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Abstract

Fungal decomposition of plant cell walls (PCW) is a complex process that has diverse industrial applications and huge
impacts on the carbon cycle. White rot (WR) is a powerful mode of PCW decay in which lignin and carbohydrates are
both degraded. Mechanistic studies of decay coupled with comparative genomic analyses have provided clues to the
enzymatic components of WR systems and their evolutionary origins, but the complete suite of genes necessary for WR
remains undetermined. Here, we use phylogenomic comparative methods, which we validate through simulations, to
identify shifts in gene family diversification rates that are correlated with evolution of WR, using data from 62 fungal
genomes. We detected 409 gene families that appear to be evolutionarily correlated with WR. The identified gene families
encode well-characterized decay enzymes, e.g., fungal class II peroxidases and cellobiohydrolases, and enzymes involved
in import and detoxification pathways, as well as 73 gene families that have no functional annotation. About 310 of the
409 identified gene families are present in the genome of the model WR fungus Phanerochaete chrysosporium and 192 of
these (62%) have been shown to be upregulated under ligninolytic culture conditions, which corroborates the phylogeny-
based functional inferences. These results illuminate the complexity of WR and suggest that its evolution has involved a
general elaboration of the decay apparatus, including numerous gene families with as-yet unknown exact functions.
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Introduction
Plant cell walls (PCW) are complex mixtures of biopolymers,
including cellulose, lignin, and hemicellulose. Enzymatic deg-
radation of PCW is a hallmark trait of fungi and has enor-
mous potential for industrial applications such as biofuel
production (Martinez et al. 2005; Hofrichter et al. 2010;
Horn et al. 2012; Grigoriev et al. 2014; Rytioja et al. 2014).
Wood (secondary xylem) is enriched in lignin and may also
contain highly variable secondary metabolite extractives.
The major decomposers of wood are Agaricomycetes
(mushroom-forming fungi), which manifest two main
modes of decay, white rot (WR) and brown rot (BR), al-
though species with intermediate or unclassified nutritional
strategies exist (e.g., Schizophyllum commune) (Floudas et al.
2015). In WR, all components of PCW are degraded, includ-
ing the recalcitrant lignin fraction, whereas in BR lignin is
modified but remains largely intact in decayed residues
(Martinez et al. 2005; Floudas et al. 2012). Agaricomycetes
also include species with wood decay mechanisms that are

intermediate between WR and BR (e.g., Schizophyllum com-
mune) (Floudas et al. 2015), as well as soil and litter decom-
posers, ectomycorrhizal symbionts (ECM) and plant
pathogens.

Phylogenomic analyses of known decay-related gene
families have provided insight into the diversity and evo-
lution of the decay apparatus in Agaricomycetes (Floudas
et al. 2012; Riley et al. 2014; Nagy et al. 2016). The sister
group of Agaricomycetes is a clade of BR fungi, the
Dacrymycetes, and the ancestor of the Agaricomycetes
appears to have been a saprotroph with a modest reper-
toire of PCW-degrading enzymes (Nagy et al. 2016). Gene
families encoding enzymes that attack crystalline cellu-
lose, including cellobiohydrolases (glycoside hydrolase
families GH6 and GH7) and lytic polysaccharide mono-
oxygenases (LPMO) and other carbohydrate-active en-
zymes (CAZys), diversified early in the evolution of
Agaricomycetes, prior to the divergence of lineages
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leading to Sebacinales and Cantharellales (Nagy et al.
2016). The best-known ligninolytic enzymes, fungal class
II peroxidases (PODs), began to diversify around the time
of divergence of Auriculariales, leading to the evolution of
true WR fungi, capable of degrading both crystalline cel-
lulose and lignin. Independent, and perhaps irreversible,
origins of BR and ECM occurred in multiple lineages and
were associated with parallel reductions in PCW-
degrading enzymes (Floudas et al. 2012; Kohler et al.
2015). Molecular clock analyses suggest that the origin
of WR occurred around 300 Ma, albeit with very broad
confidence intervals on ages, which is consistent with the
view that evolution of WR contributed to the Permo-
Carboniferous decline in organic carbon sequestration.
However, the possibility that the evolution of WR—
specifically lignin degradation by PODs—affected coal de-
position patterns has been questioned on the basis of
paleobotanical and geological evidence (Hibbett et al.
2016; Nelsen et al. 2016).

