000</td>
<td>11000</td>
<td>11000</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>12000</td>
<td>7000</td>
<td>7000</td>
<td>7000</td>
</tr>
</tbody>
</table>

Setpoint 1 psi

0.2 psi Drop
Orange Spring
11 to 2 psi
143-16-021-06

<table>
<thead>
<tr>
<th></th>
<th>2"</th>
<th>⅜ "</th>
<th>⅛ "</th>
<th>⅛ "</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500</td>
<td>800</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1200</td>
<td>1100</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>5500</td>
<td>3700</td>
<td>3500</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td>9400</td>
<td>6000</td>
<td>6000</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td>12000</td>
<td>8100</td>
<td>8100</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>14500</td>
<td>10000</td>
<td>8200</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>20000</td>
<td>12000</td>
<td>11500</td>
<td>7400</td>
</tr>
<tr>
<td></td>
<td>13500</td>
<td>10000</td>
<td>10000</td>
<td>4600</td>
</tr>
<tr>
<td></td>
<td>14000</td>
<td>11000</td>
<td>11000</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>12000</td>
<td>7000</td>
<td>7000</td>
<td>7000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables
2” Models 243-8-1 and 243-8-2 in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F) (Continued)

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5800</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7500</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>9100</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 3 psi
Black Spring
2 to 4¼ psi
143-16-021-07

<table>
<thead>
<tr>
<th>Outlet Pressure and Spring</th>
<th>Inlet Pressure psi</th>
<th>Orifice Size and Valve Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
</tr>
<tr>
<td>5</td>
<td>4400</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7600</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>17500</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint 3 psi
0.6 psi Droop
Black Spring
2 to 4¼ psi
143-16-021-07

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Model 243 Capacity Tables

Model 243-8HP in SCFH of Natural Gas (0.6 Specific Gravity – 14.65 psia – 60°F)

<table>
<thead>
<tr>
<th>Outlet Pressure psi</th>
<th>Inlet Pressure psi</th>
<th>1¼" Model 243-8HP</th>
<th>1½" Model 243-8HP</th>
<th>2" Model 243-8HP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Orifice Size and Valve Angle</td>
<td>Orifice Size and Valve Angle</td>
<td>Orifice Size and Valve Angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8"</td>
<td>1/4"</td>
<td>1/4"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10"</td>
<td>10"</td>
<td>10"</td>
</tr>
<tr>
<td>10</td>
<td>Setpoint 5 psi</td>
<td>3300</td>
<td>2050</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>1 psi Droop</td>
<td>3400</td>
<td>3100</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>Cadmium Spring</td>
<td>4400</td>
<td>3650</td>
<td>3050</td>
</tr>
<tr>
<td>15</td>
<td>5800</td>
<td>3800</td>
<td>3200</td>
<td>3200</td>
</tr>
<tr>
<td></td>
<td>4400</td>
<td>4100</td>
<td>4400</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>4500</td>
<td>5300</td>
<td>5600</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>7000</td>
<td>7000</td>
<td>12500</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>8000</td>
<td>8000</td>
<td>12500</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>10000</td>
<td>10000</td>
<td>14300</td>
</tr>
<tr>
<td>25</td>
<td>2300</td>
<td>2000</td>
<td>1800</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>2800</td>
<td>2200</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>3300</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>7200</td>
<td>5200</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>8600</td>
<td>8500</td>
<td>11500</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>7000</td>
<td>7000</td>
<td>11500</td>
</tr>
<tr>
<td>40</td>
<td>5400</td>
<td>3500</td>
<td>2500</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>7400</td>
<td>5000</td>
<td>3500</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>12500</td>
<td>7500</td>
<td>3500</td>
<td>16000</td>
</tr>
<tr>
<td></td>
<td>14000</td>
<td>11500</td>
<td>6100</td>
<td>17500</td>
</tr>
<tr>
<td></td>
<td>13500</td>
<td>7200</td>
<td>7000</td>
<td>16500</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>8800</td>
<td>7000</td>
<td>16500</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>2500</td>
<td>2200</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>7200</td>
<td>5000</td>
<td>4000</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>6700</td>
<td>5700</td>
<td>3500</td>
<td>10500</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>6600</td>
<td>4600</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>5400</td>
<td>5400</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>7900</td>
<td>5400</td>
<td>9500</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>6500</td>
<td>7000</td>
<td>10000</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>1700</td>
<td>1500</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>7500</td>
<td>4500</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>4800</td>
<td>4800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>8800</td>
<td>9000</td>
<td>9000</td>
</tr>
</tbody>
</table>

