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Abstract

To obtain insight into the particle size distributions of air-
borne micro-organisms in different environments, a litera-
ture search was conducted. More than 190 publications con-
taining relevant data including sampling systems, sampling 
sites, measuring parameters, sample size and concentrations 
were included. The size distribution of airborne particles  
carrying micro-organisms is a well-investigated subject in 
the range of aerodynamic diameters (AD) of 0.65 µm to 
12 µm for many micro-organism groups and environments.  
It depends primarily on the sampling location and the type 
of source as well as the method of aerosolisation. Highest 
median shares of large bacteria-laden particles were found in 
livestock husbandry and in waste management. Sampling 
height above ground, air humidity, temperature and solar 
radiation may also influence particle size. For moulds, the 
median size distributions in air largely represent the size 
ranges of their spores. There is little knowledge about par- 
ticles > 12 µm AD and the actual number of micro-organisms 
in different particle size classes. Few studies suggest that 
most micro-organisms are in particle size fractions > 10 µm 
AD. Future investigations should use sampling systems with 
high inlet efficiencies for particles > 20 µm AD, and allow 
sampling in a liquid to separate micro-organisms from aggre-
gates. These systems should rather sample the health and 
environmentally relevant particle size fractions PM 2.5, PM 4, 
PM 10 and the total dust to allow for a more precise deriva-
tion of health and environmental effects.

Keywords: bio-aerosols, particle size distribution, size-selective 
bio-aerosol sampler

Particle size distribution of airborne micro- 
organisms in the environment – a review

Zusammenfassung

Partikelgrößenverteilung von luftge-
tragenen Mikroorganismen in der  
Umwelt – Ein Review

Der vorliegende Beitrag gibt einen Überblick über den  
Wissensstand zur Partikelgrößenverteilung von luftgetrage-
nen Mikroorganismen in der Umwelt. Dazu wurden mehr  
als 190 Publikationen, die relevante Daten zu eingesetzten 
Sammelsystemen, Sammelort, Messparametern, Probenan-
zahl und gefundenen Konzentrationen beinhalteten, in die 
Auswertung mit einbezogen. Die Größenverteilung von Mikro- 
organismen-tragenden Partikeln ist im Bereich von 0,65 bis 
12 µm aerodynamischer Durchmesser für viele Umweltbe-
reiche und Mikroorganismengruppen gut untersucht. Sie 
scheint primär abhängig vom Umweltbereich (Sammelort) 
zu sein und hier vermutlich von der Art der Quellen der luft-
getragenen Partikel sowie der Art und Weise der Aerosolisie-
rung. Besonders bei den Schimmelpilzen repräsentieren die 
gefundenen Verhältnisse auch die Größenverteilungen der 
Sporen der untersuchten Arten wieder, da Schimmelpilz-
sporen im Gegensatz zu Bakterien in der Luft weitgehend 
vereinzelt vorkommen. Wissensdefizite gibt es aufgrund der 
bisher eingesetzten Sammelsysteme im Bereich > 12 µm AD. 
Einige Studien deuten darauf hin, dass sich, abhängig vom 
Umweltbereich, ein Großteil der Mikroorganismen in der  
Partikelfraktionen > 10 µm befindet. In Zukunft sollten daher 
verstärkt Sammelsysteme eingesetzt werden, mit denen 
nicht nur die Anzahl Mikroorganismen-tragender Partikel, 
sondern die Anzahl aller Mikroorgansimen in den gesund-
heitlich relevanten Partikelgrößenfraktionen PM2,5, PM4, 
PM10 und Gesamtstaub erfasst werden kann.

Schlüsselwörter: Bioaerosole, Partikelgrößenverteilung, größen- 
selektive Bioaerosolsammler
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1  Introduction

The exposure to airborne micro-organisms can affect health 
negatively (Gregory, 1961; Fernstrom and Goldblatt, 2013). 
This is also generally depending on the particle size (Cheng, 
2003; Cho et al., 2005; Miller et al., 1988; Ogden and Birkett, 
1975; Sturm, 2012; Thomas et al., 2008). When inhaled, for 
example, penetration depth is highly depending on particle 
size: large bio-aerosol particles get already stuck in the nose 
or mouth whereas small particles can get deep into the 
lungs. Especially waste management industries or livestock 
production facilities can be a source of huge amounts of  
different airborne micro-organisms which are emitting also 
into the environment (VDI 4250/3, 2014). Therefore approval 
processes for construction or expansion of such facilities 
often include the assessment of environmental and health 
effects (e. g. for Germany: VDI 4250/1, 2014; TA-Luft, 2002). In 
this context the dispersal of airborne micro-organisms as 
well as their immission in residential areas is often calculated 
and predicted with computer models (VDI 4251/3, 2015). For 
these calculations it is commonly assumed that the size of 
the microbial particles is below 2.5 µm (Burrows et al., 2009; 
VDI 4251/3, 2015; TA-Luft, 2002). However, calculated and 
mea-sured concentrations in agriculture can differ conside-
rably (Seedorf et al., 2005; Springorum et al., 2014). One rea-
son for such disagreements can be the underlying theoreti-
cal par-ticle size. 

To improve the prediction of dispersion models and the 
environmental health assessment on the one hand and to 
get an insight on the particle size distribution of airborne 
micro-organisms in other relevant environments, e. g. living 
spaces, public buildings, offices, hospitals or outdoor air, on 
the other hand, a literature search to this topic was conduc-
ted. The results may help regional authorities, environmental 
auditors and engineering consultants to assess possible risks 
and to identify lacks of knowledge and need for further 
investigations. 

1.1  Airborne micro-organisms and their aerosoli-
zation
Above the land surface in a natural environment, airborne 
dust consists of up to about 25 % of biological particles  
(Matthias-Maser and Jaenicke, 1994; Matthias-Maser and 
Jaenicke, 2000; Jones and Harrison, 2004). In urban and agri-
culturally-dominated areas the percentage is usually higher 
(Matthias-Maser and Jaenicke, 1995). Shares of up to 90 % 
could be found in waste management industries or livestock 
production, (Aengst, 1984). Airborne biological particles as a 
whole are also denoted as bio-aerosols. They are a complex 
mixture consisting of different components, from simple 
organic molecules with dimensions in the nanometer range, 
through to viruses, bacteria, bacteria spores, mould spores 
and hyphae and pollen with diameters of 100 µm and more, 
as well as animal and plant debris of different sizes. These 
components can get into the airborne state as single par- 
ticles or in aggregates. In 1884, Hesse already revealed ex-
perimentally that airborne bacteria occur mainly in 

“colonies”, whereas mould spores could be found detached 
(Hesse, 1884; Hesse, 1888). He also even discussed whether it 
was expedient to determine the count of bacteria in a given 
volume of air, or just the number of bacteria-laden particles. 
Both approaches have been applied to different extents in 
the studies in the following 130 years.

The fact that airborne bacteria occur mainly in aggre-
gates, and, in contrast, mould spores rather as single cells, 
can be explained by their mode of life. Natural habitats of 
most micro-organisms are soil, water, plants and animals and 
their residues. In these habitats they often form large colo-
nies in complex communities consisting of many different 
species. Bacteria may rather accidentally get into the air- 
borne state, mainly as large fragments of these colonies 
together with surrounding matrix. Aerosolization takes 
place, e. g., through wind (Fulton, 1966; Jones and Harrison, 
2004), by excretion of faeces, loss of skin scales (Lewis et al., 
1969; Clauß et al., 2013a), breathing, speech, coughing and 
sneezing (Duguid, 1946; Louden and Roberts, 1967; Papineni 
and Rosenthal, 1997; Nicas et al., 2005; Yang et al., 2007;  
Gralton et al., 2011) or by spray (Blanchard and Syzdek, 1972). 
The dissemination strategies of most of the streptomycetes 
and actinomycetes, as well as moulds, include aerial distribu-
tion. Some species even have mechanisms for an active 
release of spores into the air (Ingold, 1984; Meredith, 1973). 
This also includes the strategy to produce large amounts of 
single spores to increase the chance for successful dissemi-
nation. Pasanen et al. (1989) and Heikkilä et al. (1988) found 
ratios of 2:1 for single spores and small spore aggregates in 
the airborne state of different moulds and even 5:1 for acti-
nomycetes. 

1.2  Particle size definitions
The shape and size of most of bacteria, yeasts and mould 
spores are well known from several microscopic studies. An 
overview is given by, e. g., De Hoog et al. (2000), Bergey et al. 
(1974), and Winkle et al. (1979). However natural bio-aerosol 
particles often consist of different components and are 
assembled irregularly. Therefore the specification of particle 
dimensions, such as length, height, and width as well as den-
sity, are more difficult than for an accurately definable geo-
metric body like a spherical mould spore or bacterial rod. 
Some approximations are used in practice such as the geo-
metric equivalent diameter which is obtained by deter- 
mining the diameter of a sphere having the same geometric 
properties (surface, volume or projected area) as the irregu-
larly-shaped particle. The terms “petri ratio size” (Bourdillon 
et al., 1948; Kethley et al., 1963) and “settling velocity”  
(Kethley et al., 1963; Wells, 1955) still can be found in earlier 
literature. Both measurements refer to the number of 
micro-organisms that settle on a petri dish in a given time. 
Here, the behavior of particles in the air, for which size and 
shape and also the density are relevant, is indirectly included. 
The density for mould spores varies between 0.56 to  
1.44 g/cm³ (Gregory, 1961) and for bacteria it can be assumed 
to be in the same range. The density of a particle is also 
included in the measurement “aerodynamic diameter” (AD). 
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The AD of an irregular particle is defined as the diameter of 
the spherical particle with a density of (1 g/cm³) and the 
same settling velocity in air of standard pressure and tem-
perature as the irregular particle (Hinds, 1999). The AD affects 
sedimentation and deposition in the environment and thereby 
the distance of transport via air (Hinds, 1999); the probability 
and location of deposition in the respiratory tract, and there-
fore potential health effects (Cheng, 2003; Cho et al., 2005; 
Miller et al., 1988; Ogden and Birkett, 1975; Sturm, 2012; 
Thomas et al., 2008); resuspension (Lighthart et al., 1993); the 
efficiency of air cleaning systems (Batel, 1972), and the tena-
city of airborne micro-organisms within the particles (Kundsin, 
1968; Lighthart and Shaffer, 1997; May and Druett, 1968).