The studies cited above have focused on a limited suite of
enzymes that have been functionally characterized, with the
ligninolytic PODs having received much of the attention.
Cellobiohydrolases and LPMOs have also been focal enzymes,
in part because of their industrial applications. However, PCW
decay is a complex process and despite intense research in
this area (Martinez et al. 2004, 2009; Eastwood et al. 2011;
Vanden Wymelenberg et al. 2010) its enzymatic mechanisms
are still incompletely known (Riley et al. 2014).

To identify the complete set of gene families that could
have been important in the evolution of WR, we applied the
COMPARE method (Nagy et al. 2014), which harnesses the
power of phylogenetic correlations to make systematic, un-
biased predictions of the genes that underlie trait evolution.
Here, we extend this approach to identify gene families in
which shifts in diversification rates are correlated with the
gains and losses of traits. We evaluated the performance of
the extended method using simulated gene family evolution,
and then applied it to an empirical dataset of 62 genomes,
focusing on Agaricomycetes with WR, BR, ECM, and other
nutritional modes. Results confirmed the importance of en-
zymes with known roles in decay (PODs, GH6, GH7, LPMOs,
etc), and other genes with known products, but also identi-
fied 73 gene families with no PFAM annotation that may also
be important in WR.

Results and Discussion

Prediction of enzyme families involved in fungal
wood-decomposition
To identify gene families potentially involved in WR, we as-
sembled a dataset of 62 fungal genomes [supplementary table
S1, Supplementary Material online, based on the species list
from (Nagy et al. 2016)], including 22 species that primitively
lack WR (15 Basidiomycota, five Ascomycota, one chytrid,
and one zygomycete), 24 WR species of Agaricomycetes (rep-
resenting a single origin of WR), and 16 BR and ECM species
of Agricomycetes (which comprise eight derived lineages that
have lost the ability to produce WR) (fig. 3; Floudas et al. 2012,

2015; Kohler et al. 2015). We used a species tree from our
previous study (Nagy et al. 2016) and reconstructed gene
family duplication/loss histories in each gene family using
ortholog coding, which delimits “orthogroups” of genes
with no more than one copy per species. We mapped
orthogroups onto the species tree using Dollo parsimony
optimization and compared gene duplications and losses to
the reconstructed evolutionary history of WR.

We predicted that gene families encoding proteins in-
volved in WR should exhibit background rates of duplication
and loss in regions of the phylogenetic tree preceding the
origin of WR, elevated duplication rates and reduced loss rates
in WR lineages, and reduced duplication rates and increased
loss rates in lineages that have secondarily lost WR. This pat-
tern of diversification has been demonstrated based on ge-
nomic comparisons and gene tree-species tree reconciliations
for key gene families which are known to function in WR,
including PODs, and a number of GH families (Floudas et al.
2012), which provided benchmarks for our analysis. We ana-
lyzed the inferred gene duplication/loss patterns of each gene
family against this model using a permutation ANOVA that
we implemented to test for gene-phenotype co-gain and co-
loss patterns and thus take phylogenetic history into account.

We found 3410 and 1606 families showing a significant
correlation with WR at P� 0.05 and P� 0.001, respectively.
We further screened the 3410 families for gene losses in sec-
ondarily nonWR clades as would be expected under a model
of convergent loss of WR. We required the gene families to
show gene losses in three or more of the secondarily nonWR
lineages, resulting in a set of 409 families.

We also evaluated the 409 candidate gene families identified
with COMPARE based on results of three published expression
studies on the model WR species, Phanerochaete chrysospo-
rium (Vanden Wymelenberg et al. 2010; Gaskell et al. 2014;
Korripally et al. 2015), in which the fungus was grown in liquid
cultures with wood as the sole carbon source or in glucose
medium. The P. chrysosporium genome contains 310 of the 409
gene families that we predicted are functionally related to WR.
Of these, 192 gene families (62%) have at least one gene copy
that was significantly upregulated (P� 0.05) when wood was
the sole carbon source in at least one of the published datasets
(Vanden Wymelenberg et al. 2010; Gaskell et al. 2014; Korripally
et al. 2015) (supplementary dataset S1, Supplementary Material
online). On the other hand, we found 55 gene families con-
taining at least one significantly downregulated P. chrysospo-
rium gene (P� 0.05). Thus, functional predictions made with
COMPARE based on the gene and organismal phylogenies and
reconstructed patterns of trait evolution are supported by in-
dependent transcriptomic evidence.

