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resistance 
J. A. GREENWOOD? 

Burndy Corporation Research Division, Norwalk, Connecticut, U.S.A. 

MS. received 20th Jiirie 1966, in revised fo rm 25th Jzdy i966 

Abstract. The relation between the area of contact and the constriction resistance 
which holds for a single circular contact spot is widely used in electric contact theory, 
although the normal node of contact is by a large number of microcontacts. A 
method of finding the resistance of a cluster of microcontacts is derived, and it is 
shown that the resistance may be regarded as the sum of the parallel resistance of 
the microcontacts and an interaction term often related to the extent of the cluster 
and not to the number or size of the individual contacts. The resistance is often 
close to that found by assuming that the entire area covered by the cluster is a single 
conducting spot. 

The known agreement between areas of contact found fro= resistance mpascre- 
ments and by other methods is therefore puzzling-until it is realized that the other 
methods also give only an apparent area: the real area of contact in, for example, a 
Brinell indentation is a small fractior. of the area of the indentation. Thus from the 
point of view of electric contact theory the system is self-consistent, although the 
real area of contact is now seen to play no part in it: the implications for the theory of 
friction are more profound. 

1. Introduction 
Wher, two large conductors touch over a small circular area, there is a constriction 

resistance between them of p/2a, where a is the radius of the contact circle. This equation 
is very widely used in the design a n d  study of electrical contacts. There is evidence, 
however: that contact between metals rarely, if ever, occurs in this way. For example, 
figure 1 shows a surface profile across a 'Brinell hardness indentation. The apparent 
conxact area, used to assess the hardness, is subdivided into a multitude of microcontacts. 

250pm 

Figure 1. Talysurf profile of Brinell impression in annealed bead-blasted gold block. Most of the 
curvature of the indentation has been cut out using the Talysurf radius attachment. The upper 

profile shows part of the undefomed smface. 

Contact between nominally flat surfaces is known to occur as a number of clusters of micro- 
contacts (Dyson and Hirst 1954), the position of the dusters being deternined by the 
large-scale waviness of the surface, and  the microcontacts by the small-scale surface 
roughness. 

It is clear that the  constriction resistance will be  partly determined by the number and 
size of the microcontacts and partly by their grouping into clusters. The simplest case 
is that of a large number of small equal spots distributed uniformly and densely over a 

7 Now at the Department of Mechanical Engineering, The University, Liverpool 3. 
I621 
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circular area. The resistance is then 

where a is the radius of a spot, and a the radius of the cluster (Holm 1929). However, 
this equation is rarely used-a notable exception being Cocks (1954 Ph.D. Thesis, Univer- 
sity of Reading)-perhaps because it does not occur in Holm's more accessible publications 
(e.g. Holm 1958). The present paper deals more generally with the question of the re- 
sistance of a cluster of contact spots, and suggests a wider interpretation of Holm's result. 

2. Mathematical approach 
Current-flow problems are completely analogous to electrostatic charge distribution 

problems: the current flow through a given contact is replaced by the charge on a conductor 
shaped like the contact spot. The method which fo!lows uses the fact that we can (ap- 
proximately) determine the potential due to given charges on a set of conductors; we 
then apply the condition that these potentials must be equal and obtain a set of simultaneous 
equations determining the charges. The procedure in electrostatics is well-known (see for 
example Smythe 1950); it is convenient in what follows to paraphrase it in current-flow 

We consider a single cluster which is small compared to  the size of the nominal contact 
area and to  the distance from any other cluster. The cluster consists of n microcontacts. 
The current flowing through the kth contact is I k .  We require first the potentials at the 
contacts in terms of the currents I k .  Let bij be the potential difference between contact i 
and infinity due to unit current through contact j, the other contacts being present (i.e. 
being equipotentials) but passing no current. We will refer to bij (i i j )  as the mutual 
resistance of contacts i andj.  and to bit as the self-resistance of contact i. The self-resistance 
is not exactly the same as the resistance of the contact if there were no other contacts since 
the presence of additionai equipotential areas causes a redistribution of' current and so a 
change in resistance: but in this section such effects will be neglected: a later section will 
consider the errors so introduced. 