The number of micro-organisms per volume of air is nor-
mally given as concentration number in units such as cells/m³. 
Environmental science and health scientists often use mass 
concentration for the characterization of airborne particles, 
defined as the mass of particulate matter per volume with 
units such as μg/m³ (Hinds, 1999). A reference of micro-orga-
nisms-to-mass is not common. But whenever airborne  
micro-organisms are separated from an air stream by mass 
inertia, e. g., in an impactor, this also refers to a mass-based 
cut-off curve. A median cut-off diameter (d50) derives from 
the progression of the cut-off curve, at which exactly half of 
the particles of this size incorporate into the weighting. In 
practice that means that particles with a larger aerodynamic 
diameter than the d50 are deposited with an efficiency of 
more than 50 % in this stage. The cut-off curves of the  
different size-selective sampling systems vary depending  
on when and for which field of application they were deve-
loped. In occupational health, the cut-off characteristic of the 
human respiratory tract is commonly used as the basis for 
size-selective sampling systems for airborne particles,  
whereas in environmental science a definite cut is made  
between the particle size fractions (steep cut-off curve). 

For the characterization of airborne dust and in the field 
of occupational health, e.g., in the DIN EN 481 (1993), the par-
ticle size fractions are defined as follows: The “Total Airborne 
Particles” are all particles surrounded by air in a given volume 
of air; the “Inhalable Fraction” (d50 = 100 µm) is the mass  
fraction of total airborne particles which is inhaled through 
the nose and mouth; the “Thoracic Fraction” (d50 = 10 µm) is 
the mass fraction of inhaled particles penetrating beyond 
the larynx, and the “Respirable Fraction” (d50 = 4 µm) is the 
mass fraction of inhaled particles penetrating to the un- 
ciliated airways. The “Respirable Fraction” was formerly de-
noted as “Fine Particles” or “Fine Dust” (Orenstein, 1960), with 
a different progression of the cut-off curve and a d50 of 5 µm. 
Today this term is uncommon and not defined any more. In 
addition the DIN ISO 7708 (1996) gives a “Respirable Fraction” 
referred to “Risk Groups” with a d50 of 2.5 µm. In the field of 
environmental science the definition of the “Total Sus- 
pended Particles” or “Suspended Particulate Matter” respec-
tively, is nearly equal to the one used in occupational health, 
according to, e.g., VDI 2463/1 (1999) only with an upper par-
ticle size of about 30 µm without a rigid upper separation 
limit. The particle mass (PM) fractions PM10 and PM2.5 each 
have their names from the cut-off diameter and are defined 

as particles that pass through a size-selective inlet with a 50 
% efficiency cut-off at 10 µm or 2.5 µm diameter respectively 
(DIN EN 12341, 1999; US EPA, 2009). PM10 and PM2.5 roughly 
correspond to the “Thoracic Fraction” and the “Respirable 
Fraction” referred to “Risk Groups”. 

Despite the high importance of airborne micro-orga-
nisms for occupational health the progression of the cut-off 
curves of size-selective sampling systems for micro-orga-
nisms is mainly oriented to the environmental sciences. 
However, only a few systems have appropriate cut-off dia-
meters according to the referred definitions (see also Table 
1). Therefore information about the number of micro-orga-
nisms in these defined particle classes is rare in literature.

1.3  Factors influencing particle size
Irrespective of the kind of source and the method of aeroso-
lization of airborne micro-organisms some other factors may 
directly and indirectly influence the ascertainable particle 
size. Neither the AD nor the mass of a biological particle in 
the airborne state are fix values. Size, form and density are 
subject to fluctuations depending directly on air humidity. A 
significant increase of the size of some airborne bacteria and 
mould spores was found when the relative humidity (RH) 
increased, especially between 90 % RH and 100 % RH (Ko et 
al., 2000; Madelin and Johnson, 1992; Reponen et al., 1996). 
In contrast, dry conditions may lead to disintegration of air-
borne particles by decreasing bonding forces and increasing 
tensions (Jones and Harrison, 2004). Also the size of freshly 
aerosolized liquid droplets decreases within seconds due to 
evaporation (Xie et al., 2007). The influence of the season on 
the size distribution of airborne micro-organisms is not clear 
but there are some indications for an indirect correlation. 
Wang et al. (2010), Awad et al. (2013) and Lin and Li (1996) 
could not find any influence of the season but later authors 
found an influence of the time of day. The mean size of the 
particles seemed to be larger at night, possibly due to the 
higher RH at night. Che et al. (1992), who conducted mea-
surements distributed over 4 years, found influences of the 
time of day as well as of the season. Especially at noon and in 
summer, more micro-organisms were found in the larger 
particle size fractions (> 7 µm). The reason for this finding 
may be the solar ultraviolet radiation and its direct influence 
on the tenacity of the micro-organisms. Micro-organisms 
which become airborne as single cells or in small aggregates 
are harmed much more by radiation than micro-organisms 
within large particles or cell aggregates. Therefore, at noon in 
summer only those micro-organisms which were protected 
against unfavourable environmental conditions in the larger 
particles were still detectable by cultivation methods. This 
assumption is confirmed by the finding that mould spores, 
which are much more robust against ultraviolet radiation 
than bacteria (Clauß, 2006), show even distributions in the 
particle size classes in summer and winter and during the 
day and at night (Che et al., 1992). Also the height above 
ground at which the sampling takes place has an influence 
on the particle size distribution due to sedimentation, espe-
cially of the larger particles. Wright et al. (1969) investigated 
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the particle size distribution of airborne bacteria at heights 
from 10 to 150 m and the higher the sampling point was the 
fewer larger particles were found. It should be highlighted at 
this point that besides these exceptions mentioned, most 
bio-aerosol samplings were understandably conducted in 
the daytime, and the measurement systems were placed  
between 0.75 m and the mean human breathing height at 
1.5 m. The choice of the size-selective sampling system, as 
well as the subsequent analysis, always has an influence on 
the results.

1.4  Size selective bio-aerosol samplers
Since the 1940s, an increasing number of systems have been 
developed for the size selective sampling of airborne micro-
organisms in different stages (e.g., May, 1945; Wells, 1947). As 
already mentioned in Chapter 3, each of these stages has a 
defined d50 and particles with a greater AD are deposited 
with an efficiency of more than 50 % in this stage. The cut-off 
diameters and cut-off curves of the stages of the different 
systems are generally well validated. However, compara-
tively little is known about the inlet efficiencies of most of the 

Table 1 
Size selective sampling systems that were used for the sampling of airborne micro-organisms in the environment

Sampler No. of Stages  
 

[n]

Flow rate  
 

[L/min]

Inlet d50  
 

[µm]

Cutpoint of the Single  
Stages d50  

[µm]

Reference

Impaction on Nutrient Plates

Andersen Sampler 2 28.3 12 8.0; 0.95 Turner and Hill, 1975

Custom-designed Particle-sizing Slit Sampler 2 20 n/a 3.0; n/a Dutkiewicz and Kwapiszewski, 1975

Size-grading Slit Sampler 4 566 28 18.2; 9.6; 4.2; 0.9 Lidwell, 1959

Andersen Sampler 6 28.3 12 7.2; 4.8; 3.2; 2.1; 1.0; 0.6 Andersen, 1958

Modified Andersen Sampler 7 28.3 19 11.2; 7.5; 5.4; 3.5; 2.0; 0.97; 
0.6

May, 1964

Andersen Sampler 8 28.3 n/a 11.0; 7.0; 4.7; 3.3; 2.1; 1.0; 
0.7; 0.4

Curtis et al., 1975

Impaction On Filter Or Solid Surfaces

Personal Spectrometer (PERSPEC) 1 2 n/a omitted Prodi et al., 1988

Membrane Filter + Cyclon Pre-impactor 2 2 n/a 4.0; n/a Predicala et al., 2002

Static Size-selective Bioaerosol Sampler (SSBAS) 2 18.5 14 7.2; 2.4 Kauppinen et al., 1989

Free Wing Impactor + 
Two-stage Impactor

1 
+ 2

- 
n/a

> 150 
n/a

9.0 
1.9; 0.11

Jaenicke and Junge, 1967 
Jaenicke and Blifford, 1974

Two-stage Bio-aerosol Cyclone (BC)  
 
Model BC 221 
 
Model BC 251

2 + 1 
 
2 + 1 
 
2 + 1

3.5 
 
2 
 
10

n/a 
 
n/a 
 
n/a

1.8; 1.0; depending on  
afterfilter  
2.6; 1.6; depending on  
afterfilter 
2.1; 0.41; depending on  
afterfilter

Lee and Liao, 2014  
 
Lindsley et al., 2006 
 
Lecours et al., 2012

Personal Size-selective Bioaerosol Sampler 3 2 n/a 10.0; 4.5; 0.8 Mark and Vincent, 1986 
Kenny et al., 1999

Modified High Volume Cascade Impactor (HVCI) 4 850 n/a 10.0; 2.4; 0.9; 0.2 Demokritou et al., 2002 
Sillanpää et al., 2003 
Sippula et al., 2013 

May-Casella-impactor 
Modified May-Casella-impactor

4 
4 
4

17.5 
11.9 
11.9

50 
n/a 
n/a

14.5; 4.0; 2.5; n/a 
13.0; 4.0; 1.7; n/a 
6.4; 2.0; 0.9; 0.4

May, 1945  
Lippmann, 1959 
Fisar et al., 1990

Marple Personal Cascade Impactor 8 2 n/a 20.0; 15.0; 10.0; 6.0; 3.5; 
2.0; 1.0; 0.61 

Macher and Hansson, 1987

Andersen Sampler MK I 8 28.3 20 11.0; 7.0; 4.7; 3.3; 2.1; 1.1; 
0.7; 0.4

Vaughan, 1989

Andersen Sampler MK II 
*(with Pre-impactor)