Inferred Components of the WR Toolkit
Enzymes with Known or Suspected Lignocellulolytic

Functions
We analyzed enrichment of gene ontology terms in the 409
detected gene families, relative to gene families that did not
show a correlation with WR evolution. As expected, significant
enrichment was found for terms related to polysaccharide
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binding and metabolism and extracellular enzymatic path-
ways, as well as several enzyme activities including perox-
idase, oxidoreductases, and hydrolase activities
(supplementary table S3, Supplementary Material online).
These corresponded to various peroxidases with known or
suspected roles in lignin degradation, including PODs,
heme-thiolate peroxidases, dye decolorizing peroxidases,
and laccases, as well as diverse glycoside hydrolases (fam-
ilies GH5, GH6, GH7, GH10, GH12, GH28, GH43, GH76, and
GH92), including cellulases, xylanases, endoglucanases,
mannanases, oxidases and esterases, and LPMOs (supple
mentary dataset S1, Supplementary Material online). This
suite of enzymes is consistent with the range of activities
known to be required for the enzymatic attack of PCW
components (Martinez et al. 2005; Ruiz-Duenas and
Martinez 2009; Eastwood et al. 2011; Floudas et al. 2012)
(Courty et al. 2009; Dashtban, et al. 2010). Remarkably,
GH6, a cellobiohydrolase important in attack of crystalline
cellulose, shows small copy-number changes (on average 1
to 0) across WR and nonWR species, yet its association
with wood-decay could be detected (P¼ 0.007, fig. 3c).

Our analyses also recovered (P< 0.001) three gene families,
PODs, DyPs, and Laccases, suggested as key players of lignin
decomposition (Courty et al. 2009; Dashtban, et al. 2010). We
also found 21 gene families containing cellulose-binding mod-
ules (CBM1, PF00734), which increase the affinity of enzymes
for cellulosic substrates (Varnai et al. 2013; Riley et al. 2014).
This represents a significant enrichment of CBM1 domains
relative to gene families for which we did not detect a corre-
lation with WR (P¼ 5.59� 10�16, hypergeometric test, sup
plementary dataset S1, Supplementary Material online).
Furthermore, we detected the gene family containing GLP1,
a secreted glycoprotein that has been implicated in the pro-
duction of reactive hydroxyl radicals during wood decay
(Tanaka et al. 2007).

Cellular Detoxification and Import Pathways
We predict a role in wood decomposition for nine protein
clusters of the Major Facilitator Superfamily MFS-1 (domain
enrichment P¼ 2.02� 10�5, hypergeometric test), six of
which were also detected in expression studies (Eastwood
et al. 2011; Olson et al. 2012; Korripally et al. 2015) and may
be involved in transporting decomposition intermediates
(e.g., sugars, lignin metabolites) into the cell. Components
of intracellular antioxidant and detoxification pathways have
also been detected and are enriched in the 409 gene families
relative to other families, including eight clusters of the cy-
tochrome P450 superfamily (P¼ 2.62� 10�4, hypergeomet-
ric test) and three clusters of glutathione-S-transferases
(P¼ 5.33� 10�2, hypergeometric test), suggesting a role in
the transformation of toxic compounds released during lig-
nin degradation (Mathieu et al. 2013; Morel et al. 2009, 2013).
In contrast, nonphylogenetic methods failed to find signifi-
cant overrepresentation of glutathione-S-transferases in sap-
rotrophic fungi as compared with ECM and parasitic ones
(Morel et al. 2013), highlighting the power of phylogeny-
based methods for predicting gene function.

Proteins of Unknown Function
Our analyses also predicted a role in wood decay for 73 gene
families containing no known PFAM domains and 49 con-
taining domains of unknown function (DUF). About 26 of the
gene families that lack PFAM domains and 24 of the gene
families with DUFs contain genes that were found to be sig-
nificantly upregulated in the expression studies used for com-
parisons (Vanden Wymelenberg, et al. 2010; Gaskell et al.
2014; Korripally et al. 2015) (supplementary dataset S1,
Supplementary Material online). Of these, the duplication-
loss history of a conserved fungal gene family with hitherto
unknown function is shown on figure 3d (DUF3455,
PF11937). This family shows a positive net diversification
and in WR species and losses that are concurrent with reduc-
tions in wood-decay capabilities of BR, ECM and parasitic
species, although in contrast to PODs some copies are re-
tained in most species (fig. 3). This and similar families con-
taining DUFs represent worthy targets for experimental
studies.