We consider the situation in one of the contacting bodies only. Thus, for a circular 
contact of radius at, the self-resistance will be p/4ai (e.g. Srnythe 1950). 

To a first approximation the mutual resistance of two contacts can be found by assuming 
them to be point contacts: in fact, the potential at a distance s from contact j is pIj:2m 
(corresponding to +Q/'s in the electrostatic case). Thus bij - p/2xsij where Sij is the 
distance betueen the contacts. As before, the effect of the higher order corrections Rill 
be postponed to a later section (52.3). 

The total potential at  the ith contact is the sum of the potentials due to the separate 
currents. i.e. 

teiirii;ology. 

+i = bijlj. (2 )  
3 

For an array of circular spots we have approximately 

For a cluster at the interface between two large conductors of the same material the poten- 
tials must all be equal, with a value of half the potential difference applied across the two 
conductorst. i.e. 

7 With some obvious minor changes, the theory also applies to the high resistance member of 
contact between conductors of very different resistivities. 
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In principle we can solve this set of equations to find the currents li and hence the total 
current and the resistance. This has been done for some particular dusters with a limited 
number of contacts and the results are given below: we shall first, however, obtain an 
approximate formula which avoids this process and so is more generally useful. 

2.1. Approximate formulae for the resistance 
It is well known that the actual distribution of current in a conductor is the one which 

makes the rate of heat production a minimum. The significance of this result here is 
that a minimum is a stationary value, and so is insensitive to small changes in the currents. 
Thus a reasonable estimate of the currents will give a better estimate of the resistance. 

The rate of heat production is 
W = 2 C +iIi = 2 bijlilj 

i i j  

on substituting for 4i from equation (2): the factor 2 comes from the two symmetrical 
conductors. 

When the microcontacts are far apart they will act independently and the current through 
each will be inversely proportional t o  its self-resistance big, i.e. Pi - h/bti. Assuming this 
to be approximately true in the general case, we have 

and so 

Substituting the values for an array of circular contacts gives 

and 
bit = p / 4 ~ i ,  bij = p 1 2 ~ s i j  (i f j )  

This expression is quite simple to use since the terms are known and the evaluation involves 
only summations ; the solution of the simultaneous equations, which rapidly becomes 
impracticable as the number of spots increases, has been circumvented. From the minimum 
property of the heat production it follows that this will give an overestimate of the resistance. 

A further approximation is very useful. If we assume there is no correlation between 
the size of a contact and its position, we can approximately replace the individual radii in 
the double summation by their mean, and get 

This, of course, is exact if the contacts are all the same size: if the sizes vary (but are uncor- 
related with position) the error is small and decreases as the number of contacts in the 
cluster increases. The error, unlike that of equation (4), can be of either sign: however, 
the value is usually again an overestimate. The first term in both approximations is the 
usual expression for the resistance of a number of contact spots in parallel; it ignores their 
positions. To this is added a term which expresses the interaction between the spots; in 
formula (4) this term involves the position and the sizes of the spots; in formula ( 5 )  it 
depends only on their positions. The magnitude of this term can be estimated quite 
easily: for a cluster of h e a r  dimension I the mean distance between a pair of microcontacts 
will be of the order 31, and the double summation will be approximately n(n - 1)2/l. 
Hence for n large, the second term becomes 2pin-1, and so is comparable with the first term 
whenever 

I N 2ai = nZ 
i.e. when the linear dimensions of the cluster are comparable with the sum of the linear 
dimensions of the contacts. 
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2.2. Application to a tj'pical cluster 
To determine the accuracy of the practical resistance formulae (4) and (5), a number 

of arrays were constructed, their resistances found by the solution of the simultaneous 
equations (3), and compared with the approximate answers. The resistances given are 
purely numerical: they must be multiplied by the resistivity expressed in appropriate units; 
for example. if the array dimensions are regarded as being in micrometres, the resistivity 
must be in ohm micrometres to give the resistance in ohms. 