8 + 1* 28.3 20 10.0*; 9.0; 5.8; 4.7; 3.3; 2.1; 
1.1; 0.7; 0.4

Vaughan, 1989

Micro-orifice Uniform Deposit Impactor  
(MOUDI)

10 30 18 10; 5.6; 3.2; 1.8; 1.0; 0.56; 
0.32; 0.18; 0.1; 0.056

Marple et al., 1991

Sampling In Liquids

Multi-stage Liquid Impinger 3 50 >20 6.0; 3.0; 0.8 May, 1966
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samplers. This is especially true for particles > 10 µm AD and 
for the sampling at unfavourable flow conditions or wind 
regimes (Vaughan, 1989; Yao and Mainelis, 2006). In this 
regard, the six-stage Andersen sampler is thoroughly eva-
luated. McFarland (1977) found 0 % inlet efficiency for par-
ticles with an AD of 15 µm for an upright impactor g and a 
wind speed of 4.6 m/s. The inlet efficiency increase with 
lower wind speeds was negligible. Wedding et al. (1977) 
found efficiencies between 2 % (15 µm AD) and 67 % (5 µm 
AD) with internal wall losses of 41 % and 10 % respectively. 
Excluding some exceptions, it can be assumed that most of 
the systems are not capable of collecting particles > 20 µm. 
This limitation has not posed a problem so far because an 
upper size limit for natural aerosols of 20 to 30 µm AD is  
commonly agreed upon due to particle diffusion and sedi-
mentation. This cannot be confirmed though. Rather  
Jaenicke and Junge (1967) found particles up to 150 µm in 
natural ambient air with their “Free Wing Impactor”. Also in 
ambient air as well as in the exhaust air of pig houses, Fisar et 
al. (1990) and Clauß et al. (2011a, b) found bio-aerosol par-
ticles with sizes up to 100 µm equivalent diameter that  
furthermore carried hundreds of micro-organisms.

The most frequently used sampling systems are those 
impacting airborne micro-organisms directly on nutrient 
media. Sampling of airborne micro-organisms on solid sur-
faces or filter or sampling in a liquid is only rarely conducted. 
An overview of the different size-selective sampling systems, 
which were used for the sampling of airborne micro-orga-
nisms, is given in Table 1.

1.4.1  Impaction on nutrient plates
The two-stage Andersen sampler (Turner and Hill, 1975) is 
one of the most frequently used sampling systems impac-
ting airborne micro-organisms directly on nutrient media. 
There are 200 round nozzles in both stages. The nozzles in 
the second stage have a smaller diameter which account for 
size separation. The airborne particles are deposited on  
nutrient media in static petri dishes. In contrast, the “custom-
designed particle-sizing slit sampler” uses two parallel sys-
tems both with slit nozzles for the impaction of airborne par-
ticles onto rotating nutrient plates (Dutkiewicz and 
Kwapiszewski, 1975). One system is equipped with a pre-
impactor for the collection of the small particle fraction. The 
four-stage “size-grading slit sampler” (Lidwell, 1959) has two 
more stages. At every stage a circular slit nozzle is positioned 
off-center above a rotating glass petri dish. The air passes 
into the next stage through a hole in the middle of the petri 
dish. The standard for size-selective sampling systems for air-
borne micro-organisms and the most commonly used world-
wide is the six-stage Andersen sampler (Andersen, 1958). In 
its original version every single stage had 400 round nozzles. 
May (1964) recommended a modified version with 200  
nozzles for the first and second stage to reduce particle  
losses. To increase the inlet efficiency from d50 = 12 µm AD to 
d50 = 19 µm AD Lidwell (1965) recommended an additional 
stage connected upstream. This modified system is not well-
established though. There were several other technical and 

procedural modifications. To increase the inlet efficiency at 
unfavourable wind regimes, Burge et al. (1977) mounted a 
vane on the sampler to align the inlet to wind direction. 
Some authors used the six-stage Andersen sampler and 
pooled different stages in the results (e.g., Butera et al., 1991; 
Lembke et al., 1981; Lis et al., 2008; Predicala et al., 2002). 
Sometimes only single stages of the sampler were loaded 
with nutrient plates (Solomon, 1970). King and McFarland 
(2012) covered one half of the nutrient media with a filter to 
obtain the number of particles carrying micro-organisms 
and additionally the total number of micro-organisms in the 
different particle size fractions. Moschandreas et al. (1996) 
filled the petri dishes with water instead of nutrient media to 
count collected cells under a fluorescence microscope after 
staining with acridine orange. In its current version, the six-
stage Andersen sampler has a higher collection efficiency 
compared to many other sampling systems (Gillespie et al., 
1981; Jensen et al., 1992). There is also an eight-stage version 
of the Andersen sampler available (Curtis et al., 1978).

1.4.2  Impaction on filter or solid surfaces
In contrast to the direct impaction on nutrient plates, samp-
ling of airborne micro-organisms on solid surfaces or filters is 
only rarely conducted, probably due to the risk of dehydra-
tion of the micro-organisms on these surfaces and the resul-
ting lower biological sampling efficiency. Therefore, this  
sampling method is mainly used in combination with mole-
cular biological or microscopic methods. Most of these  
sampling systems were originally developed for the collec-
tion of dust. There are many systems available using different 
techniques for size separation and particle collection. Rela-
tively simply constructed is the “Personal Spectrometer” 
(PERSPEC) (Prodi et al., 1988; Prodi et al., 1991; Prodi et al., 
1992). In only one stage is re-circulating particle-free air 
flanked by the sample air sucked through a round nozzle 
onto a membrane filter. Size separation takes place by depo-
sition of larger particles in the central region of the filter and 
smaller particles in the boundary areas. Predicala et al. (2002) 
sampled airborne micro-organisms on membrane filters, too. 
For size-separation they used a cyclone as pre-impactor. The 
“Static Size Selective Bio-aerosol Sampler” (SSBAS) deve-
loped by Kauppinen et al. (1989) and tested by Rantio- 
Lehtimäki (1989) consists of a pre-impactor to retain water 
droplets and insects and a two-stage virtual impactor for size 
separation. The “Personal Size Selective Bio-aerosol Sampler” 
is based upon an IOM-f dust sampling head (Kenny et al., 
1998; Kenny et al., 1999; Mark and Vincent, 1986) and sepa-
rates airborne particles by means of two size-selective poly-
urethane foams in front of a polycarbonate after-filter. A 
remarkable system is the “Free Wing Impactor” (Jaenicke and 
Junge, 1967). Instead of sucking the probe air through the 
sampling system, an impactor plate attached to a rotating 
cantilever moves through the probe air. With this technique 
even particles with AD > 150 µm can be sampled. Some 
authors (Matthias-Maser and Jaenicke, 1994; Matthias-Maser 
and Jaenicke, 1995; Matthias-Maser and Jaenicke, 2000) used 
this system in combination with a two-stage impactor 
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(Jaenicke and Blifford, 1974; Marple, 1970) for outdoor samp-
ling. The two-stage bio-aerosol cyclone developed at the 
“National Institute for Occupational Safety and Health 
(NIOSH)”, consists mainly of two centrifuge tubes acting as 
parts of two in-line cyclones, as well as a back-up filter.  
Different designs and modifications of the system exist  
(Blachere et al., 2009; Lee und Liao, 2014; Lindsley et al., 
2006). To date has mainly been used for the sampling of air-
borne viruses (Blachere et al., 2007; Blachere et al., 2009; Bla-
chere et al., 2011; Cao et al., 2011; Noti et al., 2012; Verreault 
et al., 2008), but some authors also used it for the sampling of 
micro-organisms (Chen et al., 2004; Lecours et al., 2012; 
Yamamoto et al., 2011). Another system is the modified “High 
Volume Cascade Impactor” (HVCI), a four-stage slit impactor 
that collects airborne micro-organisms on polyurethane 
foams and in the last stage on a filter (Demokritou et al., 
2002). The “May-Casella-Impactor” developed by May (1945) 
and distributed by Casella, is a four-stage system for collec-
tion of micro-organisms on glass slides in which the impac-
tor stages are displaced by 90° each. Since 1959, a revised 
version is also available (Lippmann, 1959). The “Marple Per-
sonal Cascade Impactor” is an eight-stage system modified 
by Macher and Hansson (1987) in such a manner that a thin 
layer of gelatine can be used as sampling medium. There is 
also an eight-stage Andersen sampler in the MKI version 
available,for the sampling of particles onto solid surfaces and 
in the version MKII with additional pre-impactor (d50 = 10 µm 
AD). At least the “Micro-orifice Uniform Deposit Impactor” 
(MOUDI) (Marple et al., 1991) is a system with a variable number 
of stages. With up to 2000 micro-nozzles per stage especially 
small particles are impacted uniformly onto rotating samp-
ling media. The system is mainly used for the collection of 
nano-particles and organic carbon compounds (e. g., Chen et 
al., 2011; Eiguren-Fernandez et al., 2003; McMurry and Zhang, 
1989), but a ten-stage system was also used for the collection 
of endotoxins and bacteria (Kujundzic et al., 2006).

1.4.3  Sampling in liquids
The sampling of airborne micro-organisms in a liquid is pre-
ferable to impaction on solid surfaces or deposition on filters 
because of the higher biological sampling efficiency. There 
are only a few size-selective sampling systems using this 
method. May and Druett (1953) developed a pre-impinger 
serving as pre-separator for a standard impinger. May (1966) 
has further developed the system to a multi-stage impinger. 
Originally it was intended for the sampling of airborne micro-
organisms, but could not become established for this purpose, 
probably due to its complex design. However, the multi- 
stage impinger is now the reference system for the evalua-
tion of medical inhalers (Asking and Olsson, 1997; Mitchell 
and Nagel, 2003) and has also been used for the sampling of 
airborne viruses (Donaldson et al., 1977; Verrault et al., 2008). 