Extension and Validation of the COMPARE Pipeline
Using Simulated Gene Family Evolution
The COMPARE method produces a mapping of gene dupli-
cations and losses onto an organismal phylogeny (Nagy et al.
2014). Here, we used this mapping to detect gene families
that evolve in a significantly correlated fashion with the phe-
notype (fig. 2). To this end, we converted inferred numbers of
duplications and losses to duplication and loss rates for each
branch and analyzed the correlation between the evolution of
WR and duplication/loss patterns for each gene family using a
permutation ANOVA (Mitchell and Bergmann 2015).

We assessed the performance of this method using simu-
lations with five different simulated organismal phylogenies
each with 35 terminals. We modeled 15 trait histories on each
simulated organismal phylogeny, and then simulated gene
family evolution with rates of gene duplications (k) and losses
(l) correlated with presence or absence of the trait (see
“Materials and Methods” section for details). To assess type
I and type II error rates, we analyzed gene trees simulated
under equal-rate and phenotype-dependent variable-rate
models, respectively. Variable rate models emulated the evo-
lution of a complex trait imposing selective pressure on the
accumulation and functional diversification of paralogs in a
subset of species (fig. 2). Gene trees evolved under equal-rate
models were used to estimate type I error rates.

We obtained 294,634 and 92,900 gene trees under variable-
rates and equal-rates models, respectively. Across all simu-
lated gene trees, COMPARE detected 73% of phenotype-
induced rate differences [at P� 0.05, permutation ANOVA;
see Mitchell and Bergmann (2015)], whereas on a narrower,
biologically more realistic set of gene trees (Floudas et al.
2012) (see “Materials and Methods” section), COMPARE suc-
cessfully detected rate differences in>96% of the variable rate
gene trees (P� 0.05, ANOVA, fig. 2). To obtain type I error
rates, we imposed the 60 trait histories on each of the equal-
rate gene trees, yielding a type I error rate of 10.6% (P� 0.05,
ANOVA).
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Type II error rates negatively correlate with gene tree size,
with the vast majority of the false negatives observed in small
trees (<50 terminals) and in trees where the proportion of
genes of species with increased diversification rate is low
(<0.4) relative to the entire gene tree (referred to as h, see
“Materials and Methods” section and fig. 2), probably due to
the smaller amounts of information contained in smaller
trees. Thus, the method performs better under lower gene
turnover rates and on larger trees. Nevertheless, it can detect
duplication rate differences on gene trees as small as ten
terminals, which shows that it performs well on a range of
biologically realistic settings (fig. 2, supplementary fig. S1,
Supplementary Material online). It should be noted that
gene trees were assumed to be known without error in our
simulations, in contrast to real datasets, where gene trees are
always associated with some degree of error. Gene tree error is
a general source of uncertainty in genome-wide studies of
phylogenetic relationships and evolution (Wapinski et al.
2007; Galtier and Daubin 2008; Boussau et al. 2013; Wu

et al. 2013) and is thus likely to affect COMPARE analyses
as well. Gene tree–species tree reconciliations can be used to
mitigate this effect (see below; Chen et al. 2000; Bansal et al.
2010; Wu et al. 2013; Szollosi et al. 2015).

Conclusions

Predicting the Genetic Bases of Eukaryotic Phenotypes
Leveraging rapidly accumulating whole genome data for un-
derstanding the genetic bases of complex phenotypes is a
grand challenge of bioinformatics. Advances in sequencing
technologies have led to a dramatic increase in the number
of available genomes, but the development of appropriate
bioinformatic tools has lagged behind, making bioinformatics
the bottleneck in many genomics studies (Perkel 2013).
Whereas effective methods are available for identifying the
genetic bases of polygenic traits within populations (e.g., QTL
mapping; Mackay et al. 2009), predicting protein function
over larger evolutionary timescales poses fundamentally
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FIG. 1. Overview of the COMPARE strategy. The pipeline starts with a (reconciled) gene tree (a) on which functionally equivalent groups of genes
(orthogroups) are identified by means of the ortholog-coding algorithm (Nagy et al. 2014). The origin and losses of the resulting orthogroups are
then mapped onto the species tree, providing information on the rate of duplication and loss (black and grey bars, respectively) for each gene
family for each branch of the species tree (b). These are then compared with the evolution of the phenotypic trait of interest (c) using a custom
permutation ANOVA analysis.
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different challenges. Gains and losses of phenotypic traits may
be correlated with expansion or contraction of functionally
associated gene families (Ohno 1970; Zhang 2003; Conant
and Wolfe 2008). Thus, analyses of gene family diversification
patterns in relation to traits should provide insights into the
genetic mechanisms of phenotypic evolution.