Figure 2 .  Typical random array. The individual currents are tabulated below. 
Contact a b C d e f g h i j 
Radinsa 0.6  0.3  0 .8  0.5 0 .2  0 .5  0 . 6  0 .7  0.4 0.1 
Current1 0.836 0.317 1,036 0.513 0.178 0.638 0.758 0.888 0.445 0.129 
Rat iola  1.39 i . 0 6  1.29 1.03 0.89 1.28 1.26 1 .27  1.11 i . 2 9  

Figure 2 shows a typical randoin erray. The fd! sdutior, gave a resistance of 0.174: 
the two approximate formiilae (4) and (5) gave respectively 0.175 and 0.179, i.e. errors of 
0.7% and 2*9$.j, which are quite acceptable. The resistance for the same contacts acting 
independently was only 0.106, showing the importance of the interaction term. It is 
interesting to examine the way the current divides between the contacts, which is known 
from the full solution (see caption, figure 2). The contacts are not acting independently 
since the currents are not proportional to the radii. Contact a carries an unduly high 
current while e carries an unduly low one; both of which are easily understood from the 
figure: a is the most isolsted contact and e the most enclosed. 

If we keep the s p t  sizes unchanged but double the distances between them, the contacts 
shouid be more independent. This is confirmed by the results: the resistance falls to 0.141 
and the errors in the approximate formxlae become 0 .2% and 1 .6% respectively. The 
converse occurs if we halve the distances between the contacts, again keeping the sizes 
unchanged. The resistance rises to 0.240 and the errors in the approximate formulae 
become 2.1 94 and 5.3;;. A further decrease in separation would be meaningless, since 
the contacts have already begun to cverlap. 

Results cn some 70 arrays show that half the errors are less than 1 using either ap- 
proximate formula: larger errors, up to 5%,  occur only in extreme cases used to test the 
method, such as the array containing touching spots just described. Only one error 
appreciably over 5 %  has ever been found: an error of 9.4% occurred with formula ( 5 )  
for a set of spots piaced as in figure 2, but with nine small spots (b to j ,  all of radius 0.5) 
and one large one (a, radius 2.0). In any real case the error will be small. 

2.3.  The accuracy of the oasic method 
The basic equations (3) from which the individual currents and hence the overall re- 

sistance are found are only exact in the limits as the microcontacts become smaller 01 
infinitely separated. For finite microcontacts there are errors which depend on the separa- 
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tion and on the shape. It is shown in the Appendix that for a pair of contacts the errors 
in the self and mutual resistances are of order a3/s4 and a2/s3 respectively. In  electrostatic 
terminology the former represents a dipole effect, since the charges induced on a second 
contact by the charge on the first contact affect the potential of the first; and the latter a 
quadrupole effect, since the charge is spread over an area instead of being localized at a 
point. For a cluster of n contacts we get a symmetric quadrupole interaction between 
every pair of contacts, and unsymmetric dipole interactions involving every triplet: the 
charge on a induces a dipole on b which affects the potential of c, and so on. Clearly it 
is not in general practicable to take all these into account. One case where it can be done 
is for a cluster consisting of six contacts symmetrically round a seventh (see figure 4(a), 
53.2.) The results in table 1 give the individual currents and the overall resistances (taking 
the radii to be 1.0) using (i) terms up to  s-l, (ii) terms up to s - ~  (quadrupole effects), (iii) 
terms up to s-& (dipole effects). 

Table I. Analysis of hexagonal cluster (figure 4(a)) 

Approximation Current in Current in Overall 

First order 0.3259 0.8765 0.1790 
Quadrupole c . 2 2 2  0.8641 0.1853 
Dipole 0.4254 0.8587 0.1743 

centre contact outer contact resistance 

The results show two important features. The dipole effects more than outweigh the 
quadrupole effects, so that there is no justification for including one but not the other or, 
indeed, for excluding even higher terms. Secondly, and more importantly, the overall 
resistance is insensitive to the inclusion of the higher terms. It varies only by 3 %  in an 
example which has the maximum possible number of touching neighbours. Remembering 
that the interactions decrease as a2/s3 and a3/s4 respectively, it is clear that with even a small 
separation between the coctacts the higher order effects will be negligible. Thus, for 
example, for a hexagonal cluster with a centre-to-centre distance of two diameters, the 
three resistance values are 0.2529, 0,2538 and 0,2521 which vary by only 0-3:(. 

