INSTALLATION INSTRUCTIONS
A95DF1D, A93DF1D, 95G1DF-P & 92G1DF-P
Warm Air Gas Furnace
Downflow Air Discharge

This manual must be left with the homeowner for future reference.

⚠️ CAUTION
As with any mechanical equipment, personal injury can result from contact with sharp sheet metal edges. Be careful when you handle this equipment.

⚠️ WARNING
Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional installer (or equivalent), service agency or the gas supplier.

TABLE OF CONTENTS
Unit Dimensions ... 2
Parts Arrangement... 3
Gas Furnace ... 4
Shipping and Packing List .. 4
Safety Information ... 4
Use of Furnace as Construction Heater 5
General ... 6
Combustion, Dilution & Ventilation Air 6
Setting Equipment ... 9
Filters ... 12
Duct System ... 12
Pipe & Fittings Specifications 12
Joint Cementing Procedure 14
Venting Practices... 14
Vent Piping Guidelines ... 16
Gas Piping.. 32
Electrical ... 34
Unit Start-Up ... 38
Gas Pressure Adjustment .. 40
High Altitude Information .. 40
Other Unit Adjustments .. 43
Blower Motor Performance 44
Service ... 46
Planned Service ... 48
Diagnostic Codes ... 48
Repair Parts List .. 49
Start-Up & Performance Check List 50

Manufactured By
Allied Air Enterprises LLC
A Lennox International, Inc. Company
215 Metropolitan Drive
West Columbia, SC 29170
Unit Dimensions - inches (mm)

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A95DF1/A93DF1</td>
<td>045-12</td>
<td>070-12</td>
<td></td>
</tr>
<tr>
<td>95G1DF/92G1DF</td>
<td>090-16</td>
<td>110-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
</tr>
<tr>
<td></td>
<td>17–1/2</td>
<td>446</td>
<td>16–3/8</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>533</td>
<td>19–7/8</td>
</tr>
</tbody>
</table>
Figure 1

- CONTROL BOX
 (Includes integrated control, transformer and door switch)
- BLOWER MOTOR
 (hidden)
- BLOWER COMPARTMENT ACCESS PANEL
- BAG ASSEMBLY
- HEATING COMPARTMENT ACCESS PANEL
- COMBUSTION AIR INDUCER
- BLOWER DECK
- PRIMARY LIMIT
- GAS VALVE
- BURNER BOX ASSEMBLY
 (includes flame sensor, rollout switches and ignitor)
- HEAT EXCHANGER
- COLD END HEADER BOX
Gas Furnace
This Category IV gas furnace is shipped ready for installation in the downflow position.

The furnace is equipped for installation in natural gas applications. A conversion kit (ordered separately) is required for use in propane/LP gas applications.

This unit can be installed as either a Direct Vent or a Non-Direct Vent gas central furnace

NOTE: In Direct Vent installations, combustion air is taken from outdoors and flue gases are discharged outdoors. In Non-Direct Vent installations, combustion air is taken from indoors or a ventilated attic or crawl space and flue gases are discharged outdoors. See Figures 2A and 2B for applications involving roof termination.

Shipping and Packing List
Package 1 of 1 contains:
1 - Assembled Gas Unit
1 - Bag assembly containing the following:
 1 - Snap bushing
 1 - Snap Plug
 1 - Wire tie
 1 - Condensate trap
 1 - Condensate trap cap
 1 - Condensate trap clamp
 1 - 2” diameter debris screen
 1 - 3/4” Threaded street elbow

Check equipment for shipping damage. If you find any damage, immediately contact the last carrier.

Please refer to specification sheets for available accessories.

Safety Information

WARNING
Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional installer (or equivalent), service agency or the gas supplier.

CAUTION
As with any mechanical equipment, personal injury can result from contact with sharp sheet metal edges. Be careful when you handle this equipment.

DANGER
There are circumstances in which odorant used with LP/Propane gas can lose its scent. In case of a leak, LP/Propane gas will settle close to the floor and may be difficult to smell. An LP/Propane leak detector should be installed in all LP applications.

Use only the type of gas approved for use with this furnace. Refer to unit nameplate.

This unit is CSA International certified to ANSI Z21.47 and CSA 2.3 standards.

Building Codes
In the USA, installation of gas furnaces must conform with local building codes. In the absence of local codes, units must be installed according to the current National Fuel Gas Code (ANSI Z223.1/NFPA 54). The National Fuel Gas Code is available from the American National Standards Institute, Inc., 11 West 42nd Street, New York, NY 10036.
In Canada, installation must conform with current National Standard of Canada CSA-B149 Natural Gas and Propane Installation Codes, local plumbing or waste water codes and other applicable local codes.

In order to ensure proper unit operation in non-direct vent applications, combustion and ventilation air supply must be provided according to the current National Fuel Gas Code or CSA-B149 standard.

Locations and Clearances
This furnace is CSA International certified for installation clearances to combustible material as listed on the unit nameplate and in the table in Figure 13. Accessibility and service clearances must take precedence over fire protection clearances.

NOTE: When furnace is installed on a combustible floor, a downflow combustible flooring base must be installed between the furnace and the floor.

For installation in a residential garage, the furnace must be installed so that the burner(s) and the ignition source are located no less than 18 inches (457 mm) above the floor. The furnace must be located or protected to avoid physical damage by vehicles. When a furnace is installed in a public garage, hangar, or other building that has a hazardous atmosphere, the furnace must be installed according to recommended good practice requirements and current National Fuel Gas Code or CSA B149 standards.

NOTE: Furnace must be adjusted to obtain a temperature rise within the range specified on the unit nameplate. Failure to do so may cause erratic limit operation and premature heat exchanger failure.

This gas furnace must be installed so that its electrical components are protected from water.

Installed in Combination with a Cooling Coil
When this furnace is used with cooling units (Figure 3), it shall be installed in parallel with, or on the upstream side of, cooling units to avoid condensation in the heating compartment. With a parallel flow arrangement, a damper (or other means to control the flow of air) must adequately prevent chilled air from entering the furnace. If the damper is manually operated, it must be equipped to prevent operation of either the heating or the cooling unit, unless it is in the full HEAT or COOL setting.

When installed, this furnace must be electrically grounded according to local codes. In addition, in the United States, installation must conform with the current National Electric Code, ANSI/NFPA No. 70. The National Electric Code (ANSI/NFPA No. 70) is available from the following address:

National Fire Protection Association
1 Battery March Park
Quincy, MA 02269

Figure 3

In Canada, installation must be installed according to the current regulations of the Canadian Electrical Code Part I (CSA Standard C22.1) and/or local codes.

NOTE: This furnace is designed for a minimum continuous return air temperature of 60°F (16°C) or an intermittent operation down to 55°F (13°C) dry bulb for cases where a night setback thermostat is used. Return air temperature must not exceed 85°F (29°C) dry bulb.

This gas furnace may be installed in alcoves, closets, attics, basements, garages, and utility rooms.

This furnace design has NOT been CSA certified for installation in mobile homes, recreational vehicles, or outdoors.

Never use an open flame to test for gas leaks. Check all connections using a commercially available soap solution made specifically for leak detection.

Use of Furnace as Construction Heater
These units are not recommended for use as a construction heater during any phase of construction. Very low return air temperature, harmful vapors and operation of the unit with clogged or misplaced filters will damage the unit.

These units may be used for heating of buildings or structures under construction, if the following conditions are met:

- The vent system must be permanently installed per these installation instructions.
- A room thermostat must control the furnace. The use of fixed jumpers that will provide continuous heating is not allowed.
- The return air duct must be provided and sealed to the furnace.
- Return air temperature range between 60°F (16°C) and 80°F (27°C) must be maintained.
- Air filters must be installed in the system and must be maintained during construction.
• Air filters must be replaced upon construction completion.
• The input rate and temperature rise must be set per the furnace rating plate.
• One hundred percent (100%) outdoor air must be provided for combustion air requirements during construction. Temporary ducting may supply outdoor air to the furnace. Do not connect duct directly to the furnace. Size the temporary duct following the instructions in section for Combustion, Dilution and Ventilation Air in a confined space with air from outside.
• The furnace heat exchanger, components, duct system, air filters and evaporator coils must be thoroughly cleaned following final construction cleanup.
• All furnace operating conditions (including ignition, input rate, temperature rise and venting) must be verified according to these installation instructions.

General

These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities having jurisdiction before installation.

In addition to the requirements outlined previously, the following general recommendations must be considered when installing one of these furnaces:

- Place the furnace as close to the center of the air distribution system as possible. The furnace should also be located close to the vent termination point.
- When the furnace is installed in non-direct vent applications, do not install the furnace where drafts might blow directly into it. This could cause improper combustion and unsafe operation.
- When the furnace is installed in a non-direct vent applications, do not block the furnace combustion air opening with clothing, boxes, doors, etc. Air is needed for proper combustion and safe unit operation.
- When the furnace is installed in an attic or other insulated space, keep insulation away from the furnace.
- When the furnace is installed in an unconditioned space, consider provisions required to prevent freezing of the condensate drain system.

NOTE: The Commonwealth of Massachusetts stipulates these additional requirements:
- Gas furnaces shall be installed by a licensed plumber or fitter only.
- The gas cock must be “T handle” type.
- When a furnace is installed in an attic, the passageway to and service area surrounding the equipment shall be floored.

CAUTION

These units should not be installed in areas normally subject to freezing temperatures.

WARNING

The State of California has determined that this product may contain or produce a chemical or chemicals, in very low doses, which may cause serious illness or death. It may also cause cancer, birth defects or reproductive harm.

Combustion, Dilution & Ventilation Air

If this unit is installed as a Non-Direct Vent Furnace, follow the guidelines in this section.

NOTE: In Non-Direct Vent Installations, combustion air is taken from indoors and flue gases are discharged outdoors.

WARNING

Insufficient combustion air can cause headaches, nausea, dizziness or asphyxiation. It will also cause excess water in the heat exchanger resulting in rusting and premature heat exchanger failure. Excessive exposure to contaminated combustion air will result in safety and performance related problems. Avoid exposure to the following substances in the combustion air supply:
- Permanent wave solutions
- Chlorinated waxes and cleaners
- Chlorine base swimming pool chemicals
- Water softening chemicals
- De-icing salts or chemicals
- Carbon tetrachloride
- Halogen type refrigerants
- Cleaning solvents (such as perchloroethylene)
- Printing inks, paint removers, varnishes, etc.
- Hydrochloric acid
- Cements and glues
- Antistatic fabric softeners for clothes dryers
- Masonry acid washing materials

In the past, there was no problem in bringing in sufficient outdoor air for combustion. Infiltration provided all the air that was needed. In today’s homes, tight construction practices make it necessary to bring in air from outside for combustion. Take into account that exhaust fans, appliance vents, chimneys, and fireplaces force additional air that could be used for combustion out of the house. Unless outside air is brought into the house for combustion, negative pressure (outside pressure is greater than inside pressure) will build to the point that a down draft can occur in the
furnace vent pipe or chimney. As a result, combustion gases enter the living space creating a potentially dangerous situation.

In the absence of local codes concerning air for combustion and ventilation, use the guidelines and procedures in this section to install these furnaces to ensure efficient and safe operation. You must consider combustion air needs and requirements for exhaust vents and gas piping. A portion of this information has been reprinted with permission from the National Fuel Gas Code (ANSI-Z223.1/NFPA 54). This reprinted material is not the complete and official position of ANSI on the referenced subject, which is represented only by the standard in its entirety.

In Canada, refer to the CSA B149 Installation codes.

Confined Space

A confined space is an area with a volume less than 50 cubic feet (1.42 m³) per 1,000 Btu (.29 kW) per hour of the combined input rating of all appliances installed in that space. This definition includes furnace closets or small equipment rooms.

When the furnace is installed so that supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air must be handled by ducts which are sealed to the furnace casing and which terminate outside the space containing the furnace. This is especially important when the furnace is mounted on a platform in a confined space such as a closet or small equipment room. Even a small leak around the base of the unit at the platform or at the return air duct connection can cause a potentially dangerous negative pressure condition.

Air for combustion and ventilation can be brought into the confined space either from inside the building or from outside.

Air from Inside

If the confined space that houses the furnace adjoins a space categorized as unconfined, air can be brought in by providing two permanent openings between the two spaces. Each opening must have a minimum free area of 1 square inch (645 mm²) per 1,000 Btu (.29 kW) per hour of total input rating of all gas-fired equipment in the confined space. Each opening must be at least 100 square inches (64516 mm²). One opening shall be within 12 inches (305 mm) of the top of the enclosure and one opening within 12 inches (305 mm) of the bottom. See Figure 4.

Equipment in Confined Space - All Air from Inside

NOTE: Each opening shall have a free area of at least one square inch per 1,000 Btu (645 mm² per .29 kW) per hour of the total input rating of all equipment in the enclosure, but not less than 100 square inches (64516 mm²).

Figure 4
Air from Outside

If air from outside is brought in for combustion and ventilation, the confined space shall be provided with two permanent openings. One opening shall be within 12’ (305 mm) of the top of the enclosure and one within 12’ (305 mm) of the bottom. These openings must communicate directly or by ducts with the outdoors or spaces (crawl or attic) that freely communicate with the outdoors or indirectly through vertical ducts. Each opening shall have a minimum free area of 1 square inch per 4,000 Btu (645 mm² per 1.17kW) per hour of total input rating of all equipment in the enclosure (See Figures 5 and 8). It is also permissible to bring in air for combustion from a ventilated attic (Figure 6) or ventilated crawl space (Figure 7).

When communicating with the outdoors through horizontal ducts, each opening shall have a minimum free area of 1 square inch (645 mm²) per 2,000 Btu (.56 kW) per hour of the total input rating of all equipment in the enclosure. See Figure 9.