Methods for analyzing gene–gene rather than gene–phe-
notype associations have been proposed previously; phyloge-
netic profiling (Pellegrini et al. 1999) and different flavors

thereof (Cokus et al. 2007; Antonov and Mewes 2008;
Gonzalez et al. 2009; Simonsen et al. 2012; Lin et al. 2013;
Psomopoulos et al. 2013) infer functional linkages between
proteins based on their co-occurrence patterns (phylogenetic
profiles) in extant prokaryotic genomes, an idea that has been
extended to gene–phenotype associations as well (Antonov
and Mewes 2008; Gonzalez et al. 2009). One common limi-
tation of phylogenetic profiling and its derivatives is that these
approaches are based on co-occurrence of proteins rather

FIG. 2. Simulation studies used to assess the performance of COMPARE. A trait emerging in a group of species (blue) along a species tree (a)
influences the diversification of genes involved in the trait. We model this process by increasing gene duplication (k1) and decreasing gene loss
rates (l1) by a factor (b) upon the evolution of the trait (b) and/or decreased duplication (k2) and increased loss rate (l2) upon its loss (c) relative to
background duplication and loss rates (k0, l0). This results in higher copy numbers in species, which evolved the trait in gene families functionally
associated with it (d) as compared with families which are not (e). Such differences in gene duplication/loss histories can be detected by mapping
duplications and losses (red bars) onto the species tree and statistical comparisons with the evolutionary history of the trait of interest (f). (g–h)
shows the distribution of P-values obtained for simulated gene trees evolved under phenotype-dependent variable rate models with two input
gene turnover rates (g: 0.2, h: 0.9). Yellow frame marks the 0.05 significance level. The z-axis corresponds to the proportion of terminals belonging to
the subtree with altered duplication rate (h, see “Materials and Methods” section). Markers are colored according to their value on the z-axis (from
black to red) and show that most false negative detections occur at low h values.
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than phylogenetic patterns of gains and losses through evo-
lution and thus cannot discriminate correlated gene family
expansions and contractions from other processes generating
overlapping profiles of genes, including shared inheritance
(Barker et al. 2007; Barker and Pagel 2005). Further, phyloge-
netic profiling works best when intricate duplication histories
in multigene families and deep paralogy are rare or absent,
which might be the reason why it is less suited to study
eukaryotes (Snitkin et al. 2006; Jothi et al. 2007; Singh and
Wall 2008).

Here we extend the previously published COMPARE
pipeline to formally screen for gene families, which evolve
in a correlated fashion with the phenotypic trait of inter-
est. COMPARE includes two major improvements over
previous methods: (i) it uses a phylogenetically informed
orthology detection algorithm (Nagy et al. 2014), and (ii)
it predicts functional associations between protein fami-
lies and a phenotype by analyzing phylogenetic correla-
tions between gene family duplication/loss histories and
phenotypic characters.

FIG. 3. The evolution of fungal lignocellulose decomposition ability and corresponding changes in gene family structure. (a) Phylogenetic tree of
fungi showing the origin (red) and losses (black) of lignolytic capabilities. NonWR clades are condensed. The tree was obtained from our previous
study (Nagy et al. 2016) and is based on concatenated ML analyses of 623 genes (91,981 amino acids). Reconstructed duplication/loss histories are
shown for three gene families for which our analyses predicted a role in lignocellulose decomposition (b–d). Class-II-peroxidase copy number (b,
PODs, with posterior view of the same tree shown as inset) shows an abrupt increase from 3 to 21 copies coinciding with the evolution of white rot
and significant reductions upon its loss, whereas glycoside hydrolase family 6 (c, GH6) and a family of conserved fungal proteins (d, DUF3455) show
more modest, yet consistent changes concurrent with the evolution of wood decomposition ability. Branch color corresponds to reconstructed
ancestral and observed extant copy numbers in the species’ genomes, vertical arrows denote the evolution of white rot. Highlighted clades in which
white rot was lost or modified: Hebeloma cylindrosporum (Hc), Laccaria bicolor (Lb), Amanita muscaria (Am), Schizophyllum commune (Sc),
Boletales (Bo), Piloderma croceum (Pc), Antrodia clade (Ac), and Gloeophyllales (Gl).
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Identification of Components of the Cellular Pathways
Underlying Wood-Decay
Comparative phylogenomic studies on the evolution of wood
decay mechanisms have tended to focus on gene families
encoding enzymes that are known to play a role in lignocel-
lulolysis, particularly PODs and CAZys active on lignin and
crystalline cellulose (Floudas et al. 2012; Riley et al. 2014;
Kohler et al. 2015; Nagy et al. 2016). At the same time, em-
pirical studies of wood decay in model systems routinely de-
tect, in addition to the expected enzymes, large numbers of
uncharacterized proteins that are upregulated under lignino-
lytic conditions (Vanden Wymelenberg et al. 2010; Gaskell
et al. 2014; Korripally et al. 2015). In this study, we attempted
to look beyond the enzymatic “known knowns” and assess
the general importance of uncharacterized proteins in wood
decay. Our results, which are validated by simulation analyses,
comparisons to prior gene tree-species tree reconciliation
studies, and gene expression analyses in model systems, reveal
over 400 gene families that appear to be evolutionarily cor-
related with WR. Among the candidate genes are some
encoding the expected enzymes that directly attack the major
substrates of PCW, such as PODs, cellobiohydrolases, and
LPMOs. Other classes of apparently important enzymes in-
clude those potentially involved in transport or detoxification
of decay byproducts, such as lignin derivatives, or perhaps
plant secondary metabolites, and many other proteins of
unknown function.

WR is often equated with the presence of lignin degrada-
tion mediated by PODs. However, WR fungi also possess a
robust complement of cellulolytic enzymes, which appear to
have diversified prior to the origin of ligninolytic PODs
(Floudas et al. 2012; Riley et al. 2014; Nagy et al. 2016).
Enzymes attacking hemicellulose and pectin are also part of
the WR apparatus. The findings reported here contribute to
the view that the evolution of WR was marked by a general
elaboration of the decay apparatus, not only the ligninolytic
PODs (Nagy et al. 2016). These results highlight the need to
take a holistic view of the evolution and functional biology of
WR and its potential impact on the carbon cycle, considering
the synergistic effects of diverse enzymes on all PCW
components.

Materials and Methods

Simulation Studies
We evolved sets of gene trees within each of the five synthetic
species trees (supplementary fig. S1, Supplementary Material
online) under equal and variable rate models and a range of
gene duplication and loss rates. Under the equal rate models,
each branch of the species tree had the same set of duplica-
tion and loss rates, emulating the case when there is no evo-
lutionary innovation along the tree that impacts gene family
diversification rates. The impact of an evolved phenotype on
the phylogenetic structure of gene families was simulated by
defining points on the species tree where the duplication/loss
rates change (fig. 2). A gain of the trait increased the back-
ground gene duplication rate k0 by some factor b and de-
creased the background gene loss rate l0 by b. Thus, the

duplication and loss rate under the trait are k1¼ k0b and
l1¼ l0/b, respectively. Similarly, if the trait is lost, duplication
rate (k1) drops back to the background duplication rate (k0),
whereas the gene loss rate increases as l2¼l0b, correspond-
ing to the lack of selection to maintain existing gene copies.
Note that gene family contraction will only happen if k<l2.

We used five different species trees each with 35 species for
evolving gene trees within them. Comparative genomics
studies frequently sample one or a few species per order or
family, resulting in very low overall sampling frequency. We
accommodated this into our study by simulating species trees
under the Yule model with sampling in Mesquite 3.0
(Maddison and Maddison 2009). First, species trees were
evolved until they reached one thousand terminals, then
taxa were randomly pruned from the tree until the number
of terminals reached 35. The initial speciation rate was set to
0.01 and the tree depth was set to 1.0. We initially simulated
10000, 35-taxon species trees, of which we chose five (supple
mentary fig. S1, Supplementary Material online) based on
values of their c-statistic, which measures the temporal dis-
tribution of internal nodes and depends on the assumptions
of the taxon sampling strategy (Pybus and Harvey 2000). For
instance, a diversifying sampling, where researchers try to
sample every major (e.g., ordinal level) clade—a common
strategy in genomics—would result in most of the internal
nodes being closer to the root (small c value), whereas with
random sampling the distribution of internal nodes would be
even (c value close to 0). We sorted species trees according to
their c-statistic and chose 5 (trees no. 735, 913, 1135, 3313,
and 4247) out of 10,000 at even intervals on the range of
obtained c-values (�7.29 to �2.14). Thus, our five species
trees represent a range of taxon sampling strategies that re-
searchers may apply in comparative genomics studies.

We chose five different background duplication rates (0.2,
0.4, 0.6, 0.8, 1) and five different b values (2.5x, 5x, 10x, 15x, and
20x). Gene loss rates were defined as a fraction of the back-
ground duplication rate, either 0.9k0 or 0.2k0, reflecting dif-
ferent views on the fate of newly duplicated genes. Scenarios
of phenotype evolution were defined as one gain of the phe-
notype and 0 or more losses across the species tree.

We defined 15 different trait histories along each species
tree by hand, including seven histories with one gain of the
trait and no losses, resulting in one subtree of the species tree
with increased duplication rate and decreased loss rate, as
well as four histories with one gain of the trait and one loss
and four with one gain and two losses. One or more losses
potentially add valuable signal to the analyses, because a con-
traction of the gene family is an additional source of infor-
mation. Thus, real datasets with multiple rate change points
might be more informative than those with a single origin of
the trait of interest, although it should be noted that traits
with multiple nonhomologous origins (i.e., that are not Dollo-
like) might be problematic (i.e., if convergent origins of the
trait have different genetic bases). The trait histories were set
up so as to affect various proportions of the total length of the
species tree, because the longer the affected path, the more
pronounced the impact of rate changes on the gene tree can
be. Proportions of the total tree lengths impacted by rate
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changes range from �1% to �50%. The 60 histories (15 for
each species tree) are summarized in supplementary table S2,
Supplementary Material online.

We used the rgenetree function of the HyPhy R package
(Hallinan 2015) to simulate 100 gene trees for each parameter
combination. Thus, with five duplication rates, five b values
and two loss ratios, we had 50 parameter combinations for
each trait history. With 15 trait histories, this resulted in 750�
100 gene trees per species tree. In addition, we simulated 400
trees under the equal rate model (no rate change) for each
parameter combination. During the simulations, we excluded
gene trees>2000 terminals (45,668 trees), since trees above
this size are rarely encountered in real datasets. We further
excluded 17,224 variable rate trees in which branches with
increased duplication rates were missing due to one of its
ancestors having gone extinct (these trees would have misled
downstream analyses).

To characterize simulated gene trees, we defined a new
parameter, h, as the proportion of terminals belonging to the
subtree with an altered duplication rate. We found that this
parameter described the simulated gene trees better than
input parameters due to the stochastic nature of the simu-
lations. To estimate biologically reasonable values of h, we
surveyed 12 gene families shown to be related to white-rot in
fungi (Floudas et al. 2012). We found that h values across
these gene trees ranged from 0.57 to 0.94, with a mean of 0.73,
therefore, we restricted the analyses of simulated gene trees
to the biologically realistic range of h¼ 0.5–1.

Ortholog-Coding and Dollo Reconstruction of Gene Family

Duplication/Loss Histories
We identified sets of orthologous genes in each of the gene
trees and recoded these sets as presence/absence characters
using the ortholog coding algorithm (Nagy et al. 2014), then
reconstructed the duplication/loss history by mapping the
presence of orthologs on the respective species tree using
Dollo parsimony. We reconstructed the duplication/loss his-
tory of one gene tree at a time and recorded the number of
gains (duplications) and losses along each branch of the spe-
cies tree. This resulted in a matrix of number of duplications
and losses for each branch which, when normalized by branch
lengths gave duplication and loss rates for each of the
branches of the species tree for each gene tree.

Obtaining Type I and II Error Rates
P-Values measuring the extent of correlated evolution be-
tween gene families and phenotypes for simulated gene trees
were obtained by using a permutation ANOVA implemented
with custom R code (Mitchell and Bergmann 2015). For each
gene tree, the ANOVA tested whether the set of branches of
the species tree impacted by the trait history had significantly
higher rates of gene duplication and loss than the rest of the
species tree. Thus, the species tree was divided into three
groups of branches, one including branches of the tree unaf-
fected by trait gain or loss (background duplication and loss
rates, k0, l0), one on which the trait evolved (increased du-
plication rates, k1, and decreased loss rates, l1) and a third in

which the trait was lost (increased loss rates, l2, and de-
creased duplication rates, k2). For all ANOVA analyses, per-
mutation was performed with 100 replicates and gene trees
with P� 0.05 considered significant detections. Type I error
rates were inferred by obtaining P-values for the trees evolved
under equal rates models, by imposing each of the 15 trait
histories to each equal-rate gene tree. A fully Maximum
Likelihood-based method (Barker and Pagel 2005; Barker
et al. 2007) has also been considered, but the nature of the
data (duplication/loss histories) precluded its application on
our datasets.

Availability
COMPARE is implemented in Perl and is composed of inde-
pendent scripts that can be executed sequentially, making it
easy to modify or incorporate into existing pipelines. Source
code is available at https://github.com/laszlognagy/
COMPARE (last accessed July 11, 2016).

Prediction of Gene Families Involved in WR
Representative white rot and brown rot Agaricomycetes and
biotrophic fungi (ECM mutualists and pathogens) were as-
sembled to cover all major clades for which genomic data
were available. An ortholog database was constructed by per-
forming all-vs.-all blast searches on predicted proteomes, fol-
lowed by MCL clustering, multiple sequence alignment and
gene tree inference. Predicted protein sequences were down-
loaded for 62 genomes from the Joint Genome Institute (JGI)
MycoCosm pages (supplementary table S1, Supplementary
Material online). All vs. all Blast searches and similarity-based
clustering of protein sequences were performed using
mpiBlast v.1.6.9 and MCL v.1.3.7, respectively. For clustering,
an inflation parameter of 2.0 was chosen. A maximum likeli-
hood phylogenomic species tree, based on 623 single-copy
genes, was obtained from our previous study (Nagy et al.
2016) and used as the organismal phylogeny to map
orthogroup gains and losses.

Next, each cluster of proteins was aligned by using PRANK
v.140603 (Loytynoja and Goldman 2008) (default parame-
ters). Maximum likelihood gene trees were estimated from
the resulting alignments in RAxML v.8.1.2 (Stamatakis 2006)
under the CAT model for clusters with>50 proteins, whereas
for smaller clusters we used the computationally more de-
manding GTRGAMMA model. To mitigate topological error,
gene trees were refined by optimizing likelihood and duplica-
tion/loss costs in Treefix v.1.1.10 (Wu et al. 2013). Gene
orthogroups were identified using ortholog coding on the
reconciled gene trees and the origin and losses for each
orthogroup were mapped on the organismal phylogenetic
tree using Dollo parsimony. Gene family duplication/loss his-
tories were obtained by merging orthogroup gain/loss data
across a gene family.

Gene family histories were tested for correlations with
evolution of the ability to decompose lignocellulosic plant
cell walls by fungi. The ancestral state reconstruction of decay
ability was taken from (Nagy et al. 2016) and comprised a
single origin of white rot and seven loss events in the
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Gloeophyllales clade, the Antrodia clade, Atheliales, and
Boletales, as well as Hebeloma, Laccaria and Amanita in the
Agaricales. Our dataset includes three taxa (Jaapia,
Schizophyllum, and Cylindrobasidum) with wood-
decomposition mechanisms that do not conform to typical
WR or BR (Riley et al. 2014). We performed sensitivity anal-
yses, in which we assigned these taxa to different categories in
the analyses of variance. These alternative assignments
showed that our results are robust to alternative assignments
of these taxa (data not shown). We tested for correlations
between the evolution of decay mode and gene family dupli-
cation/loss histories using a permutation ANOVA as de-
scribed above. For analyses of variance, extant species and
internal branches were grouped into three categories,
white-rot (WR), nonWR preceding the evolution of WR (n-
WR) and those, which have lost WR (l-WR). Numbers of
duplications and losses were converted to duplication and
loss rates (k and l) by taking into account branch lengths of
the organismal phylogenetic tree. Gene families showing a
correlation with the evolution of white rot at P� 0.05 were
further analyzed. We obtained a P-value for 140,039 out of
140,137 protein clusters. For the remaining 98 clusters, recon-
struction of duplication/loss histories failed mostly due to
alignment problems or prohibitive computational burden
of tree inference and reconciliation.

Enrichment of functional annotation terms was done using
Gene Ontology terms mapped using the 2015/02/14 version
Pfam2GO database on predicted PFAM domains obtained us-
ing HMMER3 v.3.1. We used the GO::TermFinder perl package
to analyze enrichment using the hypergeometric test with
Bonferroni correction for multiple hypothesis testing. The
2015/02/12 release of the GO hierarchy was used (go-basic
v1.2).

Supplementary Material
Supplementary tables S1–S3 and figures S1–S2 are available at
Molecular Biology and Evolution online.
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