The last capacity figure in each group indicates the maximum allowable inlet pressure (except for emergency conditions). The stepped line indicates the recommended maximum capacity and inlet pressure for each orifice for operation within the optimum performance range.

NOTE: The performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.
Maximum Emergency Pressures

NOTE: The use of an internal or external relief valve is recommended for installations subjected to no flow for extended periods of time, such as pilotless ignition systems. A travel stop stem is located in the 243-12-1 and 243-12-4 to provide over-pressurization protection to internal components during overpressurization.

The maximum pressure the regulator inlet may be subjected to under abnormal conditions without causing damage to the regulator is the maximum allowable inlet pressure (from the capacity tables, pages 6 through 22) plus 50 psi.

The maximum pressure the diaphragm may be subjected to without causing damage to the internal parts of the regulator is:

- 243-12-1 ... Setpoint + 3 psi
- 243-12-2, 243-8-1 and 243-8-2 Setpoint + 5 psi
- 243-8HP ... Setpoint + 5 psi

Setpoint is defined as the outlet pressure that a regulator is adjusted to deliver.

If any of the pressure limits are exceeded, the regulator must be taken out of service and inspected. All damaged or otherwise unsatisfactory parts must be repaired or replaced.

Overpressurization Protection

Protect the downstream piping system and the regulator’s low pressure chambers against overpressurization due to possible regulator malfunction or failure to achieve positive lockup. The allowable outlet pressure is the lowest of the maximum pressures permitted by federal codes, state codes, Bulletin RDS-1498 or other applicable standards. The method of protection can be a relief valve, monitor regulator, shut-off device or similar mechanism.

Monitoring

A monitor set consists of two regulators in series as shown in the figure. The monitor is the standby. It takes control if a failure in the operating regulator causes outlet pressure to exceed normal.

Either regulator may be used as the monitor. In both cases, the upstream regulator must have a blocked throat and external control line as shown for the 243 on page 5. Also, the control line for the upstream regulator connects into the outlet piping all the way downstream, which means downstream of the downstream regulator.

The illustration shows a typical 243 monitor set. While the downstream regulator is shown as operating and the upstream regulator is shown as the monitor, the two can be reversed. There are reasons for doing it either way depending on the user’s practice. Stop and bypass valves (which are not shown) likewise would depend on the user’s preference and practice.

Either way, the operating regulator is adjusted for the normal outlet pressure. The monitor is adjusted somewhat higher so it is normally full open. If a failure in the operating regulator causes excessive increase in outlet pressure, the monitor will go into operation to hold outlet pressure at its setpoint.

Monitoring is an effective and dependable method of providing overpressure protection. A significant advantage is that it provides the protection without wasting gas to atmosphere. Refer to Bulletin RDS-1306-2 (package monitor sets 243-DOT) for more information.

When a 243 is used to monitor another 243 with an identical orifice size, the total maximum capacity through both can be figured at 70% of the rated capacity for one regulator. This applies with the monitor located upstream or downstream.

Periodic Inspection: Regulators are pressure control devices with numerous moving parts subject to wear that is dependent upon particular operating conditions. To assure continuous satisfactory operation, a periodic inspection schedule must be adhered to with the frequency of inspection determined by the severity of service and applicable laws and regulations. See Bulletin RM-1306 field service instructions.
Mounting Positions

The 243 Service Regulator can be provided in any of the positions shown. Specify by position number when ordering.