When ducts are used, they shall be of the same cross-sectional area as the free area of the openings to which they connect. The minimum dimension of rectangular air ducts shall be no less than 3 inches (75 mm). In calculating free area, the blocking effect of louvers, grilles, or screens must be considered. If the design and free area of protective covering is not known for calculating the size opening required, it may be assumed that wood louvers will have 20 to 25 percent free area and metal louvers and grilles will have 60 to 75 percent free area. Louvers and grilles must be fixed in the open position or interlocked with the equipment so that they are opened automatically during equipment operation.
WARNING
Blower access panel must be securely in place when blower and burners are operating. Gas fumes, which could contain carbon monoxide, can be drawn into living space resulting in personal injury or death.

Allow for clearances to combustible materials as indicated on the unit nameplate. Minimum clearances for closet or alcove installations are shown in Figure 13.

NOTE: These units may be equipped with a shipping pad under the blower housing. Remove the shipping pad prior to operation.

INSTALLATION – Setting Equipment

Do not install the furnace on its front, back or in the horizontal position. See Figure 12. Do not connect the return air ducts to the back of the furnace. Doing so will adversely affect the operation of the safety control devices, which could result in personal injury or death.

Select a location that allows for the required clearances that are listed on the unit nameplate. Also consider gas supply connections, electrical supply, vent connection, condensate trap and drain connections, and installation and service clearances [24 inches (610 mm) at unit front]. The unit must be level from side to side. Tilt the unit slightly (maximum 1/2 in. from level) from back to front to aid in the draining of the heat exchanger. See Figure 11.

Shipping Bolt Removal

NOTE: Units with a 1/2 hp blower motors are equipped with three flexible legs and one rigid leg. The rigid leg is equipped with a shipping bolt and a flat white plastic washer (rather than the rubber mounting grommet used with a flexible mounting leg). See Figure 10. The bolt and washer must be removed before the furnace is placed into operation. After the bolt and washer have been removed, the rigid leg will not touch the blower housing.
WARNING

Improper installation of the furnace can result in personal injury or death. Combustion and flue products must never be allowed to enter the return air system or air in the living space. Use sheet metal screws and joint tape to seal return air system to furnace.

In platform installations with furnace return, the furnace should be sealed airtight to the return air plenum. The base must provide a stable support and an airtight seal to the furnace. Allow absolutely no sagging, cracks, gaps, etc.

For no reason should return and supply air duct systems ever be connected to or from other heating devices such as a fireplace or stove, etc. Fire, explosion, carbon monoxide poisoning, personal injury and/or property damage could result.

The unit may be installed three ways in downflow applications: on non-combustible flooring, on combustible flooring using an additive base, or on a reverse-flow cooling coil cabinet. **Do not drag the unit across the floor in the downflow position. Floor and furnace flange damage will result.**

Refer to Figure 13 for clearances in downflow applications.

Installation on Non-Combustible Flooring (Figure 14)

1. Cut floor opening keeping in mind clearances listed on unit rating plate. Also keep in mind gas supply connections, electrical supply, flue and air intake connections and sufficient installation and servicing clearances. See Table 1 for correct floor opening size.
2. Flange warm air plenum and lower the plenum into the opening.
3. Set the unit over the plenum and seal the plenum to the unit.
4. Ensure that the seal is adequate.

Non-Combustible Floor Opening Size

<table>
<thead>
<tr>
<th>Cabinet Width</th>
<th>Front to Rear</th>
<th>Side to Side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>mm</td>
</tr>
<tr>
<td>B Cabinet (17.5”)</td>
<td>19 – 3/4</td>
<td>502</td>
</tr>
<tr>
<td>C Cabinet (21”)</td>
<td>19 – 3/4</td>
<td>502</td>
</tr>
</tbody>
</table>

NOTE: Floor opening dimensions listed are 1/4 inch (6 mm) larger than the unit opening. See dimension drawing on page 2.

Installation on Combustible Flooring (Figure 15)

1. When unit is installed on a combustible floor, a downflow combustible flooring base must be installed between the furnace and the floor. The base must be ordered separately. See Table 2 for opening size to cut in floor.

CAUTION

The furnace and combustible flooring base shall not be installed directly on carpeting, tile, or other combustible material other than wood flooring.
2. After opening is cut, set the combustible flooring base into opening.

3. Check fiberglass strips on the combustible flooring base to make sure they are properly glued and positioned.

4. Lower supply air plenum into the combustible flooring base until plenum flanges seal against fiberglass strips.

NOTE: Be careful not to damage fiberglass strips. Check for a tight seal.

5. Set the furnace over the plenum.

6. Ensure that the seal between the furnace and plenum is adequate.

Installation on Cooling Coil Cabinet (Figure 16)

NOTE: Downflow combustible flooring kit is not used.

1. Refer to reverse-flow coil installation instructions for correctly sized opening in floor and installation of cabinet.

2. When cooling cabinet is in place, set and secure the furnace according to the instructions that are provided with the cooling coil. Secure the furnace to the cabinet.

3. Seal the cabinet and check for air leaks.
Filters
This unit is not equipped with a filter or rack. A field provided filter is required for the unit to operate properly. Table 3 lists recommended filter sizes.

A filter must be in place whenever the unit is operating.

<table>
<thead>
<tr>
<th>Furnace Cabinet Width</th>
<th>Filter Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-1/2"</td>
<td>16 x 25 x 1 (1)</td>
</tr>
<tr>
<td>21"</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Duct System
Use industry-approved standards to size and install the supply and return air duct system. This will result in a quiet and low-static system that has uniform air distribution.

NOTE: This furnace is not certified for operation in heating mode (indoor blower operating at selected heating speed) with an external static pressure which exceeds 0.5 inches w.c. Operation at these conditions may result in improper limit operation.

Supply Air Plenum
If the furnace is installed without a cooling coil, a removable access panel should be installed in the supply air duct. The access panel should be large enough to permit inspection (by reflected light) of the heat exchanger for leaks after the furnace is installed. The furnace access panel must always be in place when the furnace is operating and it must not allow leaks into the supply air duct system.

Return Air Plenum

NOTE: Return air must not be drawn from a room where this furnace, or any other gas-fueled appliance (i.e., water heater), or carbon monoxide-producing device (i.e., wood fireplace) is installed.

When return air is drawn from a room, a negative pressure is created in the room. If a gas appliance is operating in a room with negative pressure, the flue products can be pulled back down the vent pipe and into the room. This reverse flow of the flue gas may result in incomplete combustion and the formation of carbon monoxide gas. This toxic gas might then be distributed throughout the house by the furnace duct system.

Use fiberglass sealing strips, caulking, or equivalent sealing method between the plenum and the furnace cabinet to ensure a tight seal. If a filter is installed, size the return air duct to fit the filter frame.

CAUTION
Solvent cements for plastic pipe are flammable liquids and should be kept away from all sources of ignition. Do not use excessive amounts of solvent cement when making joints. Good ventilation should be maintained to reduce fire hazard and to minimize breathing of solvent vapors. Avoid contact of cement with skin and eyes.

Pipe & Fittings Specifications
All pipe, fittings, primer and solvent cement must conform with American National Standard Institute and the American Society for Testing and Materials (ANSI/ASTM) standards. The solvent shall be free flowing and contain no lumps, undissolved particles or any foreign matter that adversely affects the joint strength or chemical resistance of the cement. The cement shall show no gelation, stratification, or separation that cannot be removed by stirring. Refer to Table 4 below for approved piping and fitting materials.

PIPING AND FITTINGS SPECIFICATIONS

Schedule 40 PVC (Pipe)	D1785
Schedule 40 PVC (Cellular Core Pipe)	F891
Schedule 40 PVC (Fittings)	D2466
Schedule 40 CPVC (Pipe)	F441
Schedule 40 CPVC (Fittings)	F438
SDR-21 PVC or SDR-26 PVC (Pipe)	D2241
SDR-21 CPVC or SDR-26 CPVC (Pipe)	F442
Schedule 40 ABS Cellular Core DWV (Pipe)	F628
Schedule 40 ABS (Pipe)	D1527
Schedule 40 ABS (Fittings)	D2468
ABS-DWV (Drain Waste & Vent) (Pipe & Fittings)	D2661
PVC-DWV (Drain Waste & Vent) Pipe & Fittings)	D2665

PRIMER & SOLVENT CEMENT

PVC & CPVC Primer	F656
PVC Solvent Cement	D2564
CPVC Solvent Cement	F493
ABS Solvent Cement	D2235
PVC/CPVC/ABS All Purpose Cement For Fittings & Pipe of the same material	D2564, D2235, F493
ABS to PVC or CPVC Transition Solvent Cement	D3138

CANADA PIPE & FITTING & SOLVENT CEMENT MARKING

PVC & CPVC Pipe and Fittings	ULCS636
PVC & CPVC Solvent Cement	ULCS636
ABS to PVC or CPVC Transition Cement	ULCS636

POLYPROPYLENE VENTING SYSTEM

| PolyPro® by Duravent | ULC-S636 |
| InnoFlue® by Centrotherm | ULC-S636 |
The exhaust and intake connections are made of PVC. Use PVC primer and solvent cement when using PVC vent pipe. When using ABS vent pipe, use transitional solvent cement to make connections to the PVC fitting in the unit.

Use PVC primer and solvent cement or ABS solvent cement meeting ASTM specifications, refer to Table 4. As an alternate, use all purpose cement, to bond ABS, PVC, or CPVC pipe when using fittings and pipe made of the same materials. Use transition solvent cement when bonding ABS to either PVC or CPVC.

Low temperature solvent cement is recommended during cooler weather. Metal or plastic strapping may be used as vent pipe hangers. Uniformly apply a liberal coat of PVC primer for PVC or use a clean dry cloth for ABS to clean inside socket surface of fitting and male end of pipe to depth of fitting socket.

Canadian Applications Only
Pipe, fittings, primer and solvent cement used to vent (exhaust) this appliance must be certified to ULC S636 and supplied by a single manufacturer as part of an approved vent (exhaust) system. When bonding the vent system to the furnace, use ULC S636 approved One-Step Transition Cement to bond the pipe to the flue collar. In addition, the first three feet of vent pipe from the furnace flue collar must be accessible for inspection.

Table 5 lists the available exhaust termination kits. All vent terminations are PVC.

Outdoor Termination Kits Usage

<table>
<thead>
<tr>
<th>A95DF1E</th>
<th>VENT PIPE DIA. (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A93DF1E</td>
<td>1-1/2" X 12"</td>
</tr>
<tr>
<td>95G1DFE</td>
<td>2" X 12"</td>
</tr>
<tr>
<td>92G1DFE</td>
<td>51W11**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>CONCENTRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Exhaust Accelerator (Dia. X Length)</td>
<td>1-1/2" Concentric Kit</td>
</tr>
<tr>
<td>Outdoor Exhaust Accelerator (Dia. X Length)</td>
<td>2" Concentric Kit</td>
</tr>
<tr>
<td>Flush-Mount Kit</td>
<td>3" Concentric Kit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VENT PIPE DIA. (in.)</th>
<th>045</th>
<th>070</th>
<th>090</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2" X 12"</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>2" X 12"</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>51W11**</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>71M80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>or 44W92†</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>69M29†</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>or 44W92††</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>60L46†</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>or 44W93†††</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

* Requires field-provided and installed 1-1/2" exhaust accelerator.

** Kit 51W11 is provided with a 1-1/2" accelerator which must be used for all 45,000 and 70,000 furnace installations.

† Termination kits 44W92, 44W93, 30G28 AND 81J20 approved for use in Canadian installations to meet CSAB149 and ULC S636.

†† The 44W92 Concentric kit is provided with a 1-1/2" accelerator which must be installed on the exhaust outlet when this kit is used with the 45,000 and 70,000 furnaces.

Table 5
Joint Cementing Procedure

All cementing of joints should be done according to the specifications outlined in ASTM D 2855.

NOTE: A sheet metal screw may be used to secure the intake pipe to the connector, if desired. Use a drill or self tapping screw to make a pilot hole.

1. Measure and cut vent pipe to desired length.
2. Debur and chamfer end of pipe, removing any ridges or rough edges. If end is not chamfered, edge of pipe may remove cement from fitting socket and result in a leaking joint.
3. Clean and dry surfaces to be joined.
4. Test fit joint and mark depth of fitting on outside of pipe.
5. Uniformly apply a liberal coat of PVC primer for PVC or use a clean dry cloth for ABS to clean inside socket surface of fitting and male end of pipe to depth of fitting socket.
6. Promptly apply solvent cement to end of pipe and inside socket surface of fitting. Cement should be applied lightly but uniformly to inside of socket. Take care to keep excess cement out of socket. Apply second coat to end of pipe.

NOTE: Time is critical at this stage. Do Not allow Primer to dry before applying cement.

7. Immediately after applying last coat of cement to pipe, and while both inside socket surface and end of pipe are wet with cement, forcefully insert end of pipe into socket until it bottoms out. Turn PVC pipe 1/4 turn during assembly (but not after pipe is fully inserted) to distribute cement evenly. Do not turn ABS or cellular core pipe.

NOTE: Assembly should be completed within 20 seconds after last application of cement. Hammer blows should not be used when inserting pipe.

8. After assembly, wipe excess cement from pipe at end of fitting socket. A properly made joint will show a bead around its entire perimeter. Any gaps may indicate an improper defective assembly due to insufficient solvent.
9. Handle joints carefully until completely set.

Venting Practices

DANGEROUS

DANGER OF EXPLOSION!

Fumes from PVC glue may ignite during system check. Allow fumes to dissipate for at least 5 minutes before placing unit into operation.

Piping Suspension Guidelines

- SCHEDULE 40
 - PVC – 5’
 - all other pipe* – 3’

* See Table 4 for allowable pipe.

NOTE: Isolate piping at the point where it exits the outside wall or roof in order to prevent transmission of vibration to the structure.

Wall Thickness Guidelines

![Diagram of venting practices](image)

Removal of the Furnace from Common Vent

In the event that an existing furnace is removed from a venting system commonly run with separate gas appliances, the venting system is likely to be too large to properly vent the remaining attached appliances.

Conduct the following test while each appliance is operating and the other appliances (which are not operating) remain connected to the common venting system. If the venting system has been installed improperly, you **must** correct the system as indicated in the general venting requirements section.
1. Seal any unused openings in the common venting system.
2. Inspect the venting system for proper size and horizontal pitch. Determine that there is no blockage, restriction, leakage, corrosion, or other deficiencies which could cause an unsafe condition.
3. Close all building doors and windows and all doors between the space in which the appliances remaining connected to the common venting system are located and other spaces of the building. Turn ON clothes dryers and any appliances not connected to the common venting system. Turn ON any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.
4. Follow the lighting instructions. Turn ON the appliance that is being inspected. Adjust the thermostat so that the appliance operates continuously.
5. After the main burner has operated for 5 minutes, test for leaks of flue gases at the draft hood relief opening. Use the flame of a match or candle.
6. After determining that each appliance connected to the common venting system is venting properly, (step 3) return all doors, windows, exhaust fans, fireplace dampers, and any other gas burning appliances to their previous mode of operation.
7. If a venting problem is found during any of the preceding tests, the common venting system must be modified to correct the problems.

Resize the common venting system to the minimum vent pipe size determined by using the appropriate tables in Appendix G. These are in the current standards of the National Fuel Gas Code ANSI Z223.1.
Vent Piping Guidelines

This gas furnace can be installed as either a Non-Direct Vent or a Direct Vent gas central furnace.

NOTE: In non-Direct Vent installations, combustion air is taken from indoors and flue gases are discharged outdoors. In Direct Vent installations, combustion air is taken from outdoors and flue gases are discharged outdoors.

Intake and exhaust pipe sizing - Size pipe according to Tables 6 and 7. Table 6 lists the minimum vent pipe lengths permitted. Table 7 lists the maximum pipe lengths permitted.

Regardless of the diameter of pipe used, the standard roof and wall terminations described in section Exhaust Piping Terminations should be used. Exhaust vent termination pipe is sized to optimize the velocity of the exhaust gas as it exits the termination.

In some applications which permit the use of several different sizes of vent pipe, a combination vent pipe may be used. Contact Allied Air Technical Service for assistance in sizing vent pipe in these applications.

MINIMUM VENT PIPE LENGTHS

<table>
<thead>
<tr>
<th>A95DF, 95G1DF, A93DF, & 92G1DF MODELS</th>
<th>MIN. VENT LENGTH*</th>
</tr>
</thead>
<tbody>
<tr>
<td>045, 070, 090, 110</td>
<td>15 ft. or 5 ft plus 2 elbows or 10 ft plus 1 elbow</td>
</tr>
</tbody>
</table>

Use the following steps to correctly size vent pipe diameter.

1. Furnace capacity?
 - 045, 070, 090, 110

2. Which termination?
 - Standard or Concentric? See Table 5

3. Which needs most elbows?
 - Intake or exhaust

4. How many?

5. Desired pipe size?
 - 2", 2 1/2", or 3"

6. What is the altitude?

7. Use Table 7 or 8 to find max intake or exhaust pipe length.

CAUTION

Do not discharge exhaust into an existing stack or stack that also serves another gas appliance. If vertical discharge through an existing unused stack is required, insert PVC pipe inside the stack until the end is even with the top or outlet end of the metal stack.

CAUTION

The exhaust vent pipe operates under positive pressure and must be completely sealed to prevent leakage of combustion products into the living space.
Maximum Allowable Intake or Exhaust Vent Length in Feet

*Size intake and exhaust pipe length separately. Values in table are for Intake OR Exhaust, not combined total. Both Intake and Exhaust must be same pipe size.

Standard Termination at Elevation 0 – 10,000 ft.

<table>
<thead>
<tr>
<th>Number Of 90° Elbows Used</th>
<th>2” Pipe</th>
<th>2-1/2” Pipe</th>
<th>3” Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>045 070 090 110</td>
<td>045 070</td>
<td>090 110</td>
<td>045 070</td>
</tr>
<tr>
<td>1</td>
<td>61 46</td>
<td>24</td>
<td>100 80</td>
</tr>
<tr>
<td>2</td>
<td>56 41</td>
<td>19</td>
<td>95 75</td>
</tr>
<tr>
<td>3</td>
<td>51 36</td>
<td>14</td>
<td>90 70</td>
</tr>
<tr>
<td>4</td>
<td>46 31</td>
<td></td>
<td>85 65</td>
</tr>
<tr>
<td>5</td>
<td>41 26</td>
<td></td>
<td>80 60</td>
</tr>
<tr>
<td>6</td>
<td>36 21</td>
<td></td>
<td>75 55</td>
</tr>
<tr>
<td>7</td>
<td>31 16</td>
<td></td>
<td>70 50</td>
</tr>
<tr>
<td>8</td>
<td>26 11</td>
<td></td>
<td>65 45</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td></td>
<td>60 40</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td></td>
<td>55 35</td>
</tr>
</tbody>
</table>

Concentric Termination Elevation 0 – 10,000 ft.

<table>
<thead>
<tr>
<th>Number Of 90° Elbows Used</th>
<th>2” Pipe</th>
<th>2-1/2” Pipe</th>
<th>3” Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>045 070 090 110</td>
<td>045 070</td>
<td>090 110</td>
<td>045 070</td>
</tr>
<tr>
<td>1</td>
<td>53 38</td>
<td>22</td>
<td>90 70</td>
</tr>
<tr>
<td>2</td>
<td>48 33</td>
<td>17</td>
<td>85 65</td>
</tr>
<tr>
<td>3</td>
<td>43 28</td>
<td>12</td>
<td>80 60</td>
</tr>
<tr>
<td>4</td>
<td>38 23</td>
<td></td>
<td>75 55</td>
</tr>
<tr>
<td>5</td>
<td>33 18</td>
<td></td>
<td>70 50</td>
</tr>
<tr>
<td>6</td>
<td>28 13</td>
<td></td>
<td>65 45</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td></td>
<td>60 40</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td></td>
<td>55 35</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td></td>
<td>50 30</td>
</tr>
<tr>
<td>10</td>
<td>n/a</td>
<td></td>
<td>45 25</td>
</tr>
</tbody>
</table>

Table 7
Maximum Allowable Exhaust Vent Lengths With Furnace Installed in a Closet or Basement Using Ventilated Attic or Crawl Space For Intake Air in Feet

NOTE - Additional vent pipe and elbows used to terminate the vent pipe outside the structure must be included in the total vent length calculation.

<table>
<thead>
<tr>
<th>Number Of 90° Elbows Used</th>
<th>2" Pipe</th>
<th>2-1/2" Pipe</th>
<th>3" Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td>045</td>
<td>070</td>
<td>090</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>36</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>21</td>
<td>n/a</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>16</td>
<td>n/a</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>11</td>
<td>n/a</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>6</td>
<td>n/a</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>11</td>
<td>n/a</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>6</td>
<td>n/a</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>11</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 8
Figure 22

Typical *Exhaust* Pipe Connections

Pipe size determined in Table 7.

2"

2"

or

2"

2"

3"

TRANSITION

"2"

DO NOT transition from smaller to larger pipe size in horizontal runs of exhaust pipe.

* When transitioning up in pipe size, use the shortest length of 2" PVC pipe possible.

NOTE: Exhaust pipe and intake pipe must be the same diameter.

Figure 23

Typical *Intake* Pipe Connections (Direct Vent Applications)

Pipe size determined in Table 7.

2"

2"

or

2"

2"

3"

TRANSITION

"2"

"2"

3"

INTAKE

EXHAUST

* When transitioning up in pipe size, use the shortest length of 2" PVC pipe possible.

NOTE: Intake pipe and exhaust pipe must be the same diameter.
Intake Piping
This furnace may be installed in either direct vent or non-direct vent applications. In non-direct vent applications, when intake air will be drawn into the furnace from the surrounding space, the indoor air quality must be considered. Guidelines listed in Combustion, Dilution and Ventilation Air section must be followed.

Follow the next two steps when installing the unit in Direct Vent applications, where combustion air is taken from outdoors and flue gases are discharged outdoors. The provided air intake screen must not be used in direct vent applications (outdoors).
1. Use cement or a sheet metal screw to secure the intake pipe to the inlet air connector.
2. Route piping to outside of structure. Continue with installation following instructions given in general guide lines for piping terminations and intake and exhaust piping terminations for direct vent sections. Refer to Table 7 for pipe sizes.

Follow the next two steps when installing the unit in Non-Direct Vent applications where combustion air is taken from indoors and flue gases are discharged outdoors.
1. Use field-provided materials and the factory-provided air intake screen to route the intake piping as shown in Figure 27. Maintain a minimum clearance of 3" (76 mm) around the air intake opening. The air intake opening (with the protective screen) should always be directed forward, or sideways.
2. If intake air is drawn from a ventilated attic (Figure 25) or ventilated crawlspace (Figure 26) the exhaust vent length must not exceed those listed in Table 8. If 3" diameter pipe is used, reduce to 2" diameter pipe at the termination point to accommodate the debris screen.

CAUTION
If this unit is being installed in an application with combustion air coming in from a space serviced by an exhaust fan, power exhaust fan, or other device which may create a negative pressure in the space, take care when sizing the inlet air opening. The inlet air opening must be sized to accommodate the maximum volume of exhausted air as well as the maximum volume of combustion air required for all gas appliances serviced by this space.

NOTE: The inlet and outlet air openings shall each have a free area of at least one square inch per 4,000 Btu (645mm² per 1.17kW) per hour of the total input rating of all equipment in the enclosure.

* See table 9 for maximum vent lengths

Figure 24

Typical Air Intake Pipe Connections
Non-Direct Vent Applications

NOTE: Air intake screen and elbow may be rotated, so that screen may be positioned to face forward or to either side.

Figure 25

Equipment in Confined Space
(Inlet Air from Ventilated Attic and Outlet Air to Outside)

* See table 9 for maximum vent lengths

Figure 26

Equipment in Confined Space
(Inlet Air from Ventilated Crawlspace & Outlet Air to Outside)

* See table 9 for maximum vent lengths

NOTE: The inlet and outlet air openings shall each have a free area of at least one square inch per 4,000 Btu (645mm² per 1.17kW) per hour of the total input rating of all equipment in the enclosure.
General Guidelines for Vent Terminations

In Non-Direct Vent applications, combustion air is taken from indoors and the flue gases are discharged to the outdoors. This unit is then classified as a non-direct vent, Category IV gas furnace.

In Direct Vent applications, combustion air is taken from outdoors and the flue gases are discharged to the outdoors. This unit is then classified as a direct vent, Category IV gas furnace.

In both Non-Direct Vent and Direct Vent applications, the vent termination is limited by local building codes. In the absence of local codes, refer to the current National Fuel Gas Code ANSI Z223-1/NFPA 54 in U.S.A., and current CSA-B149 Natural Gas and Propane Installation Codes in Canada for details.

Position termination according to location given in Figure 27 or 28. In addition, position termination so it is free from any obstructions and 12" above the average snow accumulation.

At vent termination, care must be taken to maintain protective coatings over building materials (prolonged exposure to exhaust condensate can destroy protective coatings). It is recommended that the exhaust outlet not be located within 6 feet (1.8 m) of a condensing unit because the condensate can damage the painted coating.

![IMPORTANT](image)

Do not use screens or perforated metal in exhaust terminations. Doing so will cause freeze-ups and may block the terminations.

![IMPORTANT](image)

For Canadian Installations Only:
In accordance to CSA International B149 installation codes, the minimum allowed distance between the combustion air intake inlet and the exhaust outlet of other appliances shall not be less than 12 inches (305 mm).

Maximum Allowable Exhaust Vent Pipe Length (in ft.) Without Insulation
In Unconditioned Space For Winter Design Temperatures Single - Stage High Efficiency Furnace

<table>
<thead>
<tr>
<th>Winter Design Temperatures</th>
<th>Vent Pipe Diameter</th>
<th>Unit Input Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PVC</td>
</tr>
<tr>
<td>045</td>
<td>070</td>
<td>090</td>
</tr>
<tr>
<td>32 to 21 (0 to -6)</td>
<td>2 in.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2-1/2 in.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3 in.</td>
<td>9</td>
</tr>
<tr>
<td>20 to 1 (-7 to -17)</td>
<td>2 in.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2-1/2 in.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3 in.</td>
<td>N/A</td>
</tr>
<tr>
<td>0 to -20 (-18 to -29)</td>
<td>2 in.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2-1/2 in.</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3 in.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 Refer to 99% Minimum Design Temperature table provided in the current edition of the ASHRAE Fundamentals Handbook.

2 Poly-Propylene vent pipe (PP) by Duravent and Centrotherm

NOTE - Concentric terminations are the equivalent of 5' and should be considered when measuring pipe length.

NOTE - Maximum uninsulated vent lengths listed may include the termination (vent pipe exterior to the structure) and cannot exceed 5 linear feet or the maximum allowable intake or exhaust vent length listed in table 5 or 6.

NOTE - If insulation is required in an unconditioned space, it must be located on the pipe closed to the furnace.
Vent Termination Clearances
For Non-Direct Vent Installations in the USA and Canada

<table>
<thead>
<tr>
<th></th>
<th>US Installations 1</th>
<th>Canadian Installations 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Clearance above grade, veranda, porch, deck or balcony</td>
<td>12 inches (305mm) or 12 in. 305mm) above average snow accumulation.</td>
</tr>
<tr>
<td></td>
<td>12 inches (305mm) or 12 in. 305mm) above average snow accumulation.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Clearance to window or door that may be opened</td>
<td>4 feet (1.2 m) below or to side of opening; 1 foot (30 cm) above opening</td>
</tr>
<tr>
<td></td>
<td>6 inches (152mm) for appliances <10,000 Btu/h (3kw), 12 inches (305mm) for appliances > 10,000 Btu/h (3kw) and <100,000 Btu/h (30kw), 36 inches (9.9m) for appliances > 100,000 Btu/h (30kw)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Clearance to permanently closed window</td>
<td>* 12*</td>
</tr>
<tr>
<td>D</td>
<td>Vertical clearance to ventilated soffit located above the terminal within a horizontal distance of 2 feet (mm) from the center line of the terminal</td>
<td>* Equal to or greater than soffit depth.</td>
</tr>
<tr>
<td></td>
<td>* Equal to or greater than soffit depth.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Clearance to unventilated soffit</td>
<td>* Equal to or greater than soffit depth.</td>
</tr>
<tr>
<td>F</td>
<td>Clearance to outside corner</td>
<td>* No minimum to outside corner</td>
</tr>
<tr>
<td>G</td>
<td>Clearance to inside corner</td>
<td>*</td>
</tr>
<tr>
<td>H</td>
<td>Clearance to each side of center line extended above meter / regulator assembly</td>
<td>3 feet (.9m) within a height 15 feet (4.5m) above the meter / regulator assembly</td>
</tr>
<tr>
<td></td>
<td>3 feet (.9m) within a height 15 feet (4.5m) above the meter / regulator assembly</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Clearance to service regulator outlet</td>
<td>* 3 feet (.9m)</td>
</tr>
<tr>
<td>J</td>
<td>Clearance to non-mechanical air supply inlet to building or the combustion air inlet to any other appliance</td>
<td>4 feet (1.2 m) below or to side of opening; 1 foot (30 cm) above opening</td>
</tr>
<tr>
<td></td>
<td>6 inches (152mm) for appliances <10,000 Btu/h (3kw), 12 inches (305mm) for appliances > 10,000 Btu/h (3kw) and <100,000 Btu/h (30kw), 36 inches (9.9m) for appliances > 100,000 Btu/h (30kw)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Clearance to mechanical air supply inlet</td>
<td>3 feet (.9m) above if within 10 feet (3m) horizontally</td>
</tr>
<tr>
<td>L</td>
<td>Clearance above paved sidewalk or paved driveway located on public property</td>
<td>7 feet (2.1 m)†</td>
</tr>
<tr>
<td></td>
<td>7 feet (2.1m)†</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Clearance under veranda, porch, deck or balcony</td>
<td>*12 inches (305mm)‡</td>
</tr>
<tr>
<td></td>
<td>12 inches (305mm)‡</td>
<td></td>
</tr>
</tbody>
</table>

1 In accordance with the current ANSI Z223.1/NFPA 54 Natural Gas Code
2 In accordance with the current CSA B149.1, Natural Gas and Propane Installation Code
† A vent shall not terminate directly above a sidewalk or paved driveway that is located between two single family dwellings and serves both dwellings.
‡ Permitted only if veranda, porch, deck or balcony is fully open on a minimum of two sides beneath the floor. Lennox recommends avoiding this location if possible.

For clearances not specified in ANSI Z223.1/NFPA 54 or CSA B149.1, clearance will be in accordance with local installation codes and the requirements of the gas supplier and these installation instructions.

Figure 27
Vent Termination Clearances

For Direct Vent installations in the USA and Canada

Figure 28

<table>
<thead>
<tr>
<th>US Installations</th>
<th>Canadian Installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Clearance above grade, veranda, porch, deck or balcony</td>
</tr>
<tr>
<td>B</td>
<td>Clearance to window or door that may be opened</td>
</tr>
<tr>
<td>C</td>
<td>Clearance to permanently closed window</td>
</tr>
<tr>
<td>D</td>
<td>Vertical clearance to ventilated soffit located above the terminal within a horizontal distance of 2 feet (600 mm) from the center line of the terminal</td>
</tr>
<tr>
<td>E</td>
<td>Clearance to unventilated soffit</td>
</tr>
<tr>
<td>F</td>
<td>Clearance to outside corner</td>
</tr>
<tr>
<td>G</td>
<td>Clearance to inside corner</td>
</tr>
<tr>
<td>H</td>
<td>Clearance to each side of center line extended above meter / regulator assembly</td>
</tr>
<tr>
<td>I</td>
<td>Clearance to service regulator vent outlet</td>
</tr>
<tr>
<td>J</td>
<td>Clearance to non-mechanical air supply inlet to building or the combustion air inlet to any other appliance</td>
</tr>
<tr>
<td>K</td>
<td>Clearance to mechanical air supply inlet</td>
</tr>
<tr>
<td>L</td>
<td>Clearance above paved sidewalk or paved driveway located on public property</td>
</tr>
<tr>
<td>M</td>
<td>Clearance under veranda, porch, deck or balcony</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Clearances Details</th>
<th>US Installations</th>
<th>Canadian Installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Clearance above grade, veranda, porch, deck or balcony</td>
<td>12 inches (305 mm) or 12 in. (305 mm)</td>
<td>12 inches (305 mm) or 12 in. (305 mm)</td>
</tr>
<tr>
<td>B</td>
<td>Clearance to window or door that may be opened</td>
<td>6 inches (152 mm) for appliances < 10,000 Btu (3kW), 9 inches (mm) for appliances > 10,000 Btu (3kW) and < 50,000 Btu (15 kW), 12 inches (305 mm) for appliances > 50,000 Btu (15 kW)</td>
<td>6 inches (152 mm) for appliances < 10,000 Btu (3kW), 12 inches (305 mm) for appliances > 10,000 Btu (3kW) and < 100,000 Btu (30kW), 36 inches (914 mm) for appliances > 100,000 Btu (30kW)</td>
</tr>
<tr>
<td>C</td>
<td>Clearance to permanently closed window</td>
<td>12"</td>
<td>12"</td>
</tr>
<tr>
<td>D</td>
<td>Vertical clearance to ventilated soffit located above the terminal within a horizontal distance of 2 feet (600 mm) from the center line of the terminal</td>
<td>* Equal to or greater than soffit depth</td>
<td>* Equal to or greater than soffit depth</td>
</tr>
<tr>
<td>E</td>
<td>Clearance to unventilated soffit</td>
<td>* Equal to or greater than soffit depth</td>
<td>* Equal to or greater than soffit depth</td>
</tr>
<tr>
<td>F</td>
<td>Clearance to outside corner</td>
<td>No minimum to outside corner</td>
<td>No minimum to outside corner</td>
</tr>
<tr>
<td>G</td>
<td>Clearance to inside corner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Clearance to each side of center line extended above meter / regulator assembly</td>
<td>3 feet (.9 m) within a height 15 feet (4.5 m) above the meter / regulator assembly</td>
<td>3 feet (.9 m) within a height 15 feet (4.5 m) above the meter / regulator assembly</td>
</tr>
<tr>
<td>I</td>
<td>Clearance to service regulator vent outlet</td>
<td>3 feet (.9 m)</td>
<td>3 feet (.9 m)</td>
</tr>
<tr>
<td>J</td>
<td>Clearance to non-mechanical air supply inlet to building or the combustion air inlet to any other appliance</td>
<td>6 inches (152 mm) for appliances < 10,000 Btu (3kW), 9 inches (mm) for appliances > 10,000 Btu (3kW) and < 50,000 Btu (15 kW), 12 inches (305 mm) for appliances > 50,000 Btu (15 kW)</td>
<td>6 inches (152 mm) for appliances < 10,000 Btu (3kW), 12 inches (305 mm) for appliances > 10,000 Btu (3kW) and < 100,000 Btu (30kW), 36 inches (914 mm) for appliances > 100,000 Btu (30kW)</td>
</tr>
<tr>
<td>K</td>
<td>Clearance to mechanical air supply inlet</td>
<td>3 feet (.9 m) above if within 10 feet (3 m) horizontally</td>
<td>6 feet (1.8 m)</td>
</tr>
<tr>
<td>L</td>
<td>Clearance above paved sidewalk or paved driveway located on public property</td>
<td>7 feet (2.1 m)</td>
<td>7 feet (2.1 m)</td>
</tr>
<tr>
<td>M</td>
<td>Clearance under veranda, porch, deck or balcony</td>
<td>12 inches (305 mm)†</td>
<td>12 inches (305 mm)†</td>
</tr>
</tbody>
</table>

1. In accordance with the current ANSI Z223.1/NFPA 54 Natural Gas Fuel Code.
2. In accordance with the current CSA B149.1, Natural Gas and Propane Installation Code.
3. A vent shall not terminate directly above a sidewalk or paved driveway that is located between two single family dwellings and serves both dwellings.
4. Permitted only if veranda, porch, deck or balcony is fully open on a minimum of two sides beneath the floor. Lennox recommends avoiding this location if possible.

For clearances not specified in ANSI Z223.1/NFPA 54 or CSA B149.1, clearances will be in accordance with local installation codes and the requirements of the gas supplier and these installation instructions.
Details of Intake and Exhaust Piping Terminations for Direct Vent Installations

NOTE: In Direct Vent installations, combustion air is taken from outdoors and flue gases are discharged to outdoors.

NOTE: Flue gas may be slightly acidic and may adversely affect some building materials. If any vent termination is used and the flue gases may impinge on the building material, a corrosion-resistant shield (minimum 24 inches square) must be used to protect the wall surface. If the optional tee is used, the protective shield is required. The shield should be constructed using wood, plastic, sheet metal or other suitable material. All seams, joints, cracks, etc. in the affected area should be sealed using an appropriate sealant. See Figure 33.

Intake and exhaust pipes may be routed either horizontally through an outside wall or vertically through the roof. In attic or closet installations, vertical termination through the roof is preferred. Figures 29 through 39 show typical terminations.

1. Vent terminations are not required to be in the same pressure zone. You may exit the intake on one side of the structure and the exhaust on another side (Figure 30). You may exit the exhaust out the roof and the intake out the side of the structure (Figure 31).

2. Intake and exhaust pipes should be placed as close together as possible at termination end (refer to illustrations). Maximum separation is 3" (76 mm) on roof terminations and 6" (152 mm) on side wall terminations.

3. On roof terminations, the intake piping should terminate straight down using two 90° elbows (See Figure 29).

4. Exhaust piping must terminate straight out or up as shown. A reducer may be required on the exhaust piping at the point where it exits the structure to improve the velocity of exhaust away from the intake piping. See Table 10.

5. On field supplied terminations for side wall exit, exhaust piping may extend a maximum of 12 inches (305 mm) for 2" PVC and 20 inches (508 mm) for 3" (76 mm) PVC beyond the outside wall. Intake piping should be as short as possible. See Figures 34 and 35.

NOTE: Care must be taken to avoid recirculation of exhaust back into intake pipe.
7. If intake and exhaust piping must be run up a side wall to position above snow accumulation or other obstructions, piping must be supported every 24" (610 mm) as shown in Figures 34 and 35. When exhaust and intake piping must be run up an outside wall, the exhaust piping must be terminated with pipe sized per Table 10. The intake piping may be equipped with a 90° elbow turndown. Using turndown will add 5 feet (1.5 m) to the equivalent length of the pipe.

8. Based on the recommendation of the manufacturer, a multiple furnace installation may use a group of up to four terminations assembled together horizontally, as shown in Figure 38.

Figure 32

Figure 33

TABLE 10

<table>
<thead>
<tr>
<th></th>
<th>2" (51mm) Vent Pipe</th>
<th>3" (76mm) Vent Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Clearance above grade or average snow accumulation</td>
<td>12" (508MM) Min.</td>
<td>12" (508MM) Min.</td>
</tr>
<tr>
<td>B – Horizontal separation between intake and exhaust</td>
<td>6" (152MM) Min. 24" (610 MM) Max</td>
<td>6" (152MM) Min. 24" (610 MM) Max</td>
</tr>
<tr>
<td>C – Minimum from end of exhaust to inlet of intake</td>
<td>9" (227MM) Min.</td>
<td>9" (227MM) Min.</td>
</tr>
<tr>
<td>D – Exhaust pipe length</td>
<td>12" (305MM) Min. 16" (405 MM) Max</td>
<td>12" (305MM) Min. 20" (508MM) Max</td>
</tr>
<tr>
<td>E – Wall support distance from top of each pipe (intake/exhaust)</td>
<td>6" (152MM) Max.</td>
<td>6" (152MM) Max.</td>
</tr>
</tbody>
</table>

1 The exhaust termination tee should be connected to the 2" or 3" PVC flue pipe as shown in the illustration. Do not use an accelerator in applications that include an exhaust termination tee. The accelerator is not required.

2 As required. Flue gas may be acidic and may adversely affect some building materials. If a side wall vent termination is used and flue gases will impinge on the building materials, a corrosion-resistant shield (24 inches square) should be used to protect the wall surface. If optional tee is used, the protective shield is recommended. The shield should be constructed using wood, sheet metal or other suitable material. All seams, joints, cracks, etc. in affected area, should be sealed using an appropriate sealant.

3 Exhaust pipe 45° elbow can be rotated to the side away from the combustion air inlet to direct exhaust away from adjacent property. The exhaust must never be directed toward the combustion air inlet.
See venting Table 7 for maximum venting lengths with this arrangement.

* Use wall support every 24" (610 mm). Use two wall supports if extension is greater than 24" (610 mm) but less than 48" (1219 mm).

NOTE – One wall support must be 6" (152 mm) from top of each pipe (intake and exhaust).

Table: Venting Lengths

<table>
<thead>
<tr>
<th></th>
<th>2" (51mm) Vent Pipe</th>
<th>3" (76mm) Vent Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Minimum clearance above grade or average snow accumulation</td>
<td>12" (508MM)</td>
<td>12" (508MM)</td>
</tr>
<tr>
<td>B – Maximum horizontal separation between intake and exhaust</td>
<td>6" (152MM)</td>
<td>6" (152MM)</td>
</tr>
<tr>
<td>C – Minimum from end of exhaust to inlet of intake</td>
<td>8" (203MM)</td>
<td>8" (203MM)</td>
</tr>
<tr>
<td>D – Maximum exhaust pipe length</td>
<td>12" (305MM)</td>
<td>20" (508MM)</td>
</tr>
<tr>
<td>E – Maximum wall support distance from top of each pipe (intake/exhaust)</td>
<td>6" (152MM)</td>
<td>6" (152MM)</td>
</tr>
</tbody>
</table>
Direct Vent Concentric Rooftop Termination

71M80, 69M29 or 60L46 (US)
44W92 or 44W93 (Canada)

1 1/2" (38mm) accelerator provided on 71M80 & 44W92

12" (305mm) Minimum Above Average Snow Accumulation

FLASHING (Not Furnished)

SHEET METAL STRAP
(Clamp and sheet metal strap must be field installed to support the weight of the termination kit.)

FIELD PROVIDED REDUCER MAY BE REQUIRED TO ADAPT LARGER VENT PIPE SIZE TO TERMINATION

CLAMP

Figure 36

Optional Vent Termination for Multiple Unit Installation of Direct Vent Wall Termination Kit

EXHAUST VENT

INTAKE AIR

1 1/8" MAX.
(457mm)

Front View

12" (305mm) Min. above grade or average snow accumulation.

optional intake elbow

Side View

Figure 37

Direct Vent Concentric Wall Termination

71M80, 69M29 or 60L46 (US)
44W92 or 44W93 (Canada)

FIELD PROVIDED REDUCER MAY BE REQUIRED TO ADAPT LARGER VENT PIPE SIZE TO TERMINATION

1 1/2" (38mm) accelerator provided on 71M80 & 44W92

OUTSIDE WALL

EXHAUST VENT

INTAKE AIR

CLAMP (Not Furnished)

INTAKE AIR

12" (305mm) Min. above grade or average snow accumulation.

GRADE

Figure 38

Direct Vent Application Using Existing Chimney

Minimum 12" (305mm) above chimney top plate or average snow accumulation

3"-8" (76mm-203mm)

STRAIGHT-CUT OR ANGLE-CUT IN DIRECTION OF ROOF SLOPE

EXHAUST VENT

1 1/2" (38mm) WEATHERPROOF INSULATION

SHOULDER OF FITTINGS PROVIDE SUPPORT OF PIPE ON TOP PLATE

SEAL

ALTERNATE INSULATION PIPE

Figure 39

NOTE: Do not discharge exhaust gases directly into any chimney or vent stack. If vertical discharge through an existing unused chimney or stack is required, insert piping inside chimney until the pipe open end is above top of chimney and terminate as illustrated. In any exterior portion of chimney, the exhaust vent must be insulated.
Details of Exhaust Piping Terminations for Non-Direct Vent Applications

Exhaust pipe may be routed either horizontally through an outside wall or vertically through the roof. In attic or closet installations, vertical termination through the roof is preferred. Figures 40 through 43 show typical terminations.

1. Exhaust piping must terminate straight out or up as shown. The termination pipe must be sized as listed in Table 10. The specified pipe size ensures proper velocity required to move the exhaust gases away from the building.

2. On field supplied terminations for side wall exit, exhaust piping may extend a maximum of 12 inches (305 mm) for 2" PVC and 20" (508 mm) for 3" (76 mm) PVC beyond the outside wall. See Figure 41.

3. If exhaust piping must be run up a sidewall to position above snow accumulation or other obstructions, piping must be supported every 24" (610 mm) as shown in Figure 42. When exhaust piping must be run up an outside wall, any reduction in exhaust pipe size must be done after the final elbow.

NOTE: Do not discharge exhaust gases directly into any chimney or vent stack. If vertical discharge through an existing unused chimney or stack is required, insert piping inside chimney until the pipe open end is above top of chimney and terminate as illustrated. In any exterior portion of chimney, the exhaust vent must be insulated.
Condensate Piping
This unit is designed for either right or left side exit of condensate piping in downflow applications. Refer to Figure 44 for condensate trap locations.

NOTE: If necessary the condensate trap may be installed up to 5 feet away using PVC pipe from the furnace. Piping from furnace must slope down a minimum of 1/4” per ft. toward trap.

1. Determine which side condensate piping will exit the unit, location of trap, field-provided fittings and length of PVC pipe required to reach available drain.
2. Use a large flat head screw driver or a 1/2” drive socket extension and remove plug (Figure 44) from the cold end header box at the appropriate location on the side of the unit. Install provided 3/4 NPT street elbow fitting into cold end header box. Use Teflon tape or appropriate pipe dope.
3. Install the cap over the clean out opening at the base of the trap. Secure with clamp. See Figure 49.
4. Install drain trap using appropriate PVC fittings, glue all joints. Glue the provided drain trap as shown in Figure 49. Route the condensate line to an open drain. Condensate line must maintain a 1/4” downward slope from the furnace to the drain.

NOTE: Vinyl tubing may be used for condensate drain. Tubing must be 1-1/4” ODx1”ID and should be attached to the drain on the trap using a hose clamp.

5. Figure 46 shows the furnace and evaporator coil using a separate drain. If necessary, the condensate line from the furnace and evaporator coil can drain together. See Figure 47. The field provided vent must be a minimum 1” to a maximum 2” length above the condensed drain outlet connection.

![Condensate Trap and Plug Locations](image-url)
6. If unit will be started immediately upon completion of installation, prime trap per procedure outlined in Unit Start-Up section.

Condensate line must slope downward away from the trap to drain. If drain level is above condensate trap, condensate pump must be used. Condensate drain line should be routed within the conditioned space to avoid freezing of condensate and blockage of drain line. If this is not possible, a heat cable kit may be used on the condensate trap and line. Heating cable kit is available in various lengths; 6 ft. (1.8 m) - kit no. 26K68; 24 ft. (7.3 m) - kit no. 26K69; and 50 ft. (15.2 m) - kit no. 26K70.

Do Not use copper tubing or existing copper condensate lines for drain line.

When combining the furnace and evaporator coil drains together, the A/C condensate drain outlet must be vented to relieve pressure in order for the furnace pressure switch to operate properly.

![Condensate Trap Location](image1.png)

Figure 45

![Evaporator Coil Using a Common Drain](image2.png)

Figure 47

![Evaporator Coil Using a Separate Drain](image3.png)

Figure 46

![Condensate Trap with Optional Overflow Switch](image4.png)

Figure 48
Trap Drain Assembly Using 1/2" PVC or 3/4" PVC

Optional Condensate Drain Connection

Adapter 3/4 inch slip X 3/4 inch mpt (not furnished)
90° Street Elbow 3/4 inch PVC (not furnished)
To Trap

Condensate Drain Connection In Unit

Adapter 3/4 inch slip X 3/4 inch mpt (not furnished)
1 (25 mm) Min. 2 (50 mm) Max. Above Top Of Condensate Drain Connection In Unit
90° Elbow 3/4 inch PVC (Not Furnished)
1/2 inch PVC Pipe (Not Furnished)

Optional Drain Piping From Trap

1/2 inch PVC Pipe (Not Furnished)
90° Elbow 1/2 inch PVC (Not Furnished)
To Drain

3/4 inch PVC Pipe (Not Furnished)
Coupling 3/4 inch slip X slip (Not Furnished)

Drain Trap Assembly (Furnished)

Drain Assembly for 1/2 inch Drain Pipe

90° Elbow 3/4 inch PVC (Not Furnished)
To Drain

90° Elbow 3/4 inch PVC (Not Furnished)
To Drain

Drain Trap Assembly with 1/2 inch Piping

1 (25 mm) Min. 2 (50 mm) Max. Above Top Of Condensate Drain Connection In Unit

1/2 inch PVC Pipe (Not Furnished)
90° Elbow 1/2 inch PVC (Not Furnished)
To Drain

3/4 inch PVC Pipe (Not Furnished)
Coupling 3/4 inch slip X slip (Not Furnished)

Drain Trap Assembly (Furnished)

Drain Assembly for 3/4 inch Drain Pipe

90° Elbow 3/4 inch PVC (Not Furnished)
To Drain

90° Elbow 3/4 inch PVC (Not Furnished)
To Drain

Drain Trap Assembly with 3/4 inch Piping

1 (25 mm) Min. 2 (50 mm) Max. Above Top Of Condensate Drain Connection In Unit

Vent

3/4 inch PVC Pipe (Not Furnished)

Condensate Drain Connection In Unit

Figure 49
Gas Piping

CAUTION

If a flexible gas connector is required or allowed by the authority that has jurisdiction, black iron pipe shall be installed at the gas valve and extend outside the furnace cabinet. The flexible connector can then be added between the black iron pipe and the gas supply line.

WARNING

Do Not exceed 600 in. lbs. (50 ft. lbs.) torque when attaching the gas piping to the gas valve.

1. Gas piping may be routed into the unit through either the left or right hand side. Supply piping enters into the gas valve from the side of the valve as shown in Figure 51. Move bellows grommet to side of the cabinet which the gas line enters. Ensure opposite gas line entrance is plugged with supplied plug.

IMPORTANT

A low inlet pressure switch in LP/propane applications is recommended.

2. When connecting gas supply, factors such as length of run, number of fittings and furnace rating must be considered to avoid excessive pressure drop. Table 11 lists recommended pipe sizes for typical applications.

NOTE: Use two wrenches when connecting gas piping to avoid transferring torque to the manifold.

3. Gas piping must not run in or through air ducts, clothes chutes, chimneys or gas vents, dumb waiters or elevator shafts. Center gas line through piping hole. Gas line should not touch side of unit. See Figures 51.

4. Piping should be sloped 1/4 inch per 15 feet (6 mm per 5.6 m) upward toward the gas meter from the furnace. The piping must be supported at proper intervals, every 8 to 10 feet (2.44 to 3.05 m), using suitable hangers or straps. Install a drip leg in vertical pipe runs to serve as a trap for sediment or condensate.

5. A 1/8” N.P.T. plugged tap or pressure post is located on the gas valve to facilitate test gauge connection. See Figure 59.

6. In some localities, codes may require installation of a manual main shut off valve and union (furnished by installer) external to the unit. Union must be of the ground joint type.

WARNING

Compounds used on threaded joints of gas piping must be resistant to the actions of liquified petroleum gases.

Leak Check

After gas piping is completed, carefully check all piping connections (factory and field installed) for gas leaks. Use a leak detecting solution or other preferred means.

The furnace must be isolated from the gas supply system by closing its individual manual shut off valve during any pressure testing of the gas supply system at pressures greater than or equal to 1/2 psig (3.48 kPa, 14 inches w.c.).

![Figure 50]

IMPORTANT

When testing pressure of gas lines, gas valve must be disconnected and isolated. (See Figure 50.) Gas Valves can be damaged if subjected to pressures greater than 1/2 psig (3.48 kPa).

WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow the safety warnings exactly could result in serious injury, death, or property damage. Never use an open flame to test for gas leaks. Check all connections using a commercially available soap solution made specifically for leak detection. Some soaps used for leak detection are corrosive to certain metals. Carefully rinse piping thoroughly after leak test has been completed.
Table 11

GAS PIPE CAPACITY – FT³/HR (kL/HR)

<table>
<thead>
<tr>
<th>Nominal Iron Pipe Size</th>
<th>Internal Diameter (inches/mm)</th>
<th>Length of Pipe – Feet (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 (3.048)</td>
<td>20 (6.096)</td>
</tr>
<tr>
<td></td>
<td>30 (9.144)</td>
<td>40 (12.192)</td>
</tr>
<tr>
<td></td>
<td>50 (15.240)</td>
<td>60 (18.288)</td>
</tr>
<tr>
<td></td>
<td>70 (21.336)</td>
<td>80 (24.384)</td>
</tr>
<tr>
<td></td>
<td>90 (27.432)</td>
<td>100 (30.480)</td>
</tr>
<tr>
<td>1/2 (12.7)</td>
<td>622 (17.799)</td>
<td>175 (4.76)</td>
</tr>
<tr>
<td>3/4 (19.05)</td>
<td>324 (20.930)</td>
<td>360 (2.58)</td>
</tr>
<tr>
<td></td>
<td>200 (6.09)</td>
<td>285 (8.70)</td>
</tr>
<tr>
<td>1 (25.4)</td>
<td>1.049 (26.645)</td>
<td>680 (19.25)</td>
</tr>
<tr>
<td>1-1/4 (31.75)</td>
<td>1.380 (35.052)</td>
<td>1400 (39.64)</td>
</tr>
<tr>
<td></td>
<td>950 (27.43)</td>
<td>660 (18.69)</td>
</tr>
<tr>
<td></td>
<td>770 (23.07)</td>
<td>580 (17.32)</td>
</tr>
<tr>
<td></td>
<td>660 (19.25)</td>
<td>530 (15.97)</td>
</tr>
<tr>
<td></td>
<td>750 (22.44)</td>
<td>490 (14.77)</td>
</tr>
<tr>
<td></td>
<td>690 (19.61)</td>
<td>460 (13.53)</td>
</tr>
<tr>
<td></td>
<td>650 (18.94)</td>
<td>430 (12.18)</td>
</tr>
<tr>
<td></td>
<td>620 (17.79)</td>
<td>400 (11.33)</td>
</tr>
<tr>
<td>2 (50.8)</td>
<td>2.067 (52.502)</td>
<td>3950 (111.85)</td>
</tr>
<tr>
<td>2-1/2 (63.5)</td>
<td>2.469 (67.713)</td>
<td>4350 (123.17)</td>
</tr>
<tr>
<td></td>
<td>3520 (99.67)</td>
<td>3000 (89.45)</td>
</tr>
<tr>
<td></td>
<td>2200 (66.98)</td>
<td>1900 (58.94)</td>
</tr>
<tr>
<td></td>
<td>1800 (54.60)</td>
<td>1600 (47.57)</td>
</tr>
<tr>
<td></td>
<td>1520 (45.53)</td>
<td>1400 (40.74)</td>
</tr>
<tr>
<td></td>
<td>1300 (36.81)</td>
<td>1200 (35.25)</td>
</tr>
<tr>
<td></td>
<td>1150 (32.56)</td>
<td>1090 (30.81)</td>
</tr>
<tr>
<td></td>
<td>50.8 (15.38)</td>
<td>4700 (134.50)</td>
</tr>
<tr>
<td></td>
<td>4350 (120.76)</td>
<td>3900 (110.43)</td>
</tr>
<tr>
<td></td>
<td>3700 (107.47)</td>
<td>3450 (97.69)</td>
</tr>
<tr>
<td></td>
<td>3250 (92.03)</td>
<td>3000 (90.00)</td>
</tr>
<tr>
<td>3 (76.2)</td>
<td>3.068 (77.927)</td>
<td>11000 (311.48)</td>
</tr>
<tr>
<td></td>
<td>7700 (218.03)</td>
<td>6250 (176.98)</td>
</tr>
<tr>
<td></td>
<td>5300 (150.07)</td>
<td>4750 (134.50)</td>
</tr>
<tr>
<td></td>
<td>4300 (121.76)</td>
<td>3900 (110.43)</td>
</tr>
<tr>
<td></td>
<td>3700 (104.77)</td>
<td>3450 (97.69)</td>
</tr>
<tr>
<td></td>
<td>3250 (92.03)</td>
<td>3000 (90.00)</td>
</tr>
<tr>
<td>4 (101.6)</td>
<td>4.026 (102.260)</td>
<td>23000 (651.27)</td>
</tr>
<tr>
<td></td>
<td>15800 (447.39)</td>
<td>12800 (362.44)</td>
</tr>
<tr>
<td></td>
<td>10900 (308.64)</td>
<td>9700 (274.67)</td>
</tr>
<tr>
<td></td>
<td>8800 (249.18)</td>
<td>8100 (229.36)</td>
</tr>
<tr>
<td></td>
<td>7500 (212.37)</td>
<td>7200 (203.88)</td>
</tr>
<tr>
<td></td>
<td>6700 (189.72)</td>
<td>6000 (167.64)</td>
</tr>
</tbody>
</table>

NOTE: Capacity given in cubic feet of gas per hour (kilo liters of gas per hour) and based on 0.60 specific gravity gas.
Electrical

ELECTROSTATIC DISCHARGE (ESD)
Precautions and Procedures

CAUTION

Electrostatic discharge can affect electronic components. Take precautions during furnace installation and service to protect the furnace’s electronic controls. Precautions will help to avoid control exposure to electrostatic discharge by putting the furnace, the control and the technician at the same electrostatic potential. Neutralize electrostatic charge by touching hand and all tools on an unpainted unit surface, such as the gas valve or blower deck, before performing any service procedure.

Interior Make-Up Box
(Factory - Installed Left Side)

![Figure 52](Image)

Exterior Make-Up Box
(Field Provided Right Side)

![Figure 53](Image)

The unit is equipped with a field makeup box on the left hand side of the cabinet. A field-provided make-up box can be installed on the exterior of the right side of the furnace to facilitate installation. Seal unused openings on left side with plugs removed from right side. Secure the excess wire to the existing harness to protect it from damage.

Refer to Figure 55 for field wiring and Figures 56 or 57 for schematic wiring diagram and troubleshooting.

The power supply wiring must meet Class I restrictions. Protected by either a fuse or circuit breaker, select circuit protection and wire size according to unit nameplate.

NOTE: Unit nameplate states maximum current draw. Maximum Over-Current Protection allowed is 15 AMP.

Holes are on both sides of the furnace cabinet to facilitate wiring.

Install a separate (properly sized) disconnect switch near the furnace so that power can be turned off for servicing.

Before connecting the thermostat check to make sure the wires will be long enough for servicing at a later date. Make sure that thermostat wire is long enough to facilitate future removal of blower for service.

Complete the wiring connections to the equipment. Use the provided unit wiring diagram and the field wiring diagram shown in Figure 55. Use 18 gauge wire or larger that is suitable for Class II rating for thermostat connections.

Electrically ground the unit according to local codes or, in the absence of local codes, according to the current National Electric Code (ANSI/HFPA No. 70) for the USA and current Canadian Electric Code Part 1 (CSA standard C22.1) for Canada. A green ground wire is provided in the field makeup box.

NOTE: The gas furnace contains electronic components that are polarity sensitive. Make sure that the furnace is wired correctly and is properly grounded.

Accessory Terminals

One line voltage “EAC” 1/4” spade terminal is provided on the furnace control board. Any accessory rated up to one amp can be connected to this terminal with the neutral leg of the circuit being connected to one of the provided neutral terminals. If an accessory rated at greater than one amp is connected to this terminal, it is necessary to use an external relay. See Figure 58 for control board configuration. This terminal is energized when the indoor blower is operating.
One line voltage “HUM” 1/4” spade terminal is provided on the furnace control board. Any humidifier rated up to one amp can be connected to this terminal with the neutral leg of the circuit being connected to one of the provided neutral terminals. If a humidifier rated at greater than one amp is connected to this terminal, it is necessary to use an external relay. See Figure 58 for control board configuration. This terminal is energized in the heating mode when the combustion air inducer is operating.

Install the room thermostat according to the instructions provided with the thermostat. See Figure 54 for thermostat designations. If the furnace is being matched with a heat pump, refer to the FM21 installation instruction or appropriate dual fuel thermostat instructions.

Indoor Blower Speeds
1. When the thermostat is set to “FAN ON”, the indoor blower will run continuously on the heating speed when there is no cooling or heating demand.
2. When the furnace is running in the heating mode, the indoor blower will run on the heating speed.
3. When there is a cooling demand, the indoor blower will run on the cooling speed.

Generator Use - Voltage Requirements
The following requirements must be kept in mind when specifying a generator for use with this equipment:
• The furnace requires 120 volts ± 10% (Range: 108 volts to 132 volts).
• The furnace operates at 60 Hz ± 5% (Range: 57 Hz to 63 Hz).
• The furnace integrated control requires both polarity and proper ground. Both polarity and proper grounding should be checked before attempting to operate the furnace on either permanent or temporary power.
• Generator should have a wave form distortion of less than 5% THD (Total Harmonic Distortion).

![Furnace and Condensing Unit Thermostat Designations](Figure 54)

![Typical Field Wiring Diagram](Figure 55)
Unit Start-Up
FOR YOUR SAFETY READ BEFORE OPERATING

WARNING
Do not use this furnace if any part has been underwater. A flood-damaged furnace is extremely dangerous. Attempts to use the furnace can result in fire or explosion. Immediately call a qualified service technician to inspect the furnace and to replace all gas controls, control system parts, and electrical parts that have been wet or to replace the furnace, if deemed necessary.

WARNING
Danger of explosion. Can cause injury or product or property damage. Should the gas supply fail to shut off or if overheating occurs, shut off the gas valve to the furnace before shutting off the electrical power.

CAUTION
Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch.

BEFORE LIGHTING
The unit, smell all around the furnace area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor.

The gas valve on the unit is equipped with a gas control switch (lever). Use only your hand to move switch. Never use tools. If the switch will not move by hand, do not try to repair it. Force or attempted repair may result in a fire or explosion.

Placing the furnace into operation:
This furnace is equipped with an automatic hot surface ignition system. Do not attempt to manually light burners on this furnace. Each time the thermostat calls for heat, the burners will automatically light. The ignitor does not get hot when there is no call for heat on these units.
Priming Condensate Trap
The condensate trap should be primed with water prior to start-up to ensure proper condensate drainage. Either pour 10 fl. oz. (300 ml) of water into the trap, or follow these steps to prime the trap:
1. Follow the lighting instructions to place the unit into operation.
2. Set the thermostat to initiate a heating demand.
3. Allow the burners to fire for approximately 3 minutes.
4. Adjust the thermostat to deactivate the heating demand.
5. Wait for the combustion air inducer to stop. Set the thermostat to initiate a heating demand and again allow the burners to fire for approximately 3 minutes.
6. Adjust the thermostat to deactivate the heating demand and wait for the combustion air inducer to stop. At this point, the trap should be primed with sufficient water to ensure proper condensate drain operation.

WARNING
If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or death.

Gas Valve Operation (Figure 59)
1. STOP! Read the safety information at the beginning of this section.
2. Set the thermostat to the lowest setting.
3. Turn OFF all electrical power to the unit.
4. This furnace is equipped with an ignition device which automatically lights the burners. Do not try to light the burners by hand.
5. Remove the heating compartment access panel.
6. Move gas valve switch to OFF. See Figure 59.
7. Wait five minutes to clear out any gas. If you then smell gas, STOP! Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions. If you do not smell gas go to next step.
8. Move gas valve switch to ON. See Figure 59.

Turning Off Gas to Unit
1. Set the thermostat to the lowest setting.
2. Turn off all electrical power to the unit if service is to be performed.
3. Remove the heating compartment access panel.
4. Move gas valve switch to OFF.
5. Replace the heating compartment access panel.

Failure To Operate
If the unit fails to operate, check the following:
1. Is the thermostat calling for heat?
2. Are access panels securely in place?
3. Is the main disconnect switch closed?
4. Is there a blown fuse or tripped breaker?
5. Is the filter dirty or plugged? Dirty or plugged filters will cause the limit control to shut the unit off.
6. Is gas turned on at the meter?
7. Is the manual main shut-off valve open?
8. Is the internal manual shut-off valve open?
9. Is the unit ignition system in lockout? If the unit locks out again, inspect the unit for blockages.

Heating Sequence Of Operation
1. When thermostat calls for heat, combustion air inducer starts.
2. Combustion air pressure switch proves blower operation. Switch is factory set and requires no adjustment.
3. After a 15 second pre-purge, the hot surface ignitor energizes.
4. After a 20 second ignitor warm-up period, the gas valve solenoid opens. A 4-second “Trial for Ignition” period begins.
5. Gas is ignited, flame sensor proves the flame, and the combustion process continues.
6. If flame is not detected after first ignition trial, the ignition control will repeat steps 3 and 4 four more times before locking out the gas valve. The ignition control will then automatically repeat steps 1 through 6 after 60 minutes. To interrupt the 60 minute lockout period, move thermostat from “Heat” to “OFF” then back to “Heat”. Heating sequence then restarts at step 1.
Gas Pressure Adjustment

Gas Flow (Approximate)

NOTE: To obtain accurate reading, shut off all other gas appliances connected to meter.

Furnace should operate at least 5 minutes before checking gas flow. Determine time in seconds for two revolutions of gas through the meter. (Two revolutions assures a more accurate time.) Divide by two and compare to time in Table 12. If manifold pressure matches Table 13 and rate is incorrect, check gas orifices for proper size and restriction. Remove temporary gas meter if installed.

Supply Pressure Measurement

A threaded plug on the inlet side of the gas valve provides access to the supply pressure tap. Remove the threaded plug, install a field-provided barbed fitting and connect a manometer to measure supply pressure. Turn OFF unit remove manometer and replace the threaded plug after measurements have been taken.

Manifold Pressure Measurement

1. Remove the threaded plug from the outlet side of the gas valve and install a field provided barbed fitting. Connect to a manometer to measure manifold pressure.
2. Start unit and allow 5 minutes for unit to reach steady state.
3. While waiting for the unit to stabilize, observe the flame. Flame should be stable and should not lift from burner. Natural gas should burn blue.
4. After allowing unit to stabilize for 5 minutes, record manifold pressure and compare to value given in Table 13.

Table 12

<table>
<thead>
<tr>
<th>Unit</th>
<th>Gas</th>
<th>Manifold Pressure in. wg.</th>
<th>Supply Line Pressure in. w.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-4500 ft.</td>
<td>4501-5500 ft.</td>
</tr>
<tr>
<td>All Sizes</td>
<td>Natural</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>LP/propane</td>
<td>10.0</td>
<td>9.4</td>
</tr>
</tbody>
</table>

NOTE: Shut unit off and remove manometer as soon as an accurate reading has been obtained. Take care to remove barbed fitting and replace threaded plug.

Proper Combustion

Furnace should operate minimum 15 minutes with correct manifold pressure and gas flow rate before checking combustion. Take combustion sample beyond the flue outlet and compare to the tables below. The maximum carbon monoxide reading should not exceed 100 ppm.

Table 14

<table>
<thead>
<tr>
<th>Unit</th>
<th>CO₂% for Nat</th>
<th>CO₂% for L.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>7.2 - 7.9</td>
<td>8.6 - 9.3</td>
</tr>
</tbody>
</table>

High Altitude Information

NOTE: In Canada, certification for installations at elevations over 4500 feet (1371 m) is the jurisdiction of local authorities.

Units may be installed at altitudes up to 10,000 ft. above sea level. See table 13 for de-rate manifold values. Units installed at altitude of 7501 - 10,000 feet require an orifice change. Units installed at altitudes of 4501 - 10,000 feet (1371 to 3048 m) require a pressure switch change which can be ordered separately. Table 15 lists conversion kit and pressure switch requirements at varying altitudes.

The combustion air pressure switch is factory-set and requires no adjustment.
Burner Orifice Conversion Kits at Varying Altitudes

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>0 - 7500 ft (0 - 1371m)</th>
<th>7501 - 10000 ft (2286 - 3048m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural to LP/Propane</td>
<td>LP/Propane to Natural</td>
<td>High Altitude Natural Burner Orifice Kit</td>
</tr>
<tr>
<td>High Altitude LP/Propane Burner Orifice Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>11K50+</td>
<td>73W80*</td>
</tr>
</tbody>
</table>

* Conversion requires installation of a gas valve regulator spring which is provided with the gas conversion Kit.
+ LP Kits include low line pressure switch.

A93 and 92G1 Pressure Switch at Varying Altitudes

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>0 - 4500 ft (0 - 1371m)</th>
<th>4501 - 7500 ft (1371 - 2286m)</th>
<th>7501 - 10000 ft (2286 - 3048m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>No Change</td>
<td>No Change</td>
<td>93W88</td>
</tr>
</tbody>
</table>

Pressure switch is factory set. No adjustment necessary. All models use the factory-installed pressure switch from 0-7500 feet (0-2286 m).

A95 and 95G1 Pressure Switch Requirements at Varying Altitudes

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>0 - 4500 ft (0 - 1373m)</th>
<th>4501 - 7500 ft (1371 - 2286m)</th>
<th>7501 - 10000 ft (2286 - 3048m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>045</td>
<td>No Change</td>
<td>No Change</td>
<td>11J09</td>
</tr>
<tr>
<td>070</td>
<td>No Change</td>
<td>11J12</td>
<td>10U93</td>
</tr>
<tr>
<td>090</td>
<td>No Change</td>
<td>11J11</td>
<td>10U93</td>
</tr>
<tr>
<td>110</td>
<td>No Change</td>
<td>11J12</td>
<td>10U93</td>
</tr>
<tr>
<td>135</td>
<td>No Change</td>
<td>11J11</td>
<td>10U93</td>
</tr>
</tbody>
</table>

Pressure switch is factory set. No adjustment necessary. All models use the factory-installed pressure switch from 0-4500 feet (0-1371 m).
Testing for Proper Venting and Sufficient Combustion Air for Non-Direct Vent Applications

WARNING

CARBON MONOXIDE POISONING HAZARD

Failure to follow the steps outlined below for each appliance connected to the venting system being placed into operation could result in carbon monoxide poisoning or death.