1.5  Micro-organism analysis methods
The quantitative and qualitative analysis of airborne micro-
organisms is conducted mostly by cultivation. If airborne 

particles carrying micro-organisms are impacted directly on 
nutrient plates, each particle gives rise to a single colony irre-
spective of the number of viable units it may have carried. 
Therefore, the method gives the number of cultivable micro-
organism laden particles (MLP) in a selected size fraction. On 
the nutrient medium directly below the single nozzles the 
impacted micro-organisms often lie closely side by side. The 
single colonies often grow into each other and merge 
together so that they cannot be discriminated when coun-
ting. However, this error can be minimized by the “Positive-
Hole Correction” (Andersen, 1958; Macher, 1989). If micro-
organisms are sampled on solid surfaces or filters and are 
eluted in a liquid afterwards, the collected cell aggregates 
may disintegrate to a large extent within the liquid separa-
ting the cells. Also by sampling into a liquid medium directly, 
followed by plating out of the whole or part of the fluid, bac-
terial aggregates are supposed to break up, partially or com-
pletely, and give rise to a higher count than that obtained by 
sampling directly on to a solid medium. Hence with this 
method, giving the number of colony forming units (cfu) 
after cultivation, the count of all micro-organisms in a selec-
ted particle size fraction can be obtained theoretically. 

In recent years the application of molecular methods, 
which give the number of more or less specific gene copies in 
a selected particle size fraction (Lecours et al., 2012; Lee and 
Liao, 2014; Quian et al., 2012; Schafer et al., 2003; Sippula et 
al., 2013; Yamamoto et al., 2011), increased. It has to be con-
sidered that the number of gene copies may not equal the 
number of micro-organisms because genes may also occur 
disengaged in the dust or attached to cell debris or exist in 
several copies in the same cell. Scanning electron micro-
scope analysis (Heikkilä et al., 1988; Tyrell et al., 2009), light 
microscopy (Fisar et al., 1990; Kujundzic et al., 2006; Tilley et 
al., 2001) or fluorescence microscopy (Clauß et al., 2011a; 
Clauß et al., 2011b; Hara et al., 2011) were also conducted to 
measure the size of airborne particles and to count the cells 
of bacteria, yeasts and moulds that are included in the partic-
les. With these methods neither the density of the particles 
nor the capability for cultivation of the micro-organisms are 
taken into consideration. However these studies give insight 
in the internal structure of bio-aerosols and the distribution 
of micro-organisms on airborne particles themselves, as well 
as the distribution in selected particle size classes.

2  Material and Method

An extensive literature search was conducted on the size  
distribution of airborne micro-organisms in the environ-
ment. The online database Medline (PubMed) and the search 
engine Google Scholar were searched for publications con-
taining the keywords bio-aerosols, particle size distribution, 
airborne micro-organisms using the Boolean operators AND 
or OR. The found publications were screened for supporting 
additional keywords and search terms, e. g., the different 
sampling systems, for an extended enquiry on the used 
search engines. Search terms and keywords were also trans-
lated to German, French and Spanish. Additionally an author 
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search in PubMed for other publications from the found 
authors as well as a control of the cited literature for further 
studies was conducted. After an abstract screening of the 
found studies laboratory experiments and studies investiga-
ting only the size distributions of biological particles by bio-
aerosol fluorescence spectrometers were excluded. The 
remaining 197 publications available were summarized to 
the relevant data such as sampling system, measuring para-
meter, sampling site, sampling height above ground, con-
centrations and sample size. Not considered were the season 
and the time of day because of the differing conclusions of 
some studies (see Chapter 4). In the publications the size dis-
tribution data were presented mainly in figures or tables as 
median or arithmetic mean of concentrations or percentages 
of micro-organisms in different size classes. To compare the 
data they were converted to the median percentage of micro-
organisms in the different particle size classes for each samp-
ling system. Distributions that were normalized to the  
different widths of the particle size classes were back-calcu-
lated (TSI, 2012). Despite different sample sizes, every data 
row presented in the publications was weighted equally 
because it was assumed that every dataset was representa-
tive itself. In this regard one publication was excluded sub-
sequently due to its congruency with another publication of 
the same author, based on an identical dataset. For the ana-
lysis it was generally distinguished between studies inves-
tigating the number of micro-organism-laden particles or 
the number of micro-organisms (cfu, cell count or gene copy) 
in a selected particle size fraction.

3  Results

3.1  Size distribution of airborne particles carry-
ing micro-organisms
The size distribution of micro-organism-laden particles in the 
environment was investigated worldwide, mostly in ambient 
air and in living spaces (e. g., Bovallius et al., 1978b; Chen et al., 
2008; Hu et al., 1994a; Fang et al., 2005; Hu et al., 1994b).  
Despite the environmental and (occupational) medical rele-
vance fewer studies were conducted in waste management 
sites (e. g. Heo et al., 2010), sewage works or wastewater spray 
irrigation sites (e. g. Brandi et al., 2000; Bausum et al., 1982) or 
in hospitals (Noble et al., 1963a). Some measurements took 
also place in such exotic places as a war vessel (Wright et al., 
1968), a research ship (Pósfai et al., 2003) or in a subterranean 
sanatorium (Frączek and Grzyb, 2010). In majority of investiga-
tions the six-stage Andersen sampler was used and therefore 
most data is available for this sampling system.

Figure 1 shows the size distribution of airborne particles 
carrying cultivable mesophilic bacteria in different environ-
ments obtained with the six-stage Andersen sampler. The 
box and whiskers plots represent the summarized results of 
different studies and include different numbers of medians 
or arithmetic means. Attention should be paid to the unequal 
widths of the size classes of the six-stage Andersen sampler 
and to the fact that, due to its inlet efficiency, only particles  
< 12 µm AD were sampled.

Although large variations can be found there are clear diffe-
rences among the investigated environments. In ambient air 
only 15 % of the bacteria-laden particles are < 2.1 µm AD and 
more than 25 % are > 7.2 µm AD (medians). Lighthart (1997) 
presented similar results in his review article but with 40 % 
particles > 7 µm. In livestock husbandry and in waste 
management more than 90 % of the particles are > 2.1 µm 
AD, in the latter even 45 % are > 7.2 µm AD. The reason could 
be the combination of large area sources for airborne micro-
organisms (soil, high animal numbers, waste) together with a 
generally high activity (wind, animal activity, compost shif-
ting) leading to aerosolisation of a higher percentage of  
larger particles. A generally high activity is also found in public 
buildings as well as in public areas of hospitals. However,  
there is a lack of sources for airborne micro-organisms 
because these areas normally have easy to clean surfaces 
and effective air cleaning systems. Probably for this reason 
most of the bacteria-laden particles were found between 
1.1 µm AD and 2.1 µm AD in these environments. Clauß et al. 
(2013a) found only a slight increase of the concentration of 
particles carrying bacteria in the air during the opening 
hours of an international trade fair, depending on the  
number of visitors and mainly by skin scales and small liquid 
droplets. The investigated exhibition hall also had large air 
filter systems. In the food and feedstuff industry the size dis-
tribution is similar to the one for public buildings and offices, 
probably for the same reasons. In contrast, in the median of 
the living spaces 25 % of the bacteria-laden particles are  
> 7.2 µm AD, probably due to additional sources for airborne 
micro-organisms like carpets, plants, domestic animals or 
damp walls and mouldy wallpapers. Reponen et al. (1992) 
found a short-period increase in size of airborne particles  
carrying micro-organisms caused by vacuum cleaning and 
potting plants, accompanied by increasing concentrations of 
Penicillium species. In sewage works, the size of most of the 
bacteria-laden particles is between 2.1 µm AD and 3.3 µm 
AD. Probably the wastewater processing generates many 
small droplets carrying bacteria. At least the size distribution 
of bacteria-laden particles in operating theatres follows no 
clear pattern. The concentration found in this area is so low 
that no clear trend can be deduced. These low concentra-
tions are probably due to complex air ventilation and filter 
systems and high hygienic standards.

In general it should be also considered that there may  
be differences regarding the size distributions of particles 
carrying micro-organisms within a type of environment and 
even within the same facility. For example Bovallius et al. 
(1978a) investigated ambient air and found different size dis-
tributions of bacteria-laden particles above the Swedish 
mainland (37.8 % > 7.2 µm AD) compared to the coast (48.9 % 
> 7.2 µm AD). Brandi et al. (2000) examined the size distribu-
tion of bacteria-laden particles in a newly build sewage plant 
and found that 35.4 % of the particles were between 0.65 µm 
AD and 2.1 µm AD at the beginning but only 20.2 % after 25 
days. This shows that due to various circumstances such as 
progressing biofilm formation or differing air humidity (s. a. 
chapter 4) particle size distribution can be influenced con-
siderably within one environment.
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Figure 1 
Size distribution of airborne particles carrying culturable mesophilic bacteria in different environments (a-i). Data basis  
[n = number of data rows, number of individual measurements]: a) Bovallius et al., 1978a; Chen et al., 2012; Fang et al., 2008; 
Glysson et al., 1974; Gołofit-Szymczak and Górny, 2010; Kim et al., 2009; Li et al., 2011; Lighthart and Shaffer, 1995;  
Moschandreas et al., 2003; Nasir et al., 2012, 2013; Nasir and Colbeck, 2012; Raisi et al., 2010, 2013; Rajasekar and Balasubra-
manian, 2011; Roobsuaydee et al., 2010; Rosas et al., 1994; Shilpa et al., 2013; Tsai and Liu, 2009; Wright et al., 1969; Wu and 
Yao, 2011; Xu and Yao, 2013 [n = 69, 4368]. b) Colbeck and Nasir, 2009; Fang et al., 2013; Moschandreas et al., 2003; Nasir et 
al., 2012; Nasir and Colbeck, 2010, 2012; Simard et al., 1983; Wu and Yao, 2011; Xu et al., 2013; Xu and Yao, 2013 [n = 37, 1753]. 
c) Grigorevski-Lima et al., 2006; Gołofit-Szymczak and Górny, 2010; King and McFarland, 2012; Meklin et al., 2002; Roobsu-
aydee et al., 2010; Rajasekar and Balasubramanian, 2011; Shilpa et al., 2013; Wang et al., 2010; Wu and Yao, 2011; Xu and Yao, 
2013 [n = 22, 1183]. d) Aarnink et al., 2012; Adell et al., 2011a; b; Chai et al., 2001; Chinivasagam and Blackall, 2005; Lenhart 
et al., 1982; Liu and Ma, 2010; Sowiak et al., 2011; Siggers et al., 2011; Zhao, 2011; Zheng et al., 2013 [n = 26, 155]. e) Kim et 
al., 2009; Tsai and Liu, 2009 [n = 3, 15]. f ) Coggins et al., 2012; Nasir et al., 2013; Pastuszka et al., 2005 [n = 6, 67]. g) Byeon et 
al., 2008; Glysson et al., 1974; Rahkonen et al., 1990; Zhang et al., 2009, 2012 [n = 43, 385]. h) Kim et al., 2012; Laitinen et al., 
1994; Li et al., 2013; Zhao, 2011 [n = 13, 109]. i) Nasir et al., 2013; Pankhurst et al., 2012; Pastuszka et al., 2005 [n = 11, 75].

The size distributions of airborne particles carrying fungi are 
totally different from those carrying bacteria (Figure 2). In 
almost all areas most of the particles are between 1.0 µm AD 
and 3.2 µm AD. Probably the particle size distributions are 
representing the size distribution of the predominant mould 
species at the sampling location, because mould spores are 
occurring as single spores in more than 65 % (Heikkilä et al., 
1988; Pasanen et al., 1989). However, according to Kanaani et 

al. (2009), the particle size distributions also depend on the 
wind, the method of aerosolisation, and on the environment. 
Vijay et al. (1999) stated that the size of mould spores in 
ambient air is mostly between 2 µm and 20 µm, Reponen et 
al. (1994) found spore sizes up to 10 µm in indoor air. How-
ever, in this review the calculated median size for fungi-laden 
particles in living spaces is between 3.2 µm AD and 4.8 µm 
AD and for that higher than in ambient air. A possible reason 
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Figure 2 
Size distribution of airborne particles carrying culturable mesophilic fungi in different environments (a to i). Data basis  
[n = number of data rows, number of individual measurements]: a) Fang et al., 2008; Gołofit-Szymczak and Górny, 2010; Kim 
et al., 2009; Lin and Li, 1996; Li et al., 2011; Nasir et al., 2012, 2013; Nasir and Colbeck, 2012; Rajasekar and Balasubramanian, 
2011; Raisi et al., 2013; Roobsuaydee et al., 2010; Rozej et al., 2011; Shilpa et al., 2013; Tsai and Liu, 2009; Wang et al., 2010; 
Wu and Yao, 2011; Xu et al., 2013; Xu and Yao, 2013 [n = 47, 1406]. b) Fang et al., 2013; Hyvärinen et al., 2001; Nasir et al., 
2012; Nasir and Colbeck, 2010, 2012; Reponen et al., 1992; Xu and Yao, 2013 [n = 32, 219]. c) Gołofit-Szymczak and Górny, 
2010; Grigorevski-Lima et al., 2006; Meklin et al., 2002; Rahkonen et al., 1990; Rajasekar and Balasubramanian, 2011; Roob-
suaydee et al., 2010; Rozej et al., 2011; Shilpa et al., 2013; Wang et al., 2010; Wu and Yao, 2011; Xu and Yao, 2013 
[n = 32, 1520]. d) Chien et al., 2011; Liu and Ma, 2010; Siggers et al., 2011 [n = 10, 23]. e) Abdel Hameed et al., 2007; Kim et al., 
2009; Tsai und Liu, 2009 [n = 6, 24]. f ) Coggins et al., 2012; Nasir et al., 2013 [n = 2, 55]. g) Reinthaler et al., 1997; Zhang et al., 
2009, 2012 [n = 12, 248]. h) Kim et al., 2012; Li et al., 2013 [n = 4, 77]. i) Nasir et al., 2013 [n = 4, 64].

could be that many of the studies that investigated the size 
distribution of fungi indoors were conducted in buildings 
with obvious mould problems. In this regard Reponen et al. 
(1994) found larger mould-laden particles in mouldy houses 
than in houses without such a problem. The distribution of 
particles carrying fungi is comparatively even in waste 
management. Especially the different biological materials as 
sources for airborne fungi and the high activity in this en-
vironment could lead to aerosolisation of many different  
species with different spore sizes. Similarly the even more 
equal distribution in sewage plants is still unexplained; 

presumably the data basis is too low. For comprehensible 
reasons in operating theatres the concentrations of fungi-
laden particles are also very low but with a peak between 
1.0 µm AD and 2.1 µm AD. So it can be supposed that espe-
cially the large fungi particles were eliminated from the air by 
the filter systems.

In summary differences can be found in the median size 
distributions of airborne particles carrying bacteria or fungi 
among the different environments. Between 0.65 µm AD and 
12 µm AD the size of bacteria-laden particles mainly seems 
to be dependent on the kind of source and the mechanism 
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of aerosolisation, whereas the size of fungi-laden particles 
mainly seems to be dependent on the cell or spore size of the 
predominant species. There is a lack of information for par-
ticles > 12 µm AD, due to limitations of the size selective  
sampling systems that were used.

3.2  Size distribution of airborne particles carry-
ing selected groups of micro-organisms
This chapter subsumes the study results for the size distribu-
tion of airborne particles carrying selected micro-organisms 
independent from the environment or the source. Especially 
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Figure 3 
Size distribution of airborne particles carrying selected groups of bacteria (a to i). Data basis [n = number of data rows, number 
of individual measurements]: Six-stage Andersen sampler: a) see figure 1 [n = 242, 8164]. b) Lenhart et al., 1982; Lundholm, 
1982; Nasir et al., 2012, 2013 [n = 17, 83]. c) Bollin et al., 1985 [n = 3, 3]. d) Górny et al., 1999; Kim et al., 2006, 2010; Kim and Kim, 
2007 [n = 12, 193]. e) Coggins et al., 2012; Górny et al., 1999; Kim et al., 2006, 2010; Kim and Kim, 2007; Moschandreas et al., 2003 
[n = 18, 2080]. g) Górny et al., 1999; Kim et al., 2006, 2010; Kim and Kim, 2007 [n = 12, 193]. h) Fang et al., 2008; Grigorevski- 
Lima et al., 2006; Li et al., 2012, 2013; Raisi et al., 2013; Zhang et al., 2009 [n = 13, 1060]. Six-stage Andersen sampler, pooled: a) 
Butera et al., 1991; Cormier et al., 1990; Ferguson, 2012; Kim and Kim, 2007; Lembke et al., 1981; Lis et al., 2008; Predicala et al., 
2002 [n = 89, 399]. b) Chen et al., 2012; Clark et al., 1983; Cormier et al., 1990; Rosas et al., 2001 [n = 13, 92]. e) Chen et al., 2012  
[n = 3,3]. f ) Ferguson, 2012 [n = 8, 24]. g) Chen et al., 2012 [n = 3, 3]. Two-stage slit sampler: a) Dutkiewitcz et al., 1994, 2000, 
2001a, b, 2002; Krysinska-Traczyk et al., 2002, 2004; Prazmo et al., 2003a, b [n = 103, 1290]. b) Dutkiewitcz et al., 1994, 2002;  
Krysinska-Traczyk et al., 2004; Prazmo et al., 2003a [n = 50, 404]. i) Dutkiewitcz et al., 1994, 2001a, b, 2002; Krysinska-Traczyk et 
al., 2004; Prazmo et al., 2003a, b [n = 79, 1114]. Two-stage Andersen sampler: a) Alvarado et al., 2009; Awad et al., 2013; Curtis et 
al., 1978; Jones and Cookson, 1983; Lester, 2008; Mota et al., 2008a; Zhu et al., 2003a, b [n = 65, 1095]. b) Lester, 2008 [n = 4, 67]. 
c) Bollin et al., 1985 [n = 5, 5]. Eight-stage Andersen sampler, pooled: a) Curtis et al., 1975; 1978 [n = 56, 112].
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groups or species that are of environmental or hygienic rele-
vance, or for which a lot of data are available, were chosen for 
the compilation. Figure 3 shows the size distribution of air-
borne particles carrying selected groups of bacteria. Here, 
also attention should be paid to the unequal size class widths 
of the different sampling systems.

There are differences regarding the median particle size 
distributions between the different bacteria as well as among 
the sampling systems. Some of these results seem to be con-
tradictory. For example with the pooled two- or eight-stage 
Andersen sampler more particles carrying mesophilic bac-
teria were found with < 4.8 µm AD, whereas with the two- 
and six-stage Andersen sampler and with the two-stage slit 
sampler more particles were found in the larger particle  
classes. Also for Gram-negative bacteria the results obtained 
with three two-stage systems differ from the results obtained 
with the six-stage Andersen sampler. With the latter a peak at 
1.0 µm AD and 2.1 µm AD was detected whereas with the 
other systems most Gram-negative bacteria were found in 
the larger particle size classes. The size distributions presen-
ted for Legionella pneumophila are not reliable due to a lack 
of data. The median size distribution of particles carrying 
Micrococcus luteus is in accordance with the finding that  
these species often form small aggregates of only a few cells. 
Staphylococcus spp. seems to appear mainly in larger aggre-
gates, whereas MRSA were found on particles of < 4.8 µm AD. 
The curves presented for particles carrying Bacillus spp. are 
inconsistent. In the air especially the resistant endospores of 
this group should be expected. The size of such endospores 
normally ranges between 0.8 µm to 1.0 µm, which at least is 
in accordance with the results of Chen et al. (2012). However, 

the median size distribution obtained with the six-stage 
Andersen sampler indicates that spores of Bacillus spp. may 
also exist in larger aggregates in the airborne state. The size 
distribution of particles carrying the likewise spore-forming 
actinomycetes shows a peak between 1.0 µm AD and 2.1 µm 
AD. This could be an indication for single airborne spores of 
this size range. In contrast 75 % of particles carrying thermo-
philic actinomycetes found with the two-stage slit sampler 
were in the size fraction > 3.0 µm AD.

In summary, most of the presented median size distribu-
tions of particles carrying different selected bacteria groups 
or species have to be scrutinized. The differences among the 
different groups as well as among the results of the different 
sampling systems may be due to the different sampling loca-
tions. Most bacteria occur in aggregates in the airborne state 
and their sizes are presumably dependent on the source and 
the method of aerosolisation and not on the group or  
species itself.

Table 2 and 3 specify further investigations of the size dis-
tribution of airborne particles carrying selected bacteria 
groups or species that were not mentioned before, in which 
different sampling systems were used. There is also a trend 
that the size distribution is mainly dependent on the samp-
ling location. Similar to Figure 1, higher median percentages 
of bacteria-laden particles were found in livestock hus- 
bandry, ambient air and waste management followed by  
public buildings and offices than were found in the other areas.

Figure 4 shows the median size distribution of airborne 
particles carrying a selected fungi group or species. Here  
there are also differences regarding the median particle size 
distributions among the different fungi as well as among the 

Table 2 
Study results on the size distribution of airborne particles carrying other selected groups of bacteria when the six-stage  
Andersen sampler was used for sampling. 

Microorganism Sampling Location Median % per Stage Reference

Six-stage Andersen Sampler, Stage: 6 5 4 3 2 1

Particle Sizes In Each Stage [µm]: 0.6 - 1.0 1.0 - 2.1 2.1 - 3.2 3.2 - 4.8 4.8 - 7.2 7.2 - 12.0

Aeromonas spp. Living Space 17 17 16 21 18 20 Górny et al., 1999

α-Hemolytic Bacteria Waste Incinerator Plant 7 7 18 12 13 44 Glysson et al., 1974

β-Hemolytic Bacteria Waste Incinerator Plant 31 31 12 9 5 0 Glysson et al., 1974

Coliform Bacteria Outdoor Air 1 1 2 5 36 55 Rosas et al., 1994

Corynebacterium spp. Nursing 25 25 13 11 21 23 Kim and Kim, 2007

Enterobacteriaceae Pig House 6 6 9 12 13 49 Siggers et al., 2011

Enterobacteriaceae Poultry Slaughterhouse 0 0 4 5 14 75 Lenhart et al., 1982

Escherichia coli Waste Incinerator Plant 0 0 0 100 0 0 Glysson et al., 1974

Facultative Anaerobic Bacteria Living Space 8 8 13 18 24 36
Hambraeus and  
Benediktsdottir, 1980

Marine Bacteria Coastal Outdoor Air 11 11 17 20 18 33 Li et al., 2011

Nocardia spp. Living Space 53 53 20 0 13 0 Górny et al., 1999

Pseudomonas spp. Living Space 15 15 19 21 18 28 Górny et al., 1999

Staphylococcus aureus Hen House 35 23 37 4 2 0 Chai et al., 2001

Strictly Anaerobic Bacteria Living Space 7 7 6 25 32 25
Hambraeus and  
Benediktsdottir, 1980
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Table 3 
Study results on the size distribution of airborne particles carrying other selected groups of bacteria when systems other 
than the six-stage Andersen sampler were used for sampling. 

Microorganism Sampling Location Median % per Stage Reference

Custom-designed Particle-sizing Slit Sampler, Stage: 2 1

Particle Sizes In Each Stage [µm]: < 3.0 > 3.0

Lactobacillus spp. Herb Processing Plant 0 100 Dutkiewitcz et al., 2001b

Size-grading Slit Sampler, Stage: 1 2 3 4

Particle Sizes In Each Stage [µm]: 0.9 - 4.2 4.2 - 9.6 9.,6 - 18.2 18.2 - 28

Streptococcus spp. Office Median ø 10.0 - 12.4 µm Noble et al., 1963a

Streptococcus salivarius Office Median ø 11.0 - 14.4 µm Noble et al., 1963a

β-Hemolytic Streptococci Office Median ø 11.7 - 12.5 µm Noble et al., 1963a

Enterococcus spp. Office Median ø 10.8 - 11.0 µm Noble et al., 1963a

Staphylococcus aureus Hospital Ward Median ø 13.3 - 15.7 µm Noble et al., 1963a

Bacillus spp. Outdoor Air Median ø 3.0 µm Noble et al., 1963a

Clostridium welchii Outdoor Air/Hospital Median ø 11.0 - 17.2 µm Noble et al., 1963a

Clostridium welchii Outdoor Air/Hospital 14 19 30 36 Noble, 1961

Six-stage Andersen Sampler, Pooled, Stages: 6 – 3 2,1

Particle Sizes In Each Stage [µm]: 0.6 - 4.8. 4.8 -12

Bacillus cereus Outdoor Air 23 77 Chen et al., 2012

Bacillus subtilis Outdoor Air 95 5 Chen et al., 2012

Enterobacter cloacae Outdoor Air 91 9 Chen et al., 2012

Faenia rectivirgula Pig Houses 0 100 Cormier et al., 1990

Klebsiella pneumonia Outdoor Air 83 17 Chen et al., 2012

Micrococcus luteus Outdoor Air 100 0 Chen et al., 2012

Pseudomonas aeruginosa Outdoor Air 100 0 Chen et al., 2012

Pseudomonas putida Outdoor Air 57 43 Chen et al., 2012

Serratia marcescens Outdoor Air 92 8 Chen et al., 2012

Staphylococcus capitis Outdoor Air 100 0 Chen et al., 2012

Staphylococcus epidermidis Outdoor Air 87 13 Chen et al., 2012

Staphylococcus hominis Outdoor Air 17 83 Chen et al., 2012

Staphylococcus lugdunensis Outdoor Air 74 26 Chen et al., 2012

Staphylococcus saprophyticus Outdoor Air 83 17 Chen et al., 2012

Staphylococcus simulans Outdoor Air 65 35 Chen et al., 2012

Staphylococcus warneri Outdoor Air 90 10 Chen et al., 2012

Streptococcus mitis Outdoor Air Chen et al., 2012

Eight-stage Andersen Sampler, Pooled, Stages: 7 - 3 2 - 0

Particle Sizes In Each Stage [µm]: 0.4 - 4.7 > 4.7

Coliform Bacteria Pig Houses 91 9 Curtis et al., 1975

Staphylococcus spp. Pig Houses 79 21 Curtis et al., 1975

Streptococcus spp. Pig Houses 79 21 Curtis et al., 1975

sampling systems. In contrast to bacteria-laden particles, the 
size distribution of particles carrying different selected 
moulds mainly describes the size distribution of their spores. 
For example, the average diameter of Aspergillus fumigatus 
spores is 2.5 µm to 3.0 µm (Madsen et al., 2009). With the  
different sampling systems the highest percentages were 
found exactly in this range. This is also true for Penicillium 
spp., Cladosporium spp. and Cryptococcus neoformans. 

Sometimes there are also apparent differences among the 
sampling systems. The median particle size distribution of 
Aspergillus spp. shows a peak at 2.1 µm AD to 3.2 µm AD for 
measurements in different environments with the six-stage 
Andersen sampler, analogue to the average spore size of 
Aspergillus species. With the pooled six-stage Andersen sam-
pler higher median percentages were found for Aspergillus-
laden particles >  4.8  µm AD. However, this distribution 
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Figure 4 
Size distribution of airborne particles carrying selected groups of fungi (a-i). Data basis [n = number of data rows, number of 
individual measurements]: Six-stage Andersen Sampler: a) see figure 2 [n = 43, 1324]. b) Colbeck and Nasir, 2009; Raisi et al., 
2010; Reponen et al., 1994; Sowiak et al., 2011; Yu et al., 2013; Zuraimi et al., 2009 [n = 38, 2526]. c) Górny et al., 1999; Lin and 
Li, 1996; Reponen, 1995 [n = 17, 132]. d) Fang et al., 2008, 2013; Kim et al., 2006, 2010; Lin and Li, 1996; Sayer et al., 1969  
[n = 18, 1128]. e) Abdel Hameed et al., 2007; Deacon et al., 2009; Fang et al., 2008, 2013; Górny et al., 1999; Kim et al. 2006, 
2010; Kim and Kim, 2007; Lin and Li, 1996; Marchisio et al., 1989; Millner et al., 1980; Reponen, 1995; Sayer et al., 1969;  
Zuraimi et al., 2009 [n = 41, 2583]. f ) Deacon et al., 2009; Millner et al., 1980 [n = 2, 33]. g) Fang et al., 2008, 2013; Kim et al., 
2006, 2010; Kim and Kim, 2007; Lin and Li, 1996; Marchisio et al., 1989; Reponen, 1995; Zuraimi et al., 2009 [n = 31, 2394].  
h) Powell et al., 1972; Ruiz and Bulmer, 1981 [n = 7, 12]. i) Fang et al., 2008, 2013; Górny et al., 1999; Kim and Kim, 2007; Kim 
et al., 2006, 2010; Lin and Li, 1996; Marchisio et al., 1989; Reponen, 1995; Sayer et al., 1969; Zuraimi et al., 2009 [n = 40, 2584]. 
Six-stage Andersen sampler, pooled: a) Chen et al., 2012; Kim and Kim, 2007; Lis et al., 2008 [n = 11, 93]. b) Cormier et al., 
1990; Rosas et al., 2001 [n = 6, 26]. c) Cormier et al., 1990 [n = 4, 24]. e) Cormier et al., 1990 [n = 4, 24]. f ) Clark et al., 1983 
[n = 7, 68]. Two-stage custom-designed particle-sizing slit sampler: a) Dutkiewitcz et al., 1994, 2001a, b, 2002; Krysinska- 
Traczyk et al., 2002, 2004; Prazmo et al., 2003a, b [n = 93, 1254]; Two-stage Andersen sampler: a) Alvardo et al., 2009; Awad et 
al., 2013; Mota et al., 2008a, b [n = 23, 924]. b) Lester, 2008 [n = 4, 67]. d) Mota et al., 2008b; Rosas et al., 1997 [n = 10, 509]. e) 
Jones and Cookson, 1983; Mota et al., 2008b; Rosas et al., 1997 [n = 11, 541]; f ) Jones and Cookson, 1983 [n = 1, 94]. i) Lacey, 
1973; Rosas et al., 1997 [n = 6, 328]. Four-stage particle-sizing slit sampler: e, f, g, i) Noble et al., 1963b n = 1, 7]. 
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Table 4 
Study results on the size distribution of airborne particles carrying other selected groups of fungi when the six-stage  
Andersen sampler was used for sampling.

Microorganism Sampling Location Median % per Stage Reference

Six-stage Andersen Sampler, Stage: 6 5 4 3 2 1

Particle Sizes In Each Stage [µm]: 0.6 - 1.0 1.0 - 2.1 2.1 - 3.2 3.2 - 4.8 4.8 - 7.2 7.2 - 12.0

Alternaria alternata Outdoor Air 0 0 0 11 33 56 Marchisio et al., 1989

Aspergillus niger Outdoor Air 0 0 33 67 0 0 Marchisio et al., 1989

Aspergillus versicolor Outdoor Air 0 0 43 57 0 0 Marchisio et al., 1989

Aspergillus flavus Corn Dust 0 2 24 38 21 15 Hill et al., 1984

Balcomycetidae Outdoor Air 19 15 15 7 9 34 Marchisio et al., 1989

Bothrytis cinerea Outdoor Air 38 38 13 13 0 0 Marchisio et al., 1989

Blastomycetidae Outdoor Air 19 15 15 8 9 34 Marchisio et al., 1989

Candida albicans Indoor and Outdoor Air 0 20 0 20 40 20 Sayer et al., 1969

Chaetonium indicum Outdoor Air 0 0 0 7 14 79 Marchisio et al., 1989

Cladosporium cladosporoides Outdoor Air 4 17 34 25 19 1 Marchisio et al., 1989

Cladosporium herbarum Outdoor Air 17 5 78 0 0 0 Marchisio et al., 1989

Diplospora spp. Indoor and Outdoor Air 0 0 9 4 44 44 Sayer et al.,1969

Emericelle nidulans Outdoor Air 57 0 22 22 0 0 Marchisio et al., 1989

Epicoccum spp. Indoor and Outdoor Air 0 0 0 0 8 92 Sayer et al., 1969

Eurotium amstelodami Outdoor Air 15 23 31 15 0 15 Marchisio et al., 1989

Fusarium monoliforme Corn Field 18 2 16 22 12 30 Ooka and Kommendahl, 1977

Fusarium spp. Outdoor Air 0 13 16 29 20 13 Lin and Li, 1996

Geotrichum spp. Kindergarden 0 46 34 8 3 1 Zuraimi et al., 2009

Gliocladium spp. Indoor and Outdoor Air 5 3 17 60 15 0 Sayer et al., 1969

Hemispora spp. Indoor and Outdoor Air 1 30 47 11 6 5 Sayer et al,. 1969

Hormonema spp. Outdoor Air 30 20 10 0 20 20 Marchisio et al., 1989

Hormodendrum spp. Outdoor Air 0 0 6 26 37 29 Sayer et al., 1969

Marine Fungi Coastal Outdoor Air 1 14 43 22 11 9 Li et al., 2011

Monilia sitophilia Indoor and Outdoor Air 0 0 0 0 100 0 Sayer et al., 1969

Monotospora spp. Indoor and Outdoor Air 0 0 0 4 53 43 Sayer et al., 1969

Nigrospora spp. Indoor and Outdoor Air 0 0 0 0 0 100 Sayer et al., 1969

Oospora spp. Indoor and Outdoor Air 0 40 0 60 0 0 Sayer et al., 1969

Paecilomyces spp. Indoor and Outdoor Air 0 0 9 26 65 0 Sayer et al., 1969

Paecilomyces varioti Outdoor Air 13 13 20 53 0 0 Marchisio et al., 1989

Penicillium italicum Outdoor Air 0 36 43 21 0 0 Marchisio et al., 1989

Penicillium purpurogenum Outdoor Air 0 25 0 12 25 37 Marchisio et al., 1989

Penicillium verrucosum Outdoor Air 0 5 14 73 0 9 Marchisio et al., 1989

Pullularia spp. Indoor and Outdoor Air 0 0 28 27 22 23 Sayer et al., 1969

Rhinocladiella mansonii Outdoor Air 50 14 5 9 14 9 Marchisio et al., 1989

Rhizopus spp. Indoor and Outdoor Air 1,7 0 1,7 42 43 12 Sayer et al., 1969

Rhodoturula spp. Indoor and Outdoor Air 0 0 22 33 22 22 Sayer et al., 1969

Sacharomyces spp. Indoor and Outdoor Air 0 9 6 10 19 57 Sayer et al., 1969

Scytalidium spp. Outdoor Air 66 24 7 2 0 0 Marchisio et al., 1989

Sepedonium spp. Indoor and Outdoor Air 0 0 25 0 25 50 Sayer et al., 1969

Stemphilium spp. Indoor and Outdoor Air 0 0 1 4 18 78 Sayer et al., 1969

Streptomyces spp. Indoor and Outdoor Air 25 0 0 0 50 25 Sayer et al., 1969

Trichophyton spp Outdoor Air 0 0 0 17 39 40 Lin and Li, 1996

Ustilago zeae Indoor and Outdoor Air 0 84 12 0 4 0 Sayer et al., 1969
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represents only few measurements in pig houses conducted 
by Cormier et al. (1990). Because of the high dust concentra-
tions in pig houses there is a higher probability that mould 
spores are attached to larger particles. This finding shows 
that, as for bacteria, the sampling location also has an in- 
fluence on the particle size distribution of mould spores.

Tables 4 and 5 specify further investigations of the size 
distribution of airborne particles carrying different groups or 
species of fungi that were not mentioned before, in which 
different sampling systems were used. Here, as before, the 
size distribution of particles carrying different fungi mainly 
describes by trend the size distribution of their spores. Also 
an influence of the sampling location or rather of the source 
or the method of aerosolisation is shown. For example in  
Table 4 the median size of airborne particles carrying  
different Aspergillus species with similar spore size (Marchisio 
et al., 1989) are differently distributed in ambient air compa-
red to corn dust (Hill et al., 1984).

3.3  Number distribution of airborne micro-orga-
nisms in different particle size fractions
The previous two chapters deal only with the size distribu-
tion of airborne particles that carry different micro- 
organisms, independent of the actual number of micro- 

Table 5 
Study results on the size distribution of airborne particles carrying other selected groups of fungi when systems other than 
the six-stage Andersen sampler were used for sampling. 

Microorganism Sampling Location Median % per Stage Reference

Two-stage Andersen Sampler, Stage: 2 1

Particle Sizes In Each Stage [µm]: 0.95 - 8.0 8.0 - 12

Aphanocladium spp. Cork Factory 95 5 Lacey, 1973

Bipolaris spp. Indoor and Outdoor Air 48 52 Mota et al., 2008b

Cercospora spp. Indoor and Outdoor Air 50 50 Mota et al., 2008b

Monila spp. Cork Factory 10 90 Lacey, 1973

Mucor spp. Cork Factory 16 84 Lacey, 1973

Phoma spp. Indoor and Outdoor Air 36 64 Mota et al., 2008b

Rhizopus spp. Indoor and Outdoor Air 43 57 Mota et al., 2008b

Stachybothrys spp. Indoor and Outdoor Air 50 50 Mota et al., 2008b

Stemphylium spp. Indoor and Outdoor Air 49 51 Mota et al., 2008b

Thermophilic moulds Outdoor Air 91 9 Jones and Cookson, 1983

Size-grading Slit Sampler, Stage: 1 2 3 4

Particle Sizes In Each Stage [µm]: 0.9 - 4.2 4.2 - 9.6 9.6 - 18.2 18.2 - 28

Aspergillus niger Hospital Ward 33 47 16 4 Noble et al., 1963b

Didymocladium spp. Hospital Ward 5 32 49 15 Noble et al., 1963b

Monilia sitophila Hospital Ward 3 50 39 8 Noble et al., 1963b

Paecilomyces spp. Hospital Ward 55 35 6 4 Noble et al., 1963b

Rhizopus spp. Hospital Ward 26 39 31 4 Noble et al., 1963b

Rhodoturula spp. Hospital Ward 57 38 5 0 Noble et al., 1963b

Syncephalastrum spp. Hospital Ward 24 47 26 3 Noble et al., 1963b

organisms on such a particle. King und McFarland (2012) 
showed that there may be large differences in this regard. In 
each stage of a six-stage Andersen sampler they covered half 
of the nutrient plates with a filter to get the number of all 
bacteria corresponding to the number of bacteria-laden par-
ticles by eluting the filter after sampling in a liquid followed 
by cultivation. With this method they found ten times more 
bacteria than bacteria-laden particles in the air of class-
rooms. Assuming the densest sphere packing, and a cell size 
of 1 µm, a bacteria aggregate of 5 µm diameter may theore-
tically consist of 100 bacteria cells, a 10 µm aggregate even of 
650 cells.
In contrast to the large number of studies dealing with the 
size distribution of airborne particles carrying micro- 
organisms, studies on the number distribution of airborne 
micro-organisms in different particle size fractions are rare. 
Table 6 shows the mean percentages of colony forming units 
of different airborne micro-organisms in different particle 
size fractions according to Predicala et al. (2002). In a pig 
house most airborne bacteria were found in the particle size 
fraction > 4.0 µm AD, especially even about 80 % to 90 % for 
bacteria groups that include pathogens such as staphylo- 
cocci or Listeria.

Clauß et al. (2011a) used a fluorescence microscopic 
method to investigatethe number and size of bacteria-laden 
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Table 6 
Mean percentages of colony forming units of different airborne micro-organisms in selected particle size fractions 

Microorganism Sampling Location Median % per Stage Reference

Membrane Filter + Cyclon Pre-impactor, Stage: 2 1

Particle Sizes In Each Stage [µm]: < 4.0 > 4.0

Mesophilic Bacteria Pig Houses 16 84 Predicala et al., 2002

Staphylococcus spp. Pig Houses 12 88 Predicala et al., 2002

Pseudomonas spp. Pig Houses 35 65 Predicala et al., 2002

Bacillus spp. Pig Houses 13 87 Predicala et al., 2002

Listeria spp. Pig Houses 18 82 Predicala et al., 2002

Enterococcus spp. Pig Houses 7 93 Predicala et al., 2002

Nocardia spp. Pig Houses 26 74 Predicala et al., 2002

Lactobacillus spp. Pig Houses 54 46 Predicala et al., 2002

Penicillium spp. Pig Houses 73 27 Predicala et al., 2002

particles as well as the number of cells on each of these par-
ticles in raw gas and clean gas of a three-stage biological air 
cleaning system in pig houses (Table 7). Of about 2000 inves-
tigated bacteria-laden particles in raw gas, only 40 % were  
< 10 µm. Most bacteria cells were found on particles  
between 80 µm and 100 µm. In clean gas more than 90 % of 
bacteria-laden particles were < 10 µm and none > 40 µm. 
Most bacteria cells were found on particles between 10 µm 
and 20 µm. Also in ambient air (urban, rural and forest areas) 
most bacteria cells can be found between 10 µm and 40 µm 
(Clauß et al., 2013b). Fisar et al. (1990) investigated the size 
distribution of cells of bacteria and yeasts and mould spores 
in urban ambient air by size-selective sampling and cell 
count analysis in the different impactor stages by light  
microscopy. Most bacteria cells could be found in the size 
class < 0.9 µm AD, most fungi between 0.9 µm AD and 2.0 µm 
AD. No information was given for size classes > 6.4 µm AD. 
Vestlund (2009) investigated the size distribution of micro-

organisms in composting facilities by sampling on  
filters and particle size analysis by scanning electron  
microscopy. He distinguished between “large cells” (fungi) 
and “small cells” (bacteria) and found that the small cells  
existed to 1 % to 70 % in aggregates with sizes of 1 µm to 
5 µm subject to the sampling location, and most of the large 
cells in aggregates of 4 µm to 5 µm.

Recently an increasing number of studies investigated 
the distribution of airborne gene copies specific for diverse 
groups of micro-organisms in different particle size classes 
(Table 8). Lee and Liao (2014), Lecours et al. (2012) and Yama-
moto et al. (2011) often found more than 90 % of the gene 
copies of different micro-organisms in the size range > 2 µm 
AD in different environments. Sippula et al. (2013) found  
52 % to 93 % of gene copies in the size fraction > 2.4 µm AD 
in indoor and outdoor air. Quian et al. (2012) and Yamamoto 
et al. (2012) used an eight-stage Andersen sampler and 
found most gene copies of bacteria and moulds in particles 

Table 7 
Mean percentages of cell counts of different airborne bacteria, yeasts and moulds in selected particle size fractions 

Microorganism Sampling Location Median % per Stage Reference

Fluorescence Microscopic Method 
Particle Size [µm]:

0 - 5 6 - 10 11 - 20 21 - 40 41 - 60 61 - 80 81 - 100 101 - 200

Bacteria Pig House Raw Gas 1 2 9 23 19 12 27 7 Clauß et al., 2011a

Bacteria Pig House Clean Gas 6 34 59 1 0 0 0 0 Clauß et al., 2011a

Bacteria Outdoor Air 13 16 22 27 13 2 7 n/a Clauß et al., 2013b

May-Casella Impactor, Stage: 4 3 2 1

Particle Sizes In Each Stage [µm]: 0.4 - 0.9 0.9 - 2.0 2.0 - 6.4 > 6.4

Bacteria Outdoor Air 54 28 18 n/a Fisar et al., 1990

Yeasts Outdoor Air 33 56 11 n/a Fisar et al., 1990

Moulds Outdoor Air 22 43 35 n/a Fisar et al., 1990

Ten-stage MOUDI, Stages: 10 - 7 6 5 4 3 - 1

Particle Sizes In Each Stage [µm]: 0.056 - 0.56 0.56 - 1.0 1.0 - 1.8 1.8 - 3.2 3.2 - 18.0

Bacteria Living Space 35 19 28 13 n/a Kujundzic et al., 2006
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Table 8 
Study results on the number distribution of specific gene copies of different airborne micro-organisms in selected particle 
size fractions 

Micro-organism Sampling Location Median % per Stage Reference

Two-Stage Bio-Aerosol Cyclone, Stage: 3* 2 1

Particle Sizes In Each Stage [µm]: *(afterfilter) < 1.0 1.0 - 1.8 > 1.8

Moulds Agriculture 0 10 89 Lee and Liao, 2014

Two-Stage Bio-Aerosol Cyclone Modell BC251, Stage: 3* 2 1

Particle Sizes In Each Stage [µm]: *(afterfilter) 0.4 - 0.41 0.41 - 2.1 > 2.1

Bacteria Cattle Farming 0 9 91 Lecours et al,. 2012

Archaebacteria Cattle Farming 0 2 98 Lecours et al., 2012

Two-Stage Bio-Aerosol Cyclone Model BC221, Stage: 3* 2 1

Particle Sizes In Each Stage [µm]: *(afterfilter) < 1.6 1.6 - 2.6 > 2.6

Alternaria alternata Outdoor Air 0 1 99 Yamamoto et al., 2011

Cladosporium cladosporoides Outdoor Air 1 0 99 Yamamoto et al., 2011

Epicoccum nigrum Outdoor Air 0 1 99 Yamamoto et al., 2011

Penicillium chrysogenum Outdoor Air 0 1 99 Yamamoto et al., 2011

Harvard High-Volume Cascade Impactor, Stages: 4 3 2+1

Particle Sizes In Each Stage [µm]: 0.2 - 0.9 0.9 - 2.4 > 2.4

Total Bacteria Indoor and Outdoor Air 1 23 77 Sippula et al., 2013

Cladosporium cladosporoides Indoor and Outdoor Air 0 7 93 Sippula et al., 2013

Mycobacterium spp. Indoor and Outdoor Air 0 9 90 Sippula et al., 2013

Penicillium/Aspergillus spp. Indoor and Outdoor Air 0 25 75 Sippula et al., 2013

Streptomyces spp. Indoor and Outdoor Air 0 45 52 Sippula et al., 2013

Eight-Stage Andersen-Sampler MKII, Stages: 7+6 5 4 3 2 1 0

Particle Sizes In Each Stage [µm]: *(pre-separator Cut-off) 0.4 - 1.1 1.1 - 2.1 2.1 - 3.3 3.3 - 4.7 4.7 - 5.6 5.6 - 9.0 9.0 -10*

Bacteria Indoor and Outdoor Air 2 5 25 25 25 10 Quian et al., 2012

Fungi Indoor and Outdoor Air 2 5 23 37 23 13 Quian et al., 2012

Aspergillus fumigatus/ 
Neosartorya fischeri

Outdoor Air (20 m) n/a n/a 7 22 12 6 2 Yamamoto et al., 2012

Penicillium spp Outdoor Air (20 m) n/a n/a 15 62 8 15 0 Yamamoto et al., 2012

Aspergillus/Penicillium Outdoor Air (20 m) n/a n/a 18 44 25 11 2 Yamamoto et al., 2012

Cladosporium cladosporoides Outdoor Air (20 m) n/a n/a 11 42 21 21 5 Yamamoto et al., 2012

Alternaria alternata Outdoor Air (20 m) n/a n/a 0 0 5 30 66 Yamamoto et al., 2012

Epicoccum nigrum Outdoor Air (20 m) n/a n/a 0 0 6 32 61 Yamamoto et al., 2012

Ten-Stage MOUDI, Stages: 10 – 1

Particle Sizes In Each Stage [µm]: 0.056 - 18.0

Mycobacterium tuberculosis Whirlpools All Stages Positive Schafer et al., 2003

measuring between 3.3 µm AD and 10 µm AD. Once more 
this is for the moulds in the range of their spore sizes. Schafer 
et al. (2003) found in the air above whirlpools gene copies of 
Mycobacterium tuberculosis in the size range of 0.056 µm AD 
to 10 µm AD. This is an indication for gene copies existing in 
the airborne state independent from intact cells because the 
cell size of the rod-shaped bacterium is about 0.5 µm x 2.0 
µm.

Finally two general points should be kept in mind: The 
different stages of all size selective sampling systems with 
their defined cut-points do not mean an insuperable 

obstacle for larger particles. Depending on the mass-based 
cut-off curves, also larger particles reach the final stages of 
the sampling systems and may influence the results. For 
example Madsen et al. (2009) found considerable amounts of 
culturable moulds in the PM 1 dust fraction sampled by a  
triplex-cyclone. The second point, and important in regard to 
the possible health effects of biological particles, is that  
besides pathogenic micro-organisms with cell sizes of rarely 
< 0.5 µm, also other harmful cell components such as  
allergens from moulds (Cho et al., 2005; Górny et al., 2002; 
Madsen et al., 2009; Reponen et al., 2007) or endotoxins 
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(Attwood et al., 1986; Kujundzic et al., 2006; Monn und 
Becker, 1999; Olenchock et al., 1982) can be found, especially 
in smaller particle size classes.

4  Conclusion and outlook

The size distribution of airborne particles carrying culturable 
micro-organisms in the range of 0.65 µm AD to 12 µm AD has 
been well investigated for many micro-organism groups and 
environments depending on the available size selective  
sampling systems. It depends primarily on the sampling 
location, or rather the environment, and here presumably on 
the kind of source for airborne micro-organisms and the 
method of aerosolisation. Also sampling height above 
ground, air humidity, temperature and solar radiation may 
have an influence. For moulds the found median size distri-
butions in air largely represent the size ranges of spores of 
the detected groups or species. There is a lack of information 
for particles > 12 µm AD and especially > 20 µm AD, due to 
limitations of the size selective sampling systems that were 
used. There is also little knowledge concerning the actual 
number of micro-organisms (cfu and cell count) in the  
different particles size classes. A few studies suggest that 
depending on the environment most micro-organisms are in 
the particle size fraction > 10 µm. In future investigations 
preferably size selective sampling systems should be used 
that have high inlet efficiencies for particles > 20 µm AD and 
that allow sampling in a liquid to separate micro-organisms 
from aggregates. In addition, these systems should sample 
rather the medical and environmental relevant particle size 
fractions PM 2.5, PM 4, PM 10 and the total dust.
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