CAUTION

The diaphragm case vent must be positioned to protect against flooding, drain water, ice formation, traffic, tampering, etc. The vent must be protected against nest-building animals, bees, insects, etc. to prevent vent blockage and minimize the chances of foreign materials from collecting in the vent side.

CAUTION

It is the user’s responsibility to assure that all service regulator vents and/or vent lines exhaust to a non-hazardous location away from any potential sources of ignition. Refer to Bulletin RM-1306 for more detailed information.

NOTE: If desired position is not shown use diagrams at right as guides to specify vent, diaphragm case, and body arrangement. Example: Position 105 would be D-4-Y.

Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>243-12</th>
<th>243-8</th>
<th>243-SHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14"</td>
<td>10½"</td>
<td>10½"</td>
</tr>
<tr>
<td>B</td>
<td>9½"</td>
<td>9½"</td>
<td>-</td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>12¾"</td>
</tr>
<tr>
<td>C</td>
<td>5½"</td>
<td>5½"</td>
<td>5½"</td>
</tr>
<tr>
<td>*C1</td>
<td>7½"</td>
<td>7½"</td>
<td>7½"</td>
</tr>
<tr>
<td>*C2</td>
<td>7½"</td>
<td>7½"</td>
<td>7½"</td>
</tr>
<tr>
<td>D</td>
<td>2½"</td>
<td>2½"</td>
<td>2½"</td>
</tr>
<tr>
<td>E</td>
<td>10½"</td>
<td>8½"</td>
<td>8½"</td>
</tr>
<tr>
<td>F</td>
<td>6½"</td>
<td>4½"</td>
<td>4½"</td>
</tr>
<tr>
<td>G</td>
<td>4½"</td>
<td>4½"</td>
<td>4½"</td>
</tr>
<tr>
<td>Shipping Weight*</td>
<td>27 lbs.</td>
<td>25 lbs.</td>
<td>29 lbs.</td>
</tr>
</tbody>
</table>

* Add 9 lbs. for flanges on 2" body
** 10" for 243-12-1 and 243-12-4, which include travel stop
*** ANSI flanges
**** ND-10 flanges
Materials of Construction

- **Body**: Cast Iron
- **Diaphragm Case**: Die Cast Aluminum Alloy
- **Diaphragm**: Buna-N with Nylon Fabric Insert
- **Diaphragm Pans**: Zinc Plated Steel
- **Diaphragm Coupling**: Zinc Die Casting
- **Orifice**: Buna-N Soft Seat in Aluminum Holder
- **Stem**: Brass
- **Valve**: Buna-N Soft Seat in Aluminum Holder
- **Seal Cap**: Cast Iron
- **Cover**: Cast Iron
- **Adjustment Screw**: Zinc Plated Steel
- **O-Rings and Tetra Seals**: Buna-N
- **Lever**: Zinc Plated Steel
- **Valve**: Buna-N Soft Seat in Aluminum Holder
- **Diaphragm Coupling**: Zinc Die Casting
- **Adjustment Screw, 243-8HP**: Zinc Plated Steel
- **Cover, 243-8HP**: Cast Iron
- **Seal Cap, 243-8HP**: Cast Iron

Full Open Capacity

Use the following formula for the full open capacity of 243 regulators:

1. \[Q = K \sqrt{P_o (P_i - P_o)} \quad \text{(for } \frac{P_o}{P_i} \text{ less than 1.894)} \]
2. \[Q = \frac{KP_i}{2} \quad \text{for } \frac{P_o}{P_i} \text{ greater than 1.894} \]

Where:
- \(Q \): Maximum capacity of the regulator (in SCGH of 0.6 absolute gravity natural gas).
- \(K \): The "K" factor, the regulator constant (see below).
- \(P_i \): Absolute inlet pressure (psia)
- \(P_o \): Absolute outlet pressure (psia)

Orifice size:

<table>
<thead>
<tr>
<th>Orifice size</th>
<th>207"</th>
<th>¼"</th>
<th>⅜"</th>
<th>⅝"</th>
<th>1"</th>
<th>1¼"</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>90</td>
<td>132</td>
<td>292</td>
<td>520</td>
<td>1100</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2480</td>
</tr>
</tbody>
</table>

When sizing relief valves for use with 243 regulators, use full open capacity. Do not use capacity from capacity tables pages 6 through 22.