The following steps shall be followed for each appliance connected to the venting system being placed into operation, while all other appliances connected to the venting system are not in operation.

After the gas furnace has been started, the following test should be conducted to ensure proper venting and sufficient combustion air has been provided to the unit as well as to other gas fired appliances which are separately vented.

If this furnace replaces a Category I furnace which was commonly vented with another gas appliance, the size of the existing vent pipe for that gas appliance must be checked. Without the heat of the original furnace flue products, the existing vent pipe is probably oversized for the single water heater or other appliance. The vent should be checked for proper draw with the remaining appliance.

The test should be conducted while all appliances (both in operation and those not in operation) are connected to the venting system being tested. If the venting system has been installed improperly, or if provisions have not been made for sufficient amounts of combustion air, corrections must be made as outlined in the previous section.

1. Seal any unused openings in the venting system.
2. Visually inspect the venting system for proper size and horizontal pitch. Determine there is no blockage or restriction, leakage, corrosion, or other deficiencies which could cause an unsafe condition.
3. To the extent that it is practical, close all building doors and windows and all doors between the space in which the appliances connected to the venting system are located and other spaces of the building.
5. Turn on clothes dryers and any appliances not connected to the venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. **Do not operate a summer exhaust fan.**
6. Follow the lighting instruction to place the appliance being inspected into operation. Adjust thermostat so appliance will operate continuously.
7. Use the flame of a match or candle to test for spillage of flue gases at the draft hood relief opening after 5 minutes of main burner operation.
8. If improper venting is observed during any of the above tests, the venting system must be corrected or sufficient combustion/makeup air must be provided. The venting system should be resized to approach the minimum size as determined by using the appropriate tables in appendix G in the current standards of the National Fuel Gas Code ANSI-Z223.1/NPFA 54 in the U.S.A., and the appropriate Natural Gas and Propane appliances venting sizing tables in the current standard of the CSA-B149 Natural Gas and Propane Installation Codes in Canada.
9. After determining that each appliance remaining connected to the common venting system properly vents when tested as indicated in step 3, return doors, windows, exhaust fans, fireplace dampers and any other gas burning appliance to their previous condition of use.
Other Unit Adjustments

Primary Limit
The primary limit is located on the heating compartment vestibule panel. This limit is factory set and requires no adjustment.

Flame Rollout Switches (Two)
These manually reset switches are located on the front of the burner box. These limits are factory set and require no adjustment.

Pressure Switch
The pressure switch is located in the heating compartment on the cold end header box. This switch checks for proper combustion air inducer operation before allowing ignition trial. The switch is factory set and must not be adjusted.

Temperature Rise
After the furnace has been started and supply and return air temperatures have been allowed to stabilize, check the temperature rise. If necessary, adjust the blower speed to maintain the temperature rise within the range shown on the unit nameplate. Increase the blower speed to decrease the temperature. Decrease the blower speed to increase the temperature rise. Failure to adjust the temperature rise may cause erratic limit operation.

Fan Control
The fan ON time of 30 seconds is not adjustable. The fan OFF delay (amount of time that the blower operates after the heat demand has been satisfied) may be adjusted by changing the jumper position across the five pins on the integrated control. The unit is shipped with a factory heat fan OFF setting of 120 seconds. The fan OFF delay affects comfort and is adjustable to satisfy individual applications. Adjust the fan OFF delay to achieve a supply air temperature between 90° and 110° F at the moment that the blower is de-energized. Longer OFF delay settings provide lower return air temperatures; shorter settings provide higher return air temperatures. See Figure 60.

Thermostat Heat Anticipation
Set the heat anticipator setting (if adjustable) according to the amp draw listed on the wiring diagram that is attached to the unit.

Electrical
1. Check all wiring for loose connections.
2. Check for the correct voltage at the furnace (with furnace operating). Correct voltage is 120 VAC ± 10%.
3. Check amp–draw on the blower motor with the blower compartment access panel in place. Motor Nameplate__________Actual__________

Blower Speeds
Follow the steps below to change the blower speeds.
1. Turn off electrical power to furnace.
2. Remove blower compartment access panel.
3. Disconnect existing speed tap at control board speed terminal.

NOTE: Termination of any unused motor leads must be insulated.

4. Place unused blower speed tap on integrated control “PARK” terminal or insulate.
5. Refer to blower speed selection chart on unit wiring diagram for desired heating or cooling speed. See Blower performance data beginning on the next page.
6. Connect selected speed tap at control board speed terminal.
7. Re-secure blower access panel.
8. Turn on electrical power to furnace.
9. Recheck temperature rise.

Electronic Ignition
The integrated control has an added feature of an internal Watchguard control. The feature serves as an automatic reset device for integrated control lockout caused by ignition failure. This type of lockout is usually due to low gas line pressure. After one hour of continuous thermostat demand for heat, the Watchguard will break and remake thermostat demand to the furnace and automatically reset the integrated control to begin the ignition sequence.

Exhaust and Air Intake Pipe
1. Check exhaust and air intake connections for tightness and to make sure there is no blockage.
2. Is pressure switch closed? Obstructed exhaust pipe will cause unit to shut off at pressure switch. Check termination for blockages.
3. Obstructed pipe or termination may cause rollout switches to open. Reset manual flame rollout switches on burner box assembly if necessary.

Figure 60: Heat Fan-OFF Time in Seconds

<table>
<thead>
<tr>
<th>JUMPER POSITION</th>
<th>HEAT-OFF DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN1 PIN2 60</td>
<td></td>
</tr>
<tr>
<td>PIN2 PIN3 90</td>
<td></td>
</tr>
<tr>
<td>PIN3 PIN4 120</td>
<td></td>
</tr>
<tr>
<td>PIN4 PIN5 180</td>
<td></td>
</tr>
<tr>
<td>NO JUMPER</td>
<td>190</td>
</tr>
</tbody>
</table>

To adjust fan–off timing, reposition jumper across pins to achieve desired setting.
<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>A93DF1D / 92G1DF 045*12B PERFORMANCE (Less Filter)</th>
<th>A93DF1D / 92G1DF 070*12B PERFORMANCE (Less Filter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air Volume / Watts at Various Blowers Speeds</td>
<td>Air Volume / Watts at Various Blowers Speeds</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Medium - High</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.00</td>
<td>1615</td>
<td>650</td>
</tr>
<tr>
<td>0.10</td>
<td>1605</td>
<td>640</td>
</tr>
<tr>
<td>0.20</td>
<td>1500</td>
<td>620</td>
</tr>
<tr>
<td>0.30</td>
<td>1450</td>
<td>590</td>
</tr>
<tr>
<td>0.40</td>
<td>1350</td>
<td>560</td>
</tr>
<tr>
<td>0.50</td>
<td>1300</td>
<td>545</td>
</tr>
<tr>
<td>0.60</td>
<td>1195</td>
<td>500</td>
</tr>
<tr>
<td>0.70</td>
<td>1140</td>
<td>485</td>
</tr>
<tr>
<td>0.80</td>
<td>1025</td>
<td>450</td>
</tr>
<tr>
<td>0.90</td>
<td>945</td>
<td>435</td>
</tr>
</tbody>
</table>

NOTES: All air data is measured external to unit without filter (not furnished - field provided)
BLOWER DATA A95DF1D / 95G1DF 045*12B PERFORMANCE (Less Filter)

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium - High</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.00</td>
<td>1615</td>
<td>650</td>
</tr>
<tr>
<td>0.10</td>
<td>1605</td>
<td>640</td>
</tr>
<tr>
<td>0.20</td>
<td>1500</td>
<td>620</td>
</tr>
<tr>
<td>0.30</td>
<td>1450</td>
<td>590</td>
</tr>
<tr>
<td>0.40</td>
<td>1350</td>
<td>560</td>
</tr>
<tr>
<td>0.50</td>
<td>1300</td>
<td>545</td>
</tr>
<tr>
<td>0.60</td>
<td>1195</td>
<td>500</td>
</tr>
<tr>
<td>0.70</td>
<td>1140</td>
<td>480</td>
</tr>
<tr>
<td>0.80</td>
<td>1025</td>
<td>450</td>
</tr>
<tr>
<td>0.90</td>
<td>945</td>
<td>430</td>
</tr>
</tbody>
</table>

BLOWER DATA A95DF1D / 92G1DF 070*12B PERFORMANCE (Less Filter)

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium - High</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.00</td>
<td>1515</td>
<td>620</td>
</tr>
<tr>
<td>0.10</td>
<td>1490</td>
<td>585</td>
</tr>
<tr>
<td>0.20</td>
<td>1445</td>
<td>555</td>
</tr>
<tr>
<td>0.30</td>
<td>1380</td>
<td>520</td>
</tr>
<tr>
<td>0.40</td>
<td>1315</td>
<td>495</td>
</tr>
<tr>
<td>0.50</td>
<td>1270</td>
<td>470</td>
</tr>
<tr>
<td>0.60</td>
<td>1155</td>
<td>435</td>
</tr>
<tr>
<td>0.70</td>
<td>1075</td>
<td>415</td>
</tr>
<tr>
<td>0.80</td>
<td>975</td>
<td>380</td>
</tr>
<tr>
<td>0.90</td>
<td>900</td>
<td>365</td>
</tr>
</tbody>
</table>

BLOWER DATA A95DF1D / 95G1DF 090*20C PERFORMANCE (Less Filter)

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium - High</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.00</td>
<td>2305</td>
<td>1255</td>
</tr>
<tr>
<td>0.10</td>
<td>2295</td>
<td>1240</td>
</tr>
<tr>
<td>0.20</td>
<td>2200</td>
<td>1220</td>
</tr>
<tr>
<td>0.30</td>
<td>2160</td>
<td>1210</td>
</tr>
<tr>
<td>0.40</td>
<td>2055</td>
<td>1170</td>
</tr>
<tr>
<td>0.50</td>
<td>1970</td>
<td>1130</td>
</tr>
<tr>
<td>0.60</td>
<td>1890</td>
<td>1105</td>
</tr>
<tr>
<td>0.70</td>
<td>1775</td>
<td>1075</td>
</tr>
<tr>
<td>0.80</td>
<td>1690</td>
<td>1050</td>
</tr>
<tr>
<td>0.90</td>
<td>1580</td>
<td>1010</td>
</tr>
</tbody>
</table>

BLOWER DATA A95DF1D / 95G1DF 110*20C PERFORMANCE (Less Filter)

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium - High</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.00</td>
<td>2375</td>
<td>1250</td>
</tr>
<tr>
<td>0.10</td>
<td>2365</td>
<td>1235</td>
</tr>
<tr>
<td>0.20</td>
<td>2275</td>
<td>1200</td>
</tr>
<tr>
<td>0.30</td>
<td>2200</td>
<td>1180</td>
</tr>
<tr>
<td>0.40</td>
<td>2115</td>
<td>1150</td>
</tr>
<tr>
<td>0.50</td>
<td>2040</td>
<td>1115</td>
</tr>
<tr>
<td>0.60</td>
<td>1955</td>
<td>1090</td>
</tr>
<tr>
<td>0.70</td>
<td>1860</td>
<td>1070</td>
</tr>
<tr>
<td>0.80</td>
<td>1735</td>
<td>1030</td>
</tr>
<tr>
<td>0.90</td>
<td>1640</td>
<td>1010</td>
</tr>
</tbody>
</table>

NOTES: All air data is measured external to unit without filter (not furnished - field provided)
Service

WARNING

ELECTRICAL SHOCK, FIRE, OR EXPLOSION HAZARD.

Failure to follow safety warnings exactly could result in dangerous operation, serious injury, death or property damage.

Improper servicing could result in dangerous operation, serious injury, death, or property damage.

Before servicing, disconnect all electrical power to furnace.

When servicing controls, label all wires prior to disconnecting. Take care to reconnect wires correctly. Verify proper operation after servicing.

At the beginning of each heating season, system should be checked as follows by a qualified service technician:

Blower

Check the blower wheel for debris and clean if necessary. The blower motors are prelubricated for extended bearing life. No further lubrication is needed.

WARNING

The blower access panel must be securely in place when the blower and burners are operating. Gas fumes, which could contain carbon monoxide, can be drawn into living space resulting in personal injury or death.

Filters

All air filters are installed external to the unit. Filters should be inspected monthly. Clean or replace the filters when necessary to ensure proper furnace operation. Table 3 lists recommended filter sizes.

Exhaust and air intake pipes

Check the exhaust and air intake pipes and all connections for tightness and to make sure there is no blockage.

NOTE: After any heavy snow, ice or frozen fog event the furnace vent pipes may become restricted. Always check the vent system and remove any snow or ice that may be obstructing the plastic intake or exhaust pipes.

Electrical

1. Check all wiring for loose connections.
2. Check for the correct voltage at the furnace (furnace operating). Correct voltage is 120 VAC ± 10%.
3. Check amp-draw on the blower motor with the blower compartment access panel in place.
 Motor Nameplate__________Actual__________

Winterizing and Condensate Trap Care

1. Turn off power to the furnace.
2. Have a shallow pan ready to empty condensate water.
3. Remove the clean out cap from the condensate trap and empty water. Inspect the trap then reinstall the clean out cap.

Cleaning Heat Exchanger

If cleaning the heat exchanger becomes necessary, follow the below procedures and refer to Figure 1 when disassembling unit. Use papers or protective covering in front of furnace while removing heat exchanger assembly.

1. Turn off electrical and gas supplies to the furnace.
2. Remove the furnace access panels.
3. Disconnect the 2 wires from the gas valve.
4. Remove gas supply line connected to gas valve. Remove gas valve/manifold assembly.
5. Remove sensor wire from sensor. Disconnect 2 pin plug from the ignitor.
6. Disconnect wires from flame rollout switches.
7. Loosen clamps at vent elbow. Disconnect condensate drain tubing from flue collar and remove the vent elbow.
8. Remove four burner box screws at the vestibule panel and remove burner box. Set burner box assembly aside.

NOTE: If necessary, clean burners at this time. Follow procedures outlined in Burner Cleaning section.

9. Mark and disconnect all combustion air pressure tubing from cold end header collector box.
10. Mark and remove wires from pressure switches. Remove pressure switches. Keep tubing attached to pressure switches.
11. Disconnect the plug from the combustion air inducer. Remove two screws which secure combustion air inducer to collector box. Remove combustion air inducer assembly. Remove ground wire from vest panel.
12. Remove electrical junction box from the side of the furnace.
13. Mark and disconnect any remaining wiring to heating compartment components. Disengage strain relief bushing and pull wiring and bushing through the hole in the blower deck.
14. Remove the primary limit from the vestibule panel.
15. Remove two screws from the front cabinet flange at the blower deck. Spread cabinet sides slightly to allow clearance for removal of heat exchanger.
16. Remove screws along vestibule sides and bottom which secure vestibule panel and heat exchanger assembly to cabinet. Remove two screws from blower rail which secure bottom heat exchanger flange. Remove heat exchanger from furnace cabinet.
17. Back wash heat exchanger with soapy water solution or steam. If steam is used it must be below 275°F (135°C).
18. Thoroughly rinse and drain the heat exchanger. Soap solutions can be corrosive. Take care to rinse entire assembly.
19. Reinstall heat exchanger into cabinet making sure that the clamshells of the heat exchanger assembly are resting on the support located at the rear of the cabinet. Remove the indoor blower to view this area through the blower opening.
20. Resecure the supporting screws along the vestibule sides and bottom to the cabinet. Reinstall blower and mounting screws.
21. Reinstall cabinet screws on front flange at blower deck.
22. Reinstall the primary limit on the vestibule panel.
23. Route heating component wiring through hole in blower deck and reinsert strain relief bushing.
24. Reinstall electrical junction box.
25. Reinstall the combustion air inducer. Reconnect the combustion air inducer to the wire harness.
26. Reinstall pressure switches and reconnect pressure switch wiring.
27. Carefully connect combustion air pressure switch hosing from pressure switches to proper stubs on cold end header collector box.
28. Reinstall condensate trap.
29. Reconnect exhaust piping and exhaust drain tubing.
30. Reinstall burner box assembly in vestibule area.
31. Reconnect flame rollout switch wires.
32. Reconnect sensor wire and reconnect 2 pin plug from ignitor.
33. Secure burner box assembly to vestibule panel using four existing screws. Make sure burners line up in center of burner ports.
34. Reinstall gas valve manifold assembly. Reconnect gas supply line to gas valve.
35. Reconnect 2 wires to gas valve.
36. Replace the blower compartment access panel.
37. Refer to instruction on verifying gas and electrical connections when re-establishing supplies.
38. Follow lighting instructions to light and operate furnace for 5 minutes to ensure that heat exchanger is clean and dry and that furnace is operating properly.
39. Replace heating compartment access panel.

Cleaning the Burner Assembly
1. Turn off electrical and gas power supplies to furnace. Remove upper and lower furnace access panels.
2. Disconnect the 2 pin plug from the gas valve.
3. Remove the burner box cover.
4. Disconnect the gas supply line from the gas valve. Remove gas valve manifold assembly.
5. Mark and disconnect sensor wire from the sensor. Disconnect 2 pin plug from the ignitor at the burner box.
6. Remove four screws which secure burner box assembly to vest panel. Remove burner box from the unit.
7. Use the soft brush attachment on a vacuum cleaner to gently clean the face of the burners. Visually inspect the inside of the burners and crossovers for any blockage caused by foreign matter. Remove any blockage.
8. Reconnect the sensor wire and reconnect the 2 pin plug to the ignitor wiring harness.
9. Reinstall the burner box assembly using the existing four screws. Make sure that the burners line up in the center of the burner ports.
10. Reinstall the gas valve manifold assembly. Reconnect the gas supply line to the gas valve. Reinstall the burner box cover.
11. Reconnect 2 pin plug to gas valve.
12. Replace the blower compartment access panel.
13. Refer to instruction on verifying gas and electrical connections when re-establishing supplies.
14. Follow lighting instructions to light and operate furnace for 5 minutes to ensure that heat exchanger is clean and dry and that furnace is operating properly.
15. Replace heating compartment access panel.
Planned Service
A service technician should check the following items during an annual inspection. Power to the unit must be shut off for safety.

Fresh air grilles and louvers (on the unit and in the room where the furnace is installed) - Must be open and unobstructed to provide combustion air.

Burners - Must be inspected for rust, dirt, or signs of water.

Vent pipe - Must be inspected for signs of water, cracked, damaged or sagging pipe, or disconnected joints.

Unit appearance - Must be inspected for rust, dirt, signs of water, burnt or damaged wires, or components.

Blower access door - Must be properly in place and provide a seal between the return air and the room where the furnace is installed.

Return air duct - Must be properly attached and provide an air seal to the unit.

Operating performance - Unit must be observed during operation to monitor proper performance of the unit and the vent system.

Combustion gases - Flue products must be analyzed and compared to the unit specifications.

Problems detected during the inspection may make it necessary to temporarily shut down the furnace until the items can be repaired or replaced.

Instruct the homeowners to pay attention to their furnace. Situations can arise between annual furnace inspections that may result in unsafe operation. For instance, items innocently stored next to the furnace may obstruct the combustion air supply. This could cause incomplete combustion and the production of carbon monoxide gas.

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Off</td>
<td>No power to control or control hardware fault detected</td>
</tr>
<tr>
<td>LED On</td>
<td>Normal operation</td>
</tr>
<tr>
<td>1 Flash</td>
<td>Flame Present with gas valve off</td>
</tr>
<tr>
<td>2 Flashes</td>
<td>Pressure switch closed with inducer off</td>
</tr>
<tr>
<td>3 Flashes</td>
<td>Pressure switch open with inducer on</td>
</tr>
<tr>
<td>4 Flashes</td>
<td>High limit switch open</td>
</tr>
<tr>
<td>5 Flashes</td>
<td>Rollout switch open</td>
</tr>
<tr>
<td>6 Flashes</td>
<td>Pressure switch cycle lockout</td>
</tr>
<tr>
<td>7 Flashes</td>
<td>Lockout due to no ignition</td>
</tr>
<tr>
<td>8 Flashes</td>
<td>Lockout due to too many flame dropouts</td>
</tr>
<tr>
<td>9 Flashes</td>
<td>Incorrect line voltage phasing</td>
</tr>
</tbody>
</table>
Repair Parts List
The following repair parts are available through Allied Air dealers. When ordering parts, include the complete furnace model number listed on the CSA nameplate. *Example:* A93DF1D045B36-01. All service must be performed by a licensed professional installer (or equivalent), service agency, or gas supplier.

Cabinet Parts
- Heating Compartment Access Panel
- Blower Compartment Access Panel
- Top Cap

Control Panel Parts
- Transformer
- Integrated Control Board
- Door Interlock Switch

Blower Parts
- Blower Wheel
- Motor
- Motor Mounting Frame
- Motor Capacitor
- Blower Housing Cutoff Plate

Heating Parts
- Flame Sensor
- Heat Exchanger Assembly
- Gas Manifold
- Combustion Air Inducer
- Gas Valve
- Main Burner Cluster
- Main Burner Orifices
- Pressure Switch
- Ignitor
- Primary Limit Control
- Flame Rollout Switches
Start-Up & Performance Check List

UNIT SET UP

Furnace:
Model Number__________________
Serial Number__________________

GAS SUPPLY

☐ Natural Gas ☐ LP Propane Gas
☐ Piping Connections Tight
☐ Leak Tested
☐ Supply Line Pressure “W.C.”

INTAKE / EXHAUST PIPE

☐ All Joints Primed and Glued
☐ Terminations Installed Properly
☐ Horizontal Pipes Sloped (if applicable)
☐ Condensate Trap Primed / Line Sloped
☐ Pipes Supported
☐ Heat Cable Installed and Operable (if applicable)

DUCT SYSTEM

SUPPLY AIR DUCT

☐ Sealed
☐ Insulated (if necessary)

RETURN DUCT

☐ Sealed
☐ Filter Installed and Clean
☐ Grilles Unobstructed

VOLTAGE CHECK

Supply Voltage ______
☐ Electrical Connections Tight
HEATING MODE

1. GAS MANIFOLD PRESSURE “W.C.” ______
2. COMBUSTION SAMPLE CO₂ % _____ CO _____ PPM
3. INDOOR BLOWER AMPS ______
4. TEMPERATURE RISE
 Supply Duct Temperature ______
 Return Duct Temperature - ______
 Temperature Rise = ______
5. TOTAL EXTERNAL STATIC
 Supply External Static ______
 Return External Static + ______
 Total External Static = ______
6. CONDENSATE LINE
 ☐ Leak Free
7. VENT PIPE
 ☐ Leak Free
8. TEMPERATURE DROP
 Return Duct Temperature ______
 Supply Duct Temperature ______
 Temperature Drop = ______
9. TOTAL EXTERNAL STATIC (dry coil)
 Supply External Static ______
 Return External Static + ______
 Total External Static = ______
10. DRAIN LINE
 ☐ Leak Free
11. THERMOSTAT
 ☐ Adjusted and Programmed
 ☐ Explained Operation to Owner

UNIT OPERATION

COOLING MODE

3. INDOOR BLOWER AMPS ______
4. TEMPERATURE DROP
 Return Duct Temperature ______
 Supply Duct Temperature ______
 Temperature Drop = ______
5. TOTAL EXTERNAL STATIC (dry coil)
 Supply External Static ______
 Return External Static + ______
 Total External Static = ______
6. DRAIN LINE
 ☐ Leak Free
7. THERMOSTAT
 ☐ Adjusted and Programmed
 ☐ Explained Operation to Owner

Contractor’s: Name__________________________ Telephone________________ Checklist Completed______________

Job Address__ Technician’s Name____________________

507271-02 Issue 1621 Page 51 of 52
Modifications to NFPA-54, Chapter 10
Revise NFPA-54 section 10.8.3 to add the following requirements:

For all side wall, horizontally vented, gas fueled equipment installed in every dwelling, building or structure used in whole or in part for residential purposes, including those owned or operated by the Commonwealth and where the side wall exhaust vent termination is less than seven (7) feet above the finished grade in the area of the venting, including but not limited to decks and porches, the following requirements shall be satisfied:

1. **INSTALLATION OF CARBON MONOXIDE DETECTORS.** At the time of installation of the side wall, horizontally vented, gas-fueled equipment, the installing plumber or gas fitter shall observe that a hard wired carbon monoxide detector with an alarm and battery backup is installed on the floor level where the gas equipment is to be installed. In addition, the installing plumber or gas fitter shall observe that a battery operated or hard wired carbon monoxide detector with an alarm is installed on each additional level of the dwelling, building or structure served by the side wall, horizontally vented, gas fueled equipment. It shall be the responsibility of the property owner to secure the services of qualified licensed professionals for the installation of hard wired carbon monoxide detectors.
 a. In the event that the side wall, horizontally vented, gas fueled equipment is installed in a crawl space or an attic, the hard wired carbon monoxide detector with alarm and battery backup may be installed on the next adjacent floor level.
 b. In the event that the requirements of this subdivision cannot be met at the time of completion of installation, the owner shall have a period of thirty (30) days to comply with the above requirements; provided, however, that during said thirty (30) day period, a battery operated carbon monoxide detector with an alarm shall be installed.

2. **APPROVED CARBON MONOXIDE DETECTORS.** Each carbon monoxide detector as required in accordance with the above provisions shall comply with NFPA 720 and be ANSI/UL 2034 listed and IAS certified.
3. **SIGNAGE.** A metal or plastic identification plate shall be permanently mounted to the exterior of the building at a minimum height of eight (8) feet above grade directly in line with the exhaust vent terminal for the horizontally vented, gas fueled heating appliance or equipment. The sign shall read, in print size no less than one half (1/2) inch in size, “GAS VENT DIRECTLY BELOW. KEEP CLEAR OF ALL OBSTRUCTIONS.”
4. **INSPECTION.** The state or local gas inspector of the side wall, horizontally vented, gas-fueled equipment shall not approve the installation unless, upon inspection, the inspector observes carbon monoxide detectors and signage installed in accordance with the provisions of 248 CMR 5.08(2)(a) 1 through 4.

EXEMPTIONS: The following equipment is exempt from 24 CMR 5.08(2)(a) 1 through 4:

1. The equipment listed in Chapter 10 entitled “Equipment Not Required to Be Vented” in the most current edition of NFPA 54 as adopted by the Board; and
2. Product Approved side wall, horizontally vented, gas fueled equipment installed in a room or structure separate from the dwelling, building or structure used in whole or in part for residential purposes.

MANUFACTURER REQUIREMENTS - GAS EQUIPMENT VENTING SYSTEM PROVIDED.
When the manufacturer of Product Approved side wall, horizontally vented, gas fueled equipment provides a venting system design or venting system components with the equipment, the instructions provided by the manufacturer for installation of the equipment and the venting system shall include:

1. Detailed instructions for the installation of the venting system design or the venting system components; and
2. A complete parts list for the venting system design or venting system.

MANUFACTURER REQUIREMENTS - GAS EQUIPMENT VENTING SYSTEM NOT PROVIDED.
When the manufacturer of Product Approved sidewall, horizontally vented, gas fueled equipment does not provide the parts for venting the flue gases, but identifies “special venting systems,” the following requirements shall be satisfied by the manufacturer:

1. The referenced “special venting system” instructions shall be included with the appliance or equipment installation instructions; and
2. The “special venting systems” shall be Product Approved by the Board, and the instructions for that system shall include a parts list and detailed installation instructions.

A copy of all installation instructions for all Product Approved side wall, horizontally vented, gas fueled equipment, all venting instructions, all parts lists for venting instructions, and/or all venting design instructions shall remain with the appliance or equipment at the completion of the installation.