3. Physical interpretation 

3 .1. Holm's equation 

the meafi contact radius a, eqclation ( 5 )  becomes 
It is possible to give a geometrical interpretation to the interaction term. If we introduce 

This may be used to obtain the resistance of any array of contact spots, even if their 
positions are only known statistically. Consider for example a cluster comprising a very 
large number of spots uniformly distributed with q per unit area within a circle of radius a. 
The evaluation of the sum of all the reciprocal distances involves some rather tedious 
integrations (see Timoshenko and Goodier 1951): the result is 16n2/37iu. Thus, 

Since 16,'3n2 = 0.5404, this is seen to be close to Holm's result 

The difference is irformative, for the term (16139) p/u is the resistance of a circular contact 
area of radius a when the current is constrained to flow uniformly through it (Rayleigh 
1871). When the current is free to distribute itself as it likes the resistance falls to the 
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usual p,2a. It is clear physically that both answers are correct, equation (1) being appro- 
priate when the self-resistance is small, and (6) when the self-resistance is dominant. This 
can be tested mathematically by taking an  array of contacts covering an approximately 
circular area (figure 3) and varying tke size of the contacts while keeping their positions 
unchanged. Table 2 shows how the interaction, defined as R - (l /2na),  varies as the 
self-resistance 1 /2na is decreased ( R  being calculated by the simultaneous equation method). 

/ c o o o o c  \ 

Figure 3. Resistance of a regLilar array of contact spots. The shaded area is the single continuous 
contact with the same resistance; the outer circle has the Holm radius of the cluster. Values for 

contact spots of varying sizes in these positions are given in table 2.  

\%'her, the self-resistance is large the interaction is close to the approximate value given 
by equation (5 ) ,  (mz)-122xtj-1, which in this case equals 0.0941, but as the self-resistance 
becomes less important the iilieraction decreases and finally, when the contacts touch, it 
has almost decreased by the factor 3 ~ ~ 1 3 2  (which would give 0.0870) corresponding to the 
change from equation (6) to equation (1). 

Table 2. Effect of varying contact size 

Contact 
radius 

a 

0.02 
0.04 
0 .1  
0 . 2  
0 .5  

Resistance R 
(from 

sirnultaneous 
eqns) 

0,4226 
0,2577 
0,1581 
0.1238 
0.1012 

Self-resistance Interaction 
1 /2na R - (l/2na) 

(by 
difference) 

0.3289 0.0937 
0.1645 0.0932 
0.0658 0,0923 
0,0329 0 0909 
0.0132 0,0880 

5.34 
5.36 
5.42 
5 3 0  
5.68 

Radius of 
single spot 

of same 
resistance 

1.18 
1.94 
3.16 
4.04 
4.94 

The array spacing is taken as unity. 

The variation is small compared to the accuracy of contact resistance values and SO 
may simply be ignored. However, it is more desirable to estimate the interaction correctly 
when it is the dominant term than when it is small. Thus it is recommended that :he 
interaction term of equation (5) should be reduced by 3 ~ ~ 1 3 2  and the new value be used 
whatever the size of the self-resistance. Thus, 

( 7 )  

This cannot be derived rigorously by the present approach: it has been found only by 
combining mathematics and physics. Equation (7),  of course, applied to Holm's example 
of a well-filled circular disk, leads to equation ( I )  exactly. 
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Figure 4. Typical clusters, showing the equivalent single contact (shaded) and the Holm radius. 
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3.2. The Holm radius of a general cluster 
Holm's equation provides a method of obtaining a practical estimate of the interaction 

term, provided me can establish the value of a for non-uniform non-circular clusters. This 
may be done by taking a number of clusters whose resistances have been found and examin- 
ing the value of a required in equation (1) to give these resistances. Thus, we define 

U = (2R,'p - l,'Eai)-'. (8) 
Since the introduction of the term p/2a is due to Holm, we shall refer to a as the 'Holm 
radius' of the cluster. Figure 4 shows examples of clusters and their Holm radii. 

When the number of contacts is small they do not form a well-defined cluster and the 
Holm radius is large. As the number of spots increases, a definite Holm radius emerges, 
and varies little as the area of the cluster is filled up. This is demonstrated in figure 5, in 
which spots of random sizes were steadily added to the cluster, at random positions governed 

Figure 5. Cluster formed by adding contact spots according to a fixed probability distribution. 
The first ten are marked 1, the second ten 2 ,  and so on. The large circle indicates the Holm radius 
for the 50 contacts shown. The table below shows that the Holm radius is almost constant. 

Xumber of contact spots 5 10 15 20 30 40 

Number of contact spots 50 60 70 80 90 100 
Holm radius 10.73 8.75 9.17 9.78 9.73 9.71 

Holm radius 9.76 9.91 9.50 9.57 9.64 9.63 

Figure 6. Densely packed clusters, showing the equivalent single contact (shaded) and the Holm 
radius. 
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by a fixed statistical distribution. The Holm radii are given after the addition of every 
10 spots; they quickly reach a steady value. Figure 6 shows examples of densely packed 
clusters of different sizes. From these it is clear that the Holm radius is not the envelope 
of the contacts. A general rule of thumb for an irregular cluster is to draw an envelope 
lying outside each peripheral spot by a distance equal to the centre-to-centre separation 
from its nearest neighbour: the Holm radius is approximately that of the circle containing 
the same area.? 

4. Discussion 
4.1. Accuvacy 

We have shown that the resistance of a well-filled cluster of contacts is approximately 

where 0, the Holm radius of the cluster, is defined by 

Holm originally suggested that an  equation of this form was accurate to 10% provided 
a < u’3ii’ ?, \+hi& is the condition for the mean separation of the contacts to be greater 
than three times their radius. This estimate is now shown to be unduly pessimistic. The 
present treatment contains three sources of error. First, proximity (higher-order) effects 
are ignored in setting up equation (3). These have been shown not to affect the resistance 
appreciably, so there is no restriction of the type Holm envisaged. Secondly, there is a 
systematic variation in the interaction term which depends on whether the self-resistance is 
major or minor. This aKects both ecjuation (4) and equation (5). By using 377116 in the 
definition of a instead of the original 2/7r, the resulting error will be negligible, except when 
the term it affects is small. Thirdly, the removal of the contact radius fro= the dauble 
summation in equation ( 5 )  introduces a statistical erior when the contact spots are of 
different sizes. This is small, and becomes even smaller as the number of spots increases. 
In normal cases the total error due to these approximations will be less than 1 %. 

120; 

Real area 

in 
- 4f J 

! O  4 0  6 C  80 IO; 

Number o f  c o n t a c t s  Number o f  c o n t a c t  spo ts  

(4 @I 
Figure 7 .  (a) Variation of self-resistance, interaction, and total resistance with number of contacr 
spots for the cluster of figure 5. (b) Comparison of real area of contact with value deduced from 

the resistance. 

.t This rule fails when the contacts are distributed along a line or lines as in figures 4(e) znd 
4(f) instead of over an area. The interaction term is then not independent of the number of 
contacts and it appears to increase logarithmically as expected theoretically. For example, rings 
of radius i .O, containing 30, 60, and 120 contacts, give interaction terms of 0.425, 0.496 and 
0.567. 
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4.2. Constriction resistance and the real area of contact 
It is common practice in the study of friction and electric contacts to  estimate the area 

of contact from the measured constriction resistance using the hypothesis of a single 
circular contact. T i e  results of doing this with the clusters considered here have been 
shown in figures 3-6, and it is clear that there is no agreement. The results in table 2 are 
typical: there the resistance decreased by a factor of 4, suggesting-according to the single 
contact hypothesis-that the area had increased 16 times, whereas in fact it had increased 
by a factor of 625. The cluster of figure 5, in which the number of contacts was steadily 
increased, provides another example; figure 7(a) shows the variation of the resistance. and 
of its two components. Figure 7(b) compares the real area of contact with that deduced 
from the resistance: the ratio of the two rose rapidly to 8 ;  there were then 50 contacts, and 
the self-resistance and the interaction had become equal. It then slowly decreased as the 
addition of further contacts increased the real area without greatly reducing the resistance. 
M’ith a larger number of smaller spots, the ratio will be greater. Thus it is impossible to 
deduce anything about the real area of contact directly from measurements of the con- 
striction resistance, except an  upper limit; and the actual value can be a small fraction of 
this. 

4 .3 .  Load and the real area of contact 
Whenever we have a reasonably large number of not-too-small contacts, the self-resistance 

term becomes small and the constriction resistance is close to that observed if the entire 
area of the cluster nere in electrical contact. One aspect of this has been discussed before 
(Cocks 1954 Ph.D. Thesis, Archard 1959): if an insulating film covers the mechanical 
area of contact, so that electrical contact occurs by a large number of small breaks in the 
film, the resistance may be almost as low as with no film (compare figure 4(d)). The other 
aspect has not. The mechanical area of contact is often very much less than that deducible 
from the bulk properties. The remarkable persistance of surface asperities during bu!k 
piastic flow Is well-known (Moore 1948, Greenwood and Rowe 1965) : the consequence, 
that the real area of contact is a small fraction of that predicted from the bulk hardness 
(see figure I), is usually ignored. For the present discussion the origin of this extra hard- 
ness, whether due to an abnormal state of work-hardening, or to frictional restraint, or 
to a strengthening effect due to a surface film blocking the movement of dislocations, is 
irrelevant: the important thing is that the use of the bulk hardness is wrong. and quite 
badly so. The present work shows why this has remained undetected: the areas of contact 
found from the constriction resistance, from the bulk hardness, or from visual observation 
of the contact impression all agree (Bowden and Tabor 1954). From the point of view 
of electrical contact study this is highly satisfactory: the resistance can be calculated in 
the usual way from the load, hardness and resistivity. The implications for the study of 
friction are less satisfactory, for presumably the friction force is proportional to the real 
area of contact. The dilemma has arisen before: Parker and Hatch (19501, sliding lead 
spheres against a glass surface, identified the Yisual area of contact (which was proportional 
to the load) as an apparent area, and were forced to conclude that for some obscure reason 
the real and apparent areas were proportional. It now appears that this was not an 
isolated case. On the contrary, it is doubtful whether there is any experimental ebidence 
that the real area of contact is proportional to the load, but rather good experimental 
evidence that the apparent area is. If the former is still true (and it remains a most per- 
suasive explanation of Amontons’ laws), then Parker and Hatch’s hypothesis must be of 
very general validity. 
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Appendix 
The interacfion of two circular contacts 

We shall consider the electrostatic problem of two coplanar circular conducting disks, 
radii a and b, carrying charges Q8 and Qb. The potentials are conveniently found by 
superposition of the solutions for one charged disk and one uncharged disk: these solutions 
are found approximately as follows. 

In the absence of disk b, a charge Q on a will give a potential distribution, in the plane 
of the disk. of 

where as usual O(4) denotes a function f such that 1 f 1 < Kb, when $ approaches zero. 
This may be regarded as due to a point charge Q and two mutually perpendicular linear 
quadrupoles of magnitude *Qd. (A quadrupole Q’ gives a potential Q’(3 cos2 0 - l)/$ 
at an angle 0 to its axis: two perpendicular ones therefore produce 

Q’(3 cos2 0 - 1 $- 3 sin2 B - l)/s3 = Q‘/s3 
in all directions.) 

Now a point charge Q distant s from the centre of an uncharged disk gives rise to a 
potential (Qib) s i r 1  (bls) on the disk, and also induces a charge distribution on the disk. 
The potential of the second disk due to the distributed charge Q is therefore approximately 

The potential of the first disk will be the sum of Qn/2a for the isolated disk and the potential 
due to the induced charges on the second disk. We shall calculate this approximately by 
assuming the disks so far apart that the field E at the second disk is approximately uniform 
and equal to &is2. The charge distribution induced by E is (Smythe 1950, p. 161) 

E p  cos 4 
$(b2 - p2)l’F” 

where p, C$ are polar coordinates centred on the second disk. 
This distribution has a dipole moment of 

acting along the line of centres (and also higher moments which we neglect). The potential 
at the centre of the first disk due to this dipole is - m!s2, i.e. - 4Qb3/35is4, and so the 
total potential at the first disk is 

Finally we superpose two solutions to get the case of both disks charged: 

From this and the corresponding expression for +b we may solve to find values of Qa and 
Q b  which make +a = C$b, and hence we obtain the capacity cf a pair of linked coplanar 
disks. The result is complicated unless a = b ;  when it is, 

and the constriction resistance of two equal circular contact spots must be (p/n)C-l. 
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