Other Gases

243 regulators are mainly used on natural gas. However, they perform equally as well on LP gas, nitrogen, dry CO₂, air, and others. For capacities, multiply the table values on pages 6 thru 22 by the following correction factors:

<table>
<thead>
<tr>
<th>Type of Gas</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (Specific Gravity 1.0)</td>
<td>0.77</td>
</tr>
<tr>
<td>Propane (Specific Gravity 1.53)</td>
<td>0.63</td>
</tr>
<tr>
<td>1350 BTU Propane-Air Mix (Specific Gravity 1.20)</td>
<td>0.71</td>
</tr>
<tr>
<td>Nitrogen (Specific Gravity 0.97)</td>
<td>0.79</td>
</tr>
<tr>
<td>Dry Carbon Dioxide (Specific Gravity 1.52)</td>
<td>0.63</td>
</tr>
</tbody>
</table>

For other non-corrosive gases use the following formula:

\[\text{CORRECTION FACTOR} = \sqrt{\frac{0.60}{\text{Specific gravity of the gas}}} \]

While used primarily on natural gas services, Model 243 regulators perform equally as well on LPG vapor, air, CO₂, nitrogen and other inert gas applications. Please contact your Sensus representative for special construction which may be available for certain corrosive gases.

How to Order

Specify:
1. Pipe size and model number (page 1)
2. Screwed or flanged connections
3. Mounting position
4. Orifice size and valve angle
5. Inlet pressure (also maximum and minimum if available)
6. Outlet pressure setting
7. Capacity required (scfh)
8. Type of gas (natural gas, propane, etc.)
9. Spring part number

Other Sensus Gas Pressure Regulators

Sensus produces a broad product line of gas pressure regulators which are widely used throughout the natural gas industry. These regulators are also suitable for non-corrosive industrial gas applications such as propane, butane, air, nitrogen, dry CO₂ etc. For additional information on a particular model, please request the indicated bulletin from the local Sensus sales office, or visit our website at www.sensus.com

Multi-Purpose Service Regulators

Model 043-C

- ⅜", ⅝", 1", 1¼" pipe sizes
- Inlet pressures: .. to 125 psi
- Outlet pressures: 5 w.c. to 5 psi
- Capacity to 3500 SCFH
- Available with 90° angle or straight-through body.
- Standard with internal relief valve.

Model 143-80

- ¾", 1", 1¼" pipe sizes
- Inlet pressures: .. to 125 psi
- Outlet pressures: ... 3½" w.c. to 6 psi
- Capacity to 2000 SCFH
- Optional internal relief valve and low pressure cut-off.

Industrial Field Regulators

For intermediate to high pressure applications. Ideal on pipeline tapping servicing plants and buildings. Appropriate for double stage reduction ahead of service regulators and for high pressure burners and compressed air systems.

Model 046

- ¾", 1" and 1¼" pipe sizes
- Inlet pressures: .. to 1000 psi
- Outlet pressures: ... 3 to 200 psi
- Capacity to 40,000 SCFH
- Optional monitor and internal relief valve.

Pilot Loaded Regulators

For intermediate and high pressure applications requiring precise pressure reduction with minimal droop. Ideal for standard and high capacity flows on burners, driers, dehydrators and compressor lines. Appropriate for fixed factor billing.

Model 243-RPC

- 1¼", 1½" and 2" pipe sizes
- Inlet pressures: .. to 150 psi
- Outlet pressures: ... 3½" w.c. to 35 psi
- Capacity to 76,000 SCFH

Sensus also produces industrial and combustion regulators; high pressure, high capacity regulators, and safety relief valves. Detailed information is available on request.
Notes:

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__
Authorized Distributor: