OUTDOOR SPLIT-SYSTEM HEAT PUMP
MODELS:
16 SEER - YZF, HC6B, HL6B SERIES
18 SEER - YZH, HC8B, HL8B SERIES
2 TO 5 TONS

LIST OF SECTIONS
GENERAL .. .1
SAFETY .. .1
UNIT INSTALLATION2
INDOOR EXPANSION DEVICE5
EVACUATION6
SYSTEM CHARGE .. .6
SYSTEM OPERATION 21
SYSTEM START-UP 21
INSTRUCTING THE OWNER 22
START UP SHEET 27

LIST OF FIGURES
Typical Installation with Required Clearances2
Tubing Hanger4
Underground Installation4
Heat Protection4
Typical Field Wiring7
Communications Harness Connection8
Communicating HP with Communicating Air Handler or Furnace using Communicating Interface Control8
Multi-wire Terminal Connection9
Thermostat Wiring - Single Stage Heat Pump (with YGVI control) - Modulating Furnace10
Thermostat Wiring - Single Stage Heat Pump (with YGVI control) - Single Stage Furnace (Standard ECM)11
Thermostat Wiring - Single Stage Heat Pump (with YGVI control) - V/S Air Handler12
Thermostat Wiring - Single Stage Heat Pump (with YGVI control) - PSC Air Handler13
Thermostat Wiring - Two-Stage Heat Pump - Variable Speed Air Handler17
Thermostat Wiring - Two-Stage Heat Pump - Single Stage Furnace (Standard ECM)11
Thermostat Wiring - Two-Stage Heat Pump - V/S Air Handler12
Thermostat Wiring - Two-Stage Heat Pump - PSC Air Handler13
Wiring Diagram - 2 Stage with ECM Outdoor Fan Motor24
Wiring Diagram - 2 Stage with PSC Outdoor Fan Motor24
Wiring Diagram - 2 Stage with ECM Outdoor Fan Motor25
Heat Pump Flow Diagram21
Wiring Diagram - Single Stage23
Defrost Initiate Curves21
R-410A Saturation Properties7
List of Tables ... 2

LIST OF TABLES

Maximum / Minimum Operating Limit Conditions2

SECTION I: GENERAL
The outdoor units are designed to be connected to a matching indoor coil with sweat connect lines. Sweat connect units are factory charged with refrigerant for the smallest rated indoor coil plus 15 feet of field supplied lines.

Matching indoor coils require a thermostatic expansion valve. The refrigerant charge may need to be changed for some indoor-outdoor unit combinations, elevation differences, or total line lengths. Refer to Application Data covering "General Piping Recommendations and Refrigerant Line Length" (Part Number 247077).

SECTION II: SAFETY
This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words DANGER, WARNING, or CAUTION.

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

WARNING indicates a potentially hazardous situation, which, if not avoided, could result in death or serious injury.

CAUTION indicates a potentially hazardous situation, which, if not avoided, may result in minor or moderate injury. It is also used to alert against unsafe practices and hazards involving only property damage.

WARNING
Improper installation may create a condition where the operation of the product could cause personal injury or property damage. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual for assistance or for additional information, consult a qualified contractor, installer or service agency.

CAUTION
This product must be installed in strict compliance with the enclosed installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.

CAUTION
R-410A systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410A equipment. Service equipment Must Be Rated for R-410A.
INSECTION

As soon as a unit is received, it should be inspected for possible damage during transit. If damage is evident, the extent of the damage should be noted on the carrier's delivery receipt. A separate request for inspection by the carrier's agent should be made in writing. See Local Distributor for more information.

Requirements For Installing/Servicing R-410A Equipment

- Gauge sets, hoses, refrigerant containers, and recovery system must be designed to handle POE oils, and the higher pressures of R-410A.
- Manifold sets should be 800 PSIG high side and 250 PSIG low side with 550 PSIG low side restart.
- All hoses must have a 700 PSIG service pressure rating.
- Leak detectors should be designed to detect HFC refrigerant.
- Recovery equipment (including refrigerant recovery containers) must be specifically designed to handle R-410A.
- An R-22 TXV (thermostatic expansion valve) must not be used.
- A liquid-line filter drier is required on every unit.

LIMITATIONS

The unit should be installed in accordance with all National, State and Local Safety Codes and the limitations listed below:

1. Limitations for the indoor unit, coil and appropriate accessories must also be observed.
2. The outdoor unit must not be installed with any duct work in the air stream. The outdoor fan is the propeller type and is not designed to operate against any external static pressure.
3. The maximum and minimum conditions for operation must be observed to assure a system that will give maximum performance with minimum service. Refer to the dry bulb (DB) and wet bulb (WB) temperature limitations in Table 1.

TABLE 1: Maximum / Minimum Operating Limit Conditions

<table>
<thead>
<tr>
<th>AIR TEMPERATURE AT OUTDOOR COIL, °F</th>
<th>AIR TEMPERATURE AT INDOOR COIL, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>Cool</td>
</tr>
<tr>
<td>50</td>
<td>-10</td>
</tr>
</tbody>
</table>

1. Operation below this temperature is permissible for a short period of time, during morning warm-up.

2. The 2 stage units are not designed to operate with a low ambient kit. The 2 stage models which can not operate with a low ambient kit include YZF060, HC6B060, HL6B060, all YZH, all HC8B, and all HL8B. Do not modify the control system of these models to operate with any kind of low ambient kit.

3. If change-out of the line set is not practical, then the following precautions should be taken.
 - Inspect the line set for kinks, sharp bends, or other restrictions, and for corrosion.
 - Determine if there are any low spots in the line set which might cause oil traps.
 - Flush the line set with a commercially available flush kit to remove as much of the existing oil and contaminants as possible.
 - Install a suction line filter-drier to trap any remaining contaminants, and remove it after 50 hours of operation.
 - If the outdoor unit is being replaced due to a compressor burnout, then installation of a 100% activated alumina suction-line filter drier in the suction-line is required, in addition to the factory installed liquid-line drier. Operate the system for 10 hours. Monitor the suction pressure drop. If the pressure drop exceeds 3 psig, replace both the suction-line and liquid-line driers. After a total of 10 hours run time where the suction-line pressure drop has not exceeded 3 psig, replace the liquid line drier, and remove the suction-line drier.

4. If the outdoor unit is being replaced due to a compressor burnout, then installation of a 100% activated alumina suction-line filter drier in the suction-line is required, in addition to the factory installed liquid-line drier. Operate the system for 10 hours. Monitor the suction pressure drop. If the pressure drop exceeds 3 psig, replace both the suction-line and liquid-line driers. After a total of 10 hours run time where the suction-line pressure drop has not exceeded 3 psig, replace the liquid line drier, and remove the suction-line drier.

5. The maximum allowable line length for this product is 75 feet.

SECTION III: UNIT INSTALLATION

LOCATION

Before starting the installation, the suitability of the locations for both the indoor and outdoor units need to be checked. All required limitations and clearances must be observed. The outdoor unit must have sufficient clearance for air entrance to the condenser coil, for air discharge, and for service access as shown in Figure 1.

NOTICE

For multiple unit installations, units must be spaced a minimum of 24 inches apart. (Coil face to coil face.)

If the unit is to be installed on a hot sun exposed roof or a paved ground area that is seasonally hot, the unit should be raised sufficiently above the roof or ground to avoid taking the accumulated layer of hot air into the outdoor unit.

Provide adequate structural support.

ADD-ON REPLACEMENT/RETROFIT

When this unit is being used as a replacement for an R-22 unit, it is required that the outdoor unit, indoor coil, and metering device all be replaced. The following steps should be performed in order to insure proper system operation and performance. Line-set change out is also recommended.

1. Change-out of the indoor coil to an approved R-410A coil/condensing unit combination with the appropriate metering device.
2. Change-out of the line-set when replacing an R-22 unit with an R410-A unit is highly recommended to reduce cross-contamination of oils and refrigerants.
3. If change-out of the line set is not practical, then the following precautions should be taken.
 - Inspect the line set for kinks, sharp bends, or other restrictions, and for corrosion.
 - Determine if there are any low spots in the line set which might cause oil traps.
 - Flush the line set with a commercially available flush kit to remove as much of the existing oil and contaminants as possible.
 - Install a suction line filter-drier to trap any remaining contaminants, and remove it after 50 hours of operation.

4. If the outdoor unit is being replaced due to a compressor burnout, then installation of a 100% activated alumina suction-line filter drier in the suction-line is required, in addition to the factory installed liquid-line drier. Operate the system for 10 hours. Monitor the suction pressure drop. If the pressure drop exceeds 3 psig, replace both the suction-line and liquid-line driers. After a total of 10 hours run time where the suction-line pressure drop has not exceeded 3 psig, replace the liquid line drier, and remove the suction-line drier.

5. The maximum allowable line length for this product is 75 feet.

FIGURE 1: Typical Installation with Required Clearances
GROUND INSTALLATION
The unit may be installed at ground level on a solid base that will not shift or settle, causing strain on the refrigerant lines and possible leaks. The unit must be installed in such a position as possible while maintaining the clearances shown in Figure 1.
Normal operating sound levels may be objectionable if the unit is placed directly under windows of certain rooms (bedrooms, study, etc.).
Condensate will drain from beneath the coil of the outdoor unit during the defrost cycle. Normally this condensate may be allowed to drain directly on the ground.

WARNING
The outdoor unit should not be installed in an area where mud or ice could cause personal injury. Remember that condensate will drip from the unit coil during heat and defrost cycles and that this condensate will freeze when the temperature of the outdoor air is below 32°F.

1. Elevate the unit sufficiently to prevent any blockage of the air entrances by snow in areas where there will be snow accumulation.
2. Check the local weather bureau for the expected snow accumulation in your area.
3. Isolate the unit from rain gutters to avoid any possible wash out of the foundation.

ROOF INSTALLATION
When installing units on a roof, the structure must be capable of supporting the total weight of the unit, including a pad, lintels, rails, or any components used to minimize the transmission of sound or vibration into the conditioned space.

WALL MOUNT INSTALLATION
Care must be taken to mount the outdoor unit on a solid base that is sloped to shed water, secure from settlement, and isolated from the structural foundation or walls to prevent sound and vibration transmission into the living space. In addition heat pump units must be elevated above anticipated snow accumulation levels to allow for proper defrost drainage and airflow.
On occasion, site conditions may require direct wall mounted brackets to be used to locate and support the outdoor unit. In these applications, care must be taken to address unit base pan support, structural integrity, safe access and serviceability, as well as the possible sound and vibration transmission into the structure. These applications are best served by a properly engineered solution.

UNIT PLACEMENT
Heat pumps will defrost periodically resulting in water drainage. The unit should not be located where water drainage may freeze and create a hazardous condition such as sidewalks and steps.

1. Provide a base in the pre-determined location.
2. Remove the shipping carton and inspect for possible damage.
3. Compressor tie-down bolts should remain tightened.
4. Position the unit on the base provided.

LIQUID LINE FILTER-DRIER
The heat pumps have a solid core bi-flow filter/dryer located on the liquid line.

CAUTION
Failure to use the same as the original factory drier, or using a substitute drier, or using a granular type drier may result in damage to the equipment.

PIPING CONNECTIONS

WARNING
Never install a suction-line filter drier in the liquid line of an R-410A system. Failure to follow this warning can cause a fire, injury or death.

CAUTION
This system uses R-410A refrigerant only, which operates at higher pressures than R-22. No other refrigerant than R-410A may be used in this system. Gauge sets, hoses, refrigerant containers, and recovery system must be designed to handle R-410A. If you are unsure, consult the equipment manufacturer.

The outdoor unit must be connected to the indoor coil using field supplied refrigerant grade copper tubing that is internally clean and dry. Units should be installed only with the tubing sizes for approved system combinations as specified in Tabular Data Sheet. The charge given is applicable for total tubing lengths up to 15 feet. See Application Data Part Number 247077 for installing tubing of longer lengths and elevation differences.

NOTICE
Using a larger than specified line size could result in oil return problems. Using too small a line will result in loss of capacity and other problems caused by insufficient refrigerant flow. Slope horizontal vapor lines at least 1° every 20 feet toward the outdoor unit to facilitate proper oil return.

PRECAUTIONS DURING LINE INSTALLATION
1. Install the lines with as few bends as possible. Make sure there is no damage done to the couplings nor kink made in the tubing. Use clean hard drawn copper tubing where no appreciable amount of bending around obstruction is necessary. If soft copper must be used, make sure to avoid sharp bends which may cause a restriction.
2. Ensure that the lines are installed so they do not obstruct service access to the coil, air handling system, or filter.
3. Make sure to isolate the refrigerant lines to minimize noise transmission from the equipment to the structure.
4. Make sure to insulate the vapor line with a minimum of 3/8” foam rubber insulation (Armaflex or equivalent). Make sure to insulate the liquid lines which are exposed to direct sunlight and/or high temperatures.
5. Tape and suspend the refrigerant lines as shown. DO NOT allow tube metal-to-metal contact. See Figure 2.
6. Use PVC piping as a conduit for all underground installations as shown in Figure 3. Keep buried lines as short as possible to minimize the build up of liquid refrigerant in the vapor line during long periods of shutdown.
7. Pack fiberglass insulation and a sealing material such as permagum around refrigerant lines where they penetrate a wall to reduce vibration and to retain some flexibility.

8. See Form 247077 for additional piping information.

PRECAUTIONS DURING BRAZING OF LINES

All outdoor unit and evaporator coil connections are copper-to-copper and should be brazed with a phosphorous-copper alloy material such as Silfos-5 or equivalent. DO NOT use soft solder. The outdoor units have reusable service valves on both the liquid and vapor connections. The total system refrigerant charge is retained within the outdoor unit during shipping and installation. The reusable service valves are provided to evacuate and charge per this instruction.

Serious service problems can be avoided by taking adequate precautions to assure an internally clean and dry system.

PRECAUTIONS DURING BRAZING SERVICE VALVE

Wrap a wet rag around the service valve as shown in Figure 4 to prevent heat damage. Also, protect all painted surfaces, insulation, and plastic base during brazing. After brazing, cool joint with wet rag.

Valve can be opened by removing the plunger cap and fully inserting a hex wrench into the stem and backing out counter-clockwise until valve stem just touches the chamfered retaining wall.

CAUTION

Dry nitrogen should always be supplied through the tubing while it is being brazed, because the temperature required is high enough to cause oxidation of the copper unless an inert atmosphere is provided. The flow of dry nitrogen should continue until the joint has cooled. Always use a pressure regulator and safety valve to insure that only low pressure dry nitrogen is introduced into the tubing. Only a small flow is necessary to displace air and prevent oxidation.

WARNING

Never attempt to repair any brazed connections while the system is under pressure. Personal injury could result.

WARNING

Refrigeration piping and indoor coil can be pressurized to 250 psig with dry nitrogen and leak tested with a bubble type leak detector. Then release the nitrogen charge. Do not use the system refrigerant from the outdoor unit to purge or leak test the system.

Valve can be opened by removing the plunger cap and fully inserting a hex wrench into the stem and backing out counter-clockwise until valve stem just touches the chamfered retaining wall.

WARNING

Refrigeration piping and indoor coil can be pressurized to 250 psig with dry nitrogen and leak tested with a bubble type leak detector. Then release the nitrogen charge. Do not use the system refrigerant from the outdoor unit to purge or leak test the system.

4. Braze the liquid line to the evaporator liquid connection. Nitrogen should be flowing through the evaporator coil.

5. Remove the split rubber grommet from the vapor connection at the indoor coil. Braze the vapor line to the evaporator vapor connection. After the connection has cooled, place the rubber grommet back into the mounting position. Refer to the Tabular Data Sheet for proper vapor line sizing.

6. Protect the vapor valve with a wet rag and braze the vapor line connection to the outdoor unit. The nitrogen flow should be exiting the system from the vapor service port connection. After this connection has cooled, remove the nitrogen source from the liquid fitting service port.

7. Replace the Schrader core in the liquid and vapor valves.

WARNING

Never attempt to repair any brazed connections while the system is under pressure. Personal injury could result.

8. Leak test and repair leaks in all refrigerant piping connections including the service port flare caps. DO NOT OVERTIGHTEN caps. Torque caps between 40 and 60 inch-lbs. maximum.

9. Evacuate the vapor line, the evaporator, and the liquid line to 500 microns or less in accordance with the EVACUATION procedures.
10. Release the refrigerant charge into the system in accordance with the SYSTEM CHARGE procedures. Open the liquid line base valve first and let pressures equalize. Then, open the suction line base valve. When opening either valve, use an appropriate hex head wrench and back seat the base valve by turning it counter clockwise until it stops against the chamfered retaining wall, and then turn it back 1/8 turn. If the service valve is a ball valve, use an adjustable end wrench to turn valve stem one-quarter turn counterclockwise to open. Do not overtighten (or the valve stem may break or become dam-aged).

11. To prevent leaks, replace base valve caps finger tight, and then tighten the cap an additional 1/12 turn (1/2 hex flat).

12. Replace cap on service ports. Do not remove the flare caps from the service ports except when necessary for servicing the system.

13. See “System Charge” section for checking and recording system charge.

SECTION IV: INDOOR EXPANSION DEVICE

THERMOSTATIC EXPANSION VALVE (TXV) INSTALLATIONS

Before accomplishing the following procedures, verify the proper TXV kit to be installed on the coil distributor. Refer to supplied Tabular Data Sheet for proper indoor coil match up and specific TXV kit.

For installations requiring a TXV, the following are the basic steps for installation. For detailed instructions, refer to the Installation Instructions accompanying the TXV kit.

Install TXV kit as follows:

1. Relieve nitrogen holding charge from the indoor coil by depressing the Schrader valve stem located in the end of the suction line. After nitrogen holding charge is completely discharged, cut the spundown copper to allow installation of the suction line.

2. Slide indoor coil out of cabinet far enough to gain access to equalizer fitting on the suction line.

3. Before the suction line from the outdoor unit is brazed to the indoor coil suction line, remove and discard black plastic cap from equalizer fitting on the indoor coil suction line.

4. Loosen and remove distributor cap seal.

5. Install the TXV to the distributor assembly by hand tightening, and then turn fitting an additional 1/4 turn to seal. Do not overtighten fittings.

6. Install the liquid line to the top of the TXV using the liquid line fitting which is supplied with the indoor coil. Hand modify the liquid line to align with casing opening. Hand tighten the liquid line on the TXV, and tighten an additional 1/4 turn to seal.

7. Install the TXV liquid equalizer line onto the equalizer fitting of the suction line. Hand tighten the 1/4” SAE nut to the equalizer fitting, and tighten an additional 1/3 turn to seal.

8. Install the TXV bulb near the equalizer line, using the two bulb clamps furnished with the TXV assembly kit. The bulb is to make maximum contact. The TXV installation instructions provide an illustration of proper bulb location.

9. Leak test system after outdoor unit is connected.

10. Slide indoor coil back into cabinet.
SECTION V: EVACUATION

During this process, it is necessary to evacuate the system to 500 microns or less. If a leak is suspected, a dry nitrogen charge is used to locate leak(s). After repairing any leaks, another leak test is to be performed.

To verify that the system has no leaks, the system is held under a vacuum by closing the valve to the vacuum pump suction isolating the pump. The micron gauge is observed for a few minutes. If the micron gauge indicates a steady and continuous rise, it is an indication of a leak. If the gauge shows a rise, then levels off after a few minutes and remains fairly constant above 500 microns, it is an indication that the system is leak free but still contains moisture and may require further evacuation. Proper system evacuation requires the micron gauge to indicate a vacuum holding below 500 microns for several minutes.

SECTION VI: SYSTEM CHARGE

CAUTION

Refrigerant charging should only be carried out by a qualified air conditioning contractor.

To ensure that your unit performs at the published levels, it is important that the indoor airflow is determined and refrigerant charge added accordingly.

MEASURE INDOOR AIR FLOW

To determine rated air flow for a specific match, consult the technical literature at www.upgnet.com. When attempting to match this air flow, select the lowest possible speed tap, measure the actual flow, and adjust as necessary.

To measure actual air flow, it is not an acceptable method to just check the jumper pin setting tables and to assume 0.5° static pressure drop.

To determine indoor air flow, first measure the static pressure with a manometer between the filter and blower. On a single-piece air handler, take a second reading after the coil. On a furnace or modular air handler, take the second reading after the heat exchanger, but before the indoor coil. Add the negative return static to the positive supply static to determine the system total static pressure. Treat the negative return static as a positive pressure (even though it is a negative reading). If there is static pressure on the blower (i.e. -0.10) return, add it to a supply static (.40) which equals a (.50) total system static pressure. Compare this value to the table for the indoor unit's static pressure vs. CFM or to a curve chart.

CHARGING THE UNIT

CAUTION

R-410A refrigerant cylinders are rose colored. Always charge the system slowly with liquid R-410A refrigerant.

The factory charge in the outdoor unit includes enough charge for the unit, 15 ft. (4.6 m) of refrigerant piping, and the smallest indoor coil/air handler match-up. Some indoor coil/air handler matches may require additional charge.

CAUTION

Compressor damage will occur if system is improperly charged. On new system installations, charge system per tabular data sheet for the matched coil and follow guidelines in this instruction.

See Tabular Data Sheet provided in unit Customer Booklet for charge requirements.

The "TOTAL SYSTEM CHARGE" must be permanently marked on the unit data plate.

CAUTION

Do not leave the system open to the atmosphere. Unit damage could occur due to moisture being absorbed by the POE oil in the system. This type of oil is highly susceptible to moisture absorption.

TOTAL SYSTEM CHARGE DETERMINED

1. Determine outdoor unit charge from tabular data sheet.
2. Determine indoor coil adjustment from tabular data sheet.
3. Calculate the line charge for refrigerant piping using the tabular data sheet if line length is greater than 15 feet (4.6 m).
4. Total system charge = item 1 + item 2 + item 3.
5. Permanently stamp or mark the unit data plate with the total amount of refrigerant in the system.

WARNING

DO NOT attempt to pump “Total System Charge” into outdoor unit for maintenance or service. This may cause damage to the compressor and/or other components. Recover and weigh “System Charge” into an appropriate recovery cylinder for any instances requiring evacuation.

CAUTION

IT IS UNLAWFUL TO KNOWINGLY VENT, RELEASE OR DISCHARGE REFRIGERANT INTO THE OPEN AIR DURING REPAIR, SERVICE, MAINTENANCE OR THE FINAL DISPOSAL OF THIS UNIT.

CHARGING IN COOLING MODE

The unit includes cooling charging chart. All units include a subcooling charging chart for cooling. If a charging chart is not on the unit, then it can be obtained at www.upgnet.com.

Cooling charts should not be used to charge the unit. They are reference charts for servicing the unit.

After the unit has been serviced, collect the charge and weigh it back in according to the directions.

When charging a unit in cooling mode, the charge MUST be weighed in. Charging by any other method, such as superheat, subcooling, cooling charging charts, feeling the line set, etc is not acceptable. Most heat pumps are sensitive to charge in heating, requiring more charge, so charging by an unacceptable method will cause the unit to perform poorly in heating mode.

NOTICE

This method is for systems that only have interconnecting lines. If any other objects that adjust the charge levels are placed between the indoor and outdoor units (example: a refrigerant flow meter), then before adding charge, the device must first be removed. Follow the steps above. Run the system in both cooling and heating mode and record the high side pressure in each mode. Then insert the device and charge the system by matching the same high side pressure in both heating and cooling as that value recorded without the device. It is not acceptable to add a pre-determined charge amount listed by the device manufacturer nor is it acceptable to use any other method.
CHARGING IN HEATING MODE
If charging in heating mode, there are two methods for charging: Weighing in the charge is the best method for ensuring the unit performs as rated. However, if a device is installed in the line set that alters the amount of refrigerant, such as a refrigerant flow meter, then the better method for charging is to match the liquid pressure from the heating charging chart (if available) or heating service data (available from www.upgnet.com). If no such device exists in the line set, then the method is acceptable if weighing in the charge is not an option.
If servicing a unit for low heating performance and you find that you have to add a significant amount of charge (ex: 20-30 ounces) in order to match the published liquid pressures, the unit will NOT be overcharged in cooling. Heat pumps are sensitive to charge in heating, but not in cooling.

CHARGING WITH GAUGES

⚠️ CAUTION
Refrigerant charging should only be carried out by a qualified air conditioning contractor.

Do not charge a heat pump in cooling mode with gauges or charging charts or any other method other than weighing in the charge.

⚠️ CAUTION
Compressor damage will occur if system is improperly charged. On new system installations, charge system per tabular data sheet for the matched coil and follow guidelines in this instruction.

However for servicing a heat pump unit, the charging charts are an acceptable troubleshooting method, but when the servicing is completed, the charge should be reclaimed and weighed in (to guarantee optimal performance in heating mode). If servicing in heating mode, the charge does not have to be reclaimed if the liquid pressures match the published values.

Before measuring the pressures, use the method above to check the air flow and then consult the table and match the liquid pressure to that air flow.

Before servicing a unit, confirm that the gauges are accurate by comparing the gauges against a calibrated pressure gauge that has been calibrated against a national standard. If a calibrated pressure gauge is not available, place a R-410A virgin refrigerant container in a conditioned space long enough to come to temperature equilibrium with the surroundings. Then measure the temperature of the air and the pressure of the refrigerant and compare it to the following table:

TABLE 2: R-410A Saturation Properties

<table>
<thead>
<tr>
<th>Temp (°F)</th>
<th>Pressure (Psig)</th>
<th>Temp (°F)</th>
<th>Pressure (Psig)</th>
<th>Temp (°F)</th>
<th>Pressure (Psig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>119</td>
<td>75</td>
<td>218</td>
<td>110</td>
<td>365</td>
</tr>
<tr>
<td>45</td>
<td>130</td>
<td>80</td>
<td>236</td>
<td>115</td>
<td>391</td>
</tr>
<tr>
<td>50</td>
<td>143</td>
<td>85</td>
<td>255</td>
<td>120</td>
<td>418</td>
</tr>
<tr>
<td>55</td>
<td>156</td>
<td>90</td>
<td>274</td>
<td>125</td>
<td>447</td>
</tr>
<tr>
<td>60</td>
<td>170</td>
<td>95</td>
<td>295</td>
<td>130</td>
<td>477</td>
</tr>
<tr>
<td>65</td>
<td>185</td>
<td>100</td>
<td>317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>201</td>
<td>105</td>
<td>341</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the gauges are correct, then measure the pressures using both the cooling and heating charts.

SECTION VII: ELECTRICAL CONNECTIONS

GENERAL INFORMATION & GROUNDING
Check the electrical supply to be sure that it meets the values specified on the unit nameplate and wiring label.
Power wiring, control (low voltage) wiring, disconnect switches and over current protection must be supplied by the installer. Wire size should be sized per NEC requirements.

⚠️ CAUTION
All field wiring must USE COPPER CONDUCTORS ONLY and be in accordance with Local, National Fire, Safety & Electrical Codes. This unit must be grounded with a separate ground wire in accordance with the above codes.

The complete connection diagram and schematic wiring label is located on the inside surface of the unit service access panel and this instruction.

FIELD CONNECTIONS POWER WIRING
1. Install the proper size weatherproof disconnect switch outdoors and within sight of the unit.
2. Remove the screws at the bottom of the corner cover. Slide corner cover down and remove from unit. See Figure 5.
3. Run power wiring from the disconnect switch to the unit.
4. Remove the service access panel to gain access to the unit wiring. Route wires from disconnect through power wiring opening provided and into the unit control box.
5. Install the proper size time-delay fuses or circuit breaker, and make the power supply connections.
6. Energize the crankcase heater if equipped to save time by preheating the compressor oil while the remaining installation is completed.

![FIGURE 5: Typical Field Wiring](image-url)
FIELD CONNECTIONS CONTROL WIRING - CONVENTIONAL

1. Route low voltage wiring into bottom of control box as shown in Figures 5 and 6. Make low voltage wiring connections inside the junction box per Figures 10 - 20.

2. The complete connection diagram and schematic wiring label is located on the inside surface of the unit service access panel.

3. Replace the corner cover and service access panel removed in Steps 2 and 4 of the “Field Connections Power Wiring” procedures.

4. All field wiring to be in accordance with national electrical codes (NEC) and/or local city codes.

5. Mount the thermostat about 5 ft. above the floor, where it will be exposed to normal room air circulation. Do not place it on an outside wall or where it is exposed to the radiant effect from exposed glass or appliances, drafts from outside doors or supply air grilles.

6. Route the 24-volt control wiring (NEC Class 2) from the outdoor unit to the indoor unit and thermostat.

FIELD CONNECTIONS CONTROL WIRING - COMMUNICATING

1. The Communication Harness (used in the outside heat pump unit) is provided with the communicating thermostat.

2. Route low voltage four conductor shielded thermostat communications harness into junction box and connect to communications port on control board. See Figures 5, 6, 7, and 8.

3. The complete connection diagram and schematic wiring label is located on the inside surface of the unit service access panel.

IMPORTANT

If unit is going to be setup as a communicating system, the conventional wiring must be removed from the Outdoor Control Board.

4. Replace the corner cover and service access panel removed in Steps 2 and 4 of the “Field Connections Power Wiring” section.

NOTICE

Ambient temperature sensor should extend below corner cover by 1".

5. Route the 24-volt control wiring in accordance with national electrical codes (NEC) Class 2 from the outdoor unit to the indoor unit and thermostat.

6. All field wiring to be in accordance with NEC and/or local city codes.

7. Mount the thermostat about 5 ft. above the floor, where it will be exposed to normal room air circulation. Do not place it on an outside wall or where it is exposed to the radiant effect from exposed glass or appliances, drafts from outside doors or supply air grilles.

NOTICE

To eliminate erratic operation, seal the hole in the wall at the thermostat with permagum or equivalent to prevent air drafts from affecting the operation of the thermostat.

FIGURE 6: Communications Harness Connection

FIGURE 7: Communicating HP with Communicating Air Handler or Furnace

FIGURE 8: Communicating HP with Non-Communicating Air Handler or Furnace using Communicating Interface Control
DEHUMIDIFICATION CONTROL (Typical)

The indoor unit Installation Manual instructions for the air handler or furnace describe the interface with the outdoor heat pump. A dehumidification control accessory 2HU16700124 may be used with variable speed air handlers or furnaces in high humidity areas. This control works with the variable speed indoor unit to provide cooling at a reduced air flow, lowering evaporator temperature and increasing latent capacity. The humidistat in this control opens the humidistat contacts as the humidity rise. Installation instructions are packaged with the accessory. (Also see Figures 10 - 20). Prior to the installation of the dehumidification control, the humidistat jumper must be set to “YES” on the indoor variable speed air handler or furnace control board.

During cooling, if the relative humidity in the space is higher than the desired set point of the dehumidification control, the variable speed blower motor will operate at lower speed until the dehumidification control is satisfied. A 40-60% relative humidity level is recommended to achieve optimum comfort.

If a dehumidification control is installed, it is recommended that a minimum air flow of 325 cfm/ton be supplied at all times.

To see connection diagrams of all UPG equipment, the “Low Voltage System Wiring” document is available online at www.upgnet.com in the Product Catalog Section.

INDOOR CUBIC FEET PER MINUTE (CFM) CONFIGURATION (Typical)

For proper system operation, the indoor CFM must be set properly. Refer to the Technical Guide of the outdoor unit for the recommended air flow settings of each size condensing unit and matching indoor unit. Set the cooling speed per the instructions for the air handler or furnace. Verify the airflow.

If installed as a communicating system (outdoor, indoor, and thermostat), the system will automatically adjust to the optimal airflow settings. These parameters can also be modified using the Touch Screen Communication Control. Refer to the Touch Screen Communication Control owner’s manual for this procedure. Manual setting of the airflow jumpers on the indoor equipment is not necessary with the Touch Screen Communication Control.
For additional connection diagrams of all UPG equipment, refer to “Low Voltage System Wiring.” Document available online at www.upgnet.com in the Product Catalog Section.

FIGURE 10: Thermostat Wiring – Single Stage Heat Pump (with YGVI control) – Modulating Furnace

HEATPUMP jumper must be set to “YES” if humidistat is to be used

Change “FFuel” jumper on the heat pump control to “ON”

Jumper 1 must be set to “HEAT PUMP”

Jumper 2 must be set to “O”

Jumper 3 must be set to “GAS”

Setup Step 50 “Dual Fuel” must be set to “External”

Suggestion: Set setup step 26 “2nd Stage Deadband” and step 29 “Minutes Between 1st and 2nd” to 0.
FIGURE 11: Thermostat Wiring – Single Stage Heat Pump (with YGVI control) - Single Stage Furnace (S-ECM)

- **ID MODELS**
 - TM9E
 - TM9X
 - T*(8,L)X

- **THERMOSTAT**
 - S1-THSU32HP7b

- **SINGLE STAGE FURNACE (S-ECM)**
 - C 24 - Volt Common
 - Y1 First Stage Compressor
 - R 24 - Volt Hot
 - G Fan
 - Fault
 - W Third Stage Heat
 - Y2 Second Stage Compressor
 - W Second Stage Heat
 - W1/O/B First Stage Heat
 - HUM
 - DHUM

- **SINGLE STAGE HEAT PUMP**
 - C 24 - Volt Common
 - Y1 First Stage Compressor
 - R 24 - Volt Hot
 - G Fan
 - W First Stage Heat
 - Y/Y2 Second or Full Stage Compressor

- **YORKGURARD VI CONTROL**
 - C 24 - Volt Common
 - Y1 Single Stage Compressor
 - R 24 - Volt Hot
 - W1 OUT First Stage Heat
 - W2 OUT Second Stage Heat
 - G Reversing Valve Energized In Cool
 - X/L Malfunction Light
 - Y2 Second Stage Compressor
 - W Auxiliary Heat
 - BSG Bonnet Sensor
 - BS Bonnet Sensor

- **Bonnet Sensor Kit (Optional)**
 - S1-37309243000 BS

Instructions
- Jumper 1 must be set to "HEAT PUMP"
- Jumper 2 must be set to "O"
- Jumper 3 must be set to "GAS"
- Setup Step 50 "Dual Fuel" must be set to "External"
- Suggestion: Set setup step 26 "2nd Stage Deadband" and step 29 "Minutes Between 1st and 2nd" to 0.

Change "FFuel" jumper on the heat pump control to "ON".
FIGURE 12: Thermostat Wiring – Single Stage Heat Pump (with YGVI control) – V/S Air Handler

ID MODELS
- AHV
- MV

VARIABLE SPEED AIR HANDLER

SINGLE STAGE HEAT PUMP

VARIABLE SPEED AIR HANDLER CONTROL
- C 24 - Volt Common
- Y1 Second Stage or Full Stage Compressor
- R 24 - Volt Hot
- G FAN

S1-THSU32P7b
- First Stage Compressor
- W 24 - Volt Hot
- HUM
- DHUM
- W1/O/B
- HUM OUT (24 VAC out)
- EAC (24 VAC out)
- 24VAC Electronic Air Cleaner Relay (Optional)
- 24VAC Humidifier Relay (Optional)
- Move the HUM STAT jumper to “YES” if humidistat is to be used
- Refer to AH documentation for W1 and W2 electric heat staging options

S1-THSU32HP7b
- First Stage Compressor
- W 24 - Volt Hot
- HUM
- DHUM
- W1/O/B
- HUM OUT (24 VAC out)
- EAC (24 VAC out)
- 24VAC Electronic Air Cleaner Relay (Optional)
- 24VAC Humidifier Relay (Optional)
- Move the HUM STAT jumper to “YES” if humidistat is to be used
- Refer to AH documentation for W1 and W2 electric heat staging options

Setup Step 24 “Number Of Compressor Stages” must be set “1”

Change “FFuel” jumper on the heat pump control to “OFF”

Jumper 1 must be set to “HEAT PUMP”

Jumper 2 must be set to “O”

Jumper 3 must be set to “ELEC”

Humiditot Switch Open on Humidity Rise

Humiditot Switch

Reversing Valve Energized in Cool

X/L Malfunction Light

Humidifier

24VAC Electronic Air Cleaner Relay

24VAC Humidifier Relay

Electronic Air Cleaner Relay

Humidifier Relay

Non-Electric Heat

Electric Heat

W Auxiliary Heat

BS Bonnet Sensor

BSG Bonnet Sensor

V/Gi Single Stage Heat Pump (with YGVI control)

- V/S Air Handler

Change “FFuel” jumper on the heat pump control to “OFF”

Jumper 1 must be set to “HEAT PUMP”

Jumper 2 must be set to “O”

Jumper 3 must be set to “ELEC”

Setup Step 24 “Number Of Compressor Stages” must be set “1”

Humiditot Switch Open on Humidity Rise

Humidifier

24VAC Electronic Air Cleaner Relay

24VAC Humidifier Relay

Electronic Air Cleaner Relay

Humidifier Relay

Non-Electric Heat

Electric Heat

W Auxiliary Heat

BS Bonnet Sensor

BSG Bonnet Sensor

V/Gi Single Stage Heat Pump (with YGVI control)

- V/S Air Handler

Change “FFuel” jumper on the heat pump control to “OFF”

Jumper 1 must be set to “HEAT PUMP”

Jumper 2 must be set to “O”

Jumper 3 must be set to “ELEC”

Setup Step 24 “Number Of Compressor Stages” must be set “1”

Humiditot Switch Open on Humidity Rise

Humidifier

24VAC Electronic Air Cleaner Relay

24VAC Humidifier Relay

Electronic Air Cleaner Relay

Humidifier Relay

Non-Electric Heat

Electric Heat

W Auxiliary Heat

BS Bonnet Sensor

BSG Bonnet Sensor
FIGURE 13: Thermostat Wiring – Single Stage Heat Pump (with YGVI control) - PSC Air Handler

- Change FFuel" jumper on the heat pump control to “OFF”
- Move the HUM STAT jumper to “YES” if humidistat is to be used.
- Refer to AH documentation for W1 and W2 electric heat staging options
- Jumper 1 must be set to “HEAT PUMP”
- Jumper 2 must be set to “O”
- Jumper 3 must be set to “ELEC”
FIGURE 14: Thermostat Wiring – Single Stage Heat Pump (with YGVI control) – V/S Air Handler

- **THERMOSTAT**: S1-THSU21P1b
- **VARIABLE SPEED AIR HANDLER**
- **SINGLE STAGE HEAT PUMP**

ID MODELS
- AHV
- MV

YORKGUARD VI CONTROL
- C 24 - Volt Common
- V1 Single Stage Compressor
- Y2 Second Stage Compressor
- R 24 - Volt Hot
- Y1 First Stage Compressor
- G Fan
- W1 First Stage Heat
- W2 Second Stage Heat
- X/L Malfunction Light

Humidifier and Air Cleaner
- External Humidistat (Optional) Open on Humidity Rise
- 24VAC Electronic Air Cleaner Relay (Optional)
- 24VAC Humidifier Relay (Optional)

Jumper Settings
- Jumper 1 must be set to “HEATPUMP”
- Jumper 2 must be set to “O”
- Jumper 3 must be set to “ELEC”

Notes
- Move the HUM STAT jumper to “YES” if humidistat is to be used.
- Refer to AH documentation for W1 and W2 electric heat staging options.
HP 24A Two Stage Heat Pump - Two Stage Variable Speed Furnace (With Hot Heat Pump Operation)

TABLE 15: Thermostat Wiring - Two Stage Heat Pump - Two Stage Variable Speed Furnace

- **THERMOSTAT**
 - S1-THSU32HP7b

- **ID MODELS**
 - TM8V
 - TM9V

- **OD MODELS**
 - YZH
 - YZF060
 - H*6B60
 - H*BB

Instructions:
- Change "FFuel" jumper on the heat pump control to "ON"
- Jumper 1 must be set to "HEATPUMP"
- Jumper 2 must be set to "O"
- Jumper 3 must be set to "GAS"
- Setup Step 50 "Dual Fuel" must be set to "External"
- Move HEAT PUMP jumper to "YES"
- Move DHUM jumper to "YES" if humidistat is to be used
- Change "FFuel" jumper on the heat pump control to "ON"
- Change Hot Heat Pump jumper on the heat pump control to "ON"
FIGURE 16: Thermostat Wiring - Two-Stage Heat Pump - Two-Stage Variable Speed Furnace

HP 24C Two Stage Heat Pump – Two Stage Variable Speed Furnace (With Hot Heat Pump Operation)

<table>
<thead>
<tr>
<th>Thermostat Installer Setup</th>
<th>Thermostat Installer Setup 0170-System Type must be set to 12 3 Heat/2 Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermostat Installer Setup 0190-Changeover Valve must be set to 0 0/1B terminal Energized in Cooling</td>
</tr>
<tr>
<td></td>
<td>Thermostat Installer Setup 0200-Backup Heat Source must be set to 1 Heat Pump Backup Heat Source is Fossil Fuel</td>
</tr>
<tr>
<td></td>
<td>Thermostat Installer Setup 0210-External Fossil Fuel Kit must be set to 1 Heat Pump Control is Controlling Heat Pump Backup Heat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermostat</th>
<th>Thermostat</th>
</tr>
</thead>
<tbody>
<tr>
<td>*PP32U70124</td>
<td>S1-THPU32HP7b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID MODELS</th>
<th>OD MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM9V</td>
<td>YZ/068</td>
</tr>
<tr>
<td>TM9V</td>
<td>YZ/90</td>
</tr>
<tr>
<td>HP*8B</td>
<td>HP*6B60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID MODELS</th>
<th>OD MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM9V</td>
<td>YZ/068</td>
</tr>
<tr>
<td>TM9V</td>
<td>YZ/90</td>
</tr>
<tr>
<td>HP*8B</td>
<td>HP*6B60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOSTAT</th>
<th>THERMOSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 – Volt Common</td>
<td>24 – Volt Common</td>
</tr>
<tr>
<td>Y1</td>
<td>Y1</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>E</td>
<td>Emergency Heat</td>
</tr>
<tr>
<td>R2</td>
<td>W3/AUX (Auxiliary Output)</td>
</tr>
<tr>
<td>Y2</td>
<td>Second Stage Compressor</td>
</tr>
<tr>
<td>AUX</td>
<td>W2 (Second Stage Heat)</td>
</tr>
<tr>
<td>DHUM</td>
<td>Bonnet Sensor (Optional)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumper 1</th>
<th>Jumper 2</th>
<th>Jumper 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>set to "Gas"</td>
<td>set to "O"</td>
<td>set to "HP"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move HEAT PUMP jumper to "YES"</td>
</tr>
<tr>
<td>Move DHUM jumper to "YES" if humidistat is to be used</td>
</tr>
<tr>
<td>Change "FFuel" jumper on the heater pump control to "ON"</td>
</tr>
<tr>
<td>Change Hot Heat Pump jumper on the heat pump control to "ON"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can use "W3/Aux" output to control dehumidification if desired</td>
</tr>
<tr>
<td>Dual Fuel setting must be "External"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Humidistat (Optional) Open on Humidity Rise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move HEAT PUMP jumper to "YES"</td>
</tr>
<tr>
<td>Move DHUM jumper to "YES" if humidistat is to be used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change "FFuel" jumper on the heater pump control to "ON"</td>
</tr>
<tr>
<td>Change Hot Heat Pump jumper on the heat pump control to "ON"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can use "W3/Aux" output to control dehumidification if desired</td>
</tr>
<tr>
<td>Dual Fuel setting must be "External"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Humidistat (Optional) Open on Humidity Rise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move HEAT PUMP jumper to "YES"</td>
</tr>
<tr>
<td>Move DHUM jumper to "YES" if humidistat is to be used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change "FFuel" jumper on the heater pump control to "ON"</td>
</tr>
<tr>
<td>Change Hot Heat Pump jumper on the heat pump control to "ON"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can use "W3/Aux" output to control dehumidification if desired</td>
</tr>
<tr>
<td>Dual Fuel setting must be "External"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Humidistat (Optional) Open on Humidity Rise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move HEAT PUMP jumper to "YES"</td>
</tr>
<tr>
<td>Move DHUM jumper to "YES" if humidistat is to be used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change "FFuel" jumper on the heater pump control to "ON"</td>
</tr>
<tr>
<td>Change Hot Heat Pump jumper on the heat pump control to "ON"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can use "W3/Aux" output to control dehumidification if desired</td>
</tr>
<tr>
<td>Dual Fuel setting must be "External"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Humidistat (Optional) Open on Humidity Rise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move HEAT PUMP jumper to "YES"</td>
</tr>
<tr>
<td>Move DHUM jumper to "YES" if humidistat is to be used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change "FFuel" jumper on the heater pump control to "ON"</td>
</tr>
<tr>
<td>Change Hot Heat Pump jumper on the heat pump control to "ON"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can use "W3/Aux" output to control dehumidification if desired</td>
</tr>
<tr>
<td>Dual Fuel setting must be "External"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Humidistat (Optional) Open on Humidity Rise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move HEAT PUMP jumper to "YES"</td>
</tr>
<tr>
<td>Move DHUM jumper to "YES" if humidistat is to be used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change "FFuel" jumper on the heater pump control to "ON"</td>
</tr>
<tr>
<td>Change Hot Heat Pump jumper on the heat pump control to "ON"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can use "W3/Aux" output to control dehumidification if desired</td>
</tr>
<tr>
<td>Dual Fuel setting must be "External"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Humidistat (Optional) Open on Humidity Rise</td>
</tr>
</tbody>
</table>
FIGURE 17: Thermostat Wiring - Two-Stage Heat Pump - Variable Speed Air Handler
FIGURE 18: Thermostat Wiring - Two-Stage Heat Pump - Variable Speed Air Handler

HP 27C
Two Stage Heat Pump - Variable Speed Air Handler (With Hot Heat Pump Operation)

<table>
<thead>
<tr>
<th>THERMOSTAT</th>
<th>THERMOSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>*PP3U70124</td>
<td>S1-THPU32HP7b</td>
</tr>
</tbody>
</table>

ID MODELS

<table>
<thead>
<tr>
<th>AHV</th>
<th>Mv</th>
</tr>
</thead>
</table>

OD MODELS

<table>
<thead>
<tr>
<th>YZF060</th>
<th>YZH</th>
<th>H*8B</th>
</tr>
</thead>
</table>

VARIABLE SPEED AIR HANDLER

<table>
<thead>
<tr>
<th>C 24 – Volt Common</th>
<th>C 24 – Volt Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Stage Compressor</td>
<td>Y1 First Stage Compressor</td>
</tr>
<tr>
<td>R 24 – Volt Hot (Heat XFMR)</td>
<td>R 24 – Volt Hot</td>
</tr>
<tr>
<td>G Fan</td>
<td>G Fan</td>
</tr>
<tr>
<td>E Emergency Heat</td>
<td>E Auxiliary Output</td>
</tr>
<tr>
<td>R 24 – Volt Hot (Cool XFMR)</td>
<td>W3/Aux</td>
</tr>
<tr>
<td>O/B Reversing Valve</td>
<td>W1/O/B First Stage Heat</td>
</tr>
<tr>
<td>L Malfunction Light</td>
<td>X/L Malfunction Light</td>
</tr>
<tr>
<td>Y2 Second Stage Compressor</td>
<td>Y2 Second Stage Compressor</td>
</tr>
<tr>
<td>AUX Auxiliary Heat</td>
<td>W2 Second StageHeat</td>
</tr>
</tbody>
</table>

- **Thermostat Installer Setup**
 - Jumper 1 must be set to “ELEC”
 - Jumper 2 must be set to “O”
 - Jumper 3 must be set to “HP”

- **External Humidistat**
 - Open on Humidity Rise

- **24VAC Humidifier Relay**
 - (Optional)

- **24VAC Electronic Air Cleaner Relay**
 - (Optional)

- **24VAC Electronic Air Cleaner**

- **Move Hot Heat Pump Jumper to “ON”**

- **Change Humidistat Jumper to “YES”**

- **If humidistat is to be used, refer to AH documentation for W1 and W2 electric heat staging options.**

TWO STAGE HEAT PUMP

<table>
<thead>
<tr>
<th>C 24 – Volt Common</th>
<th>Y1 Single Stage Compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 24 – Volt Hot</td>
<td>R 24 – Volt Hot</td>
</tr>
<tr>
<td>W1 First Stage Aux. Heat</td>
<td>W2 Second Stage Aux. Heat</td>
</tr>
<tr>
<td>Y1/Y2 Second or Full Stage Compressor</td>
<td>D Reversing Valve Energized in Cool</td>
</tr>
<tr>
<td>HUM Humidification - Open on Humidity Rise</td>
<td></td>
</tr>
<tr>
<td>HUM OUT (24 VAC out)</td>
<td>EAC(24 VAC out)</td>
</tr>
</tbody>
</table>

- **Thermostat Installer Setup**
 - Jumper 1 must be set to “ELEC”
 - Jumper 2 must be set to “O”
 - Jumper 3 must be set to “HP”

- **External Humidistat**
 - Open on Humidity Rise

- **24VAC Humidifier Relay**
 - (Optional)

- **24VAC Electronic Air Cleaner Relay**
 - (Optional)

- **24VAC Electronic Air Cleaner**

- **Move Hot Heat Pump Jumper to “ON”**

- **Change Humidistat Jumper to “YES”**

- **If humidistat is to be used, refer to AH documentation for W1 and W2 electric heat staging options.**
FIGURE 19: Thermostat Wiring – Two-Stage Heat Pump - Variable Speed Modulating Furnace
FIGURE 20: Thermostat Wiring - Two-Stage Heat Pump - Variable Speed Modulating Furnace

- **HP 28C Two Stage Heat Pump - Variable Speed Modulating Furnace (With Hot Heat Pump Operation)**

<table>
<thead>
<tr>
<th>THERMOSTAT</th>
<th>THERMOSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>*PP32U70124</td>
<td>S1-THPU32HP7b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE SPEED MODULATING FURNACE CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>First Stage Compressor</td>
</tr>
<tr>
<td>24 – Volt Hot (Heat XFMR)</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Fan</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Emergency Heat</td>
</tr>
<tr>
<td>RC</td>
</tr>
<tr>
<td>24 – Volt Hot (Cool XFMR)</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>Malfunction Light</td>
</tr>
<tr>
<td>Y2</td>
</tr>
<tr>
<td>Second Stage Compressor</td>
</tr>
<tr>
<td>AUX</td>
</tr>
<tr>
<td>Auxiliary Heat</td>
</tr>
<tr>
<td>External Humidistat (Optional)</td>
</tr>
<tr>
<td>Open on Humidity Rise</td>
</tr>
<tr>
<td>HUM</td>
</tr>
<tr>
<td>Dehumidification- Open on Humidity Rise</td>
</tr>
</tbody>
</table>

- **ID MODELS**
 - YPLC
 - LP1C
 - CPLC
 - TPLC
 - YP9C
 - LP9C
 - CP9C
 - TP9C

- **OD MODELS**
 - YZH
 - H*8B60
 - H*8B

- **Thermostat Installer Setup**
 - 0170-S
 - 0190-Changeover Valve-
 - 0200-Backup Heat Source-
 - 0210-External Fossil Fuel Kit-

- **Thermostat Installer Setup Notes**
 - Jumper 1 must be set to “Gas”
 - Jumper 2 must be set to “O”
 - Jumper 3 must be set to “HP”
 - Can use “W3/Aux” output to control dehumidification if desired
 - Duel Fuel setting must be “External”
 - Move HUMIDISTAT jumper to “YES” if humidistat is to be used.

- **External Humidistat (Optional)**
 - Open on Humidity Rise

- **Change ‘FFuel’ jumper on the heat pump control to ‘ON’**
 - Change Hot Heat Pump jumper on the heat pump control to “ON”

- **YORKGUARD VI CONTROL**
 - C | C |
 - 24 – Volt Common | 24 – Volt Common |
 - Y1 | Y1 |
 - Single Stage Compressor | Single Stage Compressor |
 - R | R |
 - 24 – Volt Hot | 24 – Volt Hot |
 - G | G |
 - Fan | Fan |
 - W | W |
 - Modulating Heat |
 - Y/Y2 | Second or Full Stage Compressor |
 - W1 OUT | First Stage Heat |
 - W2 OUT | Second Stage Heat |
 - W | W |
 - Auxiliary Heat |
 - W3/Aux | Auxiliary Output |
 - Y2 | Second Stage Compressor |
 - Y2 | Second Stage Compressor |
 - AUX | AUX |
 - Auxiliary Heat |
 - AUX | Auxiliary Heat |
 - E | E |
 - Emergency Heat |
 - E | Emergency Heat |
 - 24 – Volt Common | 24 – Volt Common |
 - R | R |
 - 24 – Volt Hot | 24 – Volt Hot |
 - G | G |
 - Fan |
 - R | R |
 - 24 – Volt Hot |
 - Y1 | Single Stage Compressor |
 - C | C |
 - 24 – Volt Common |
 - R | R |
 - 24 – Volt Hot |
 - Y1 | Single Stage Compressor |

- **Thermostat Wiring Diagram**

AC16-001
SECTION VIII: SYSTEM START-UP

ENERGIZE CRANKCASE HEATER

In order to energize the crankcase heater, set the indoor cooling thermostat to the OFF position. Close the line power disconnect to the unit.

IMPORTANT

An attempt to start the compressor without at least 8 hours of crankcase heat will damage the compressor.

WITH POWER TO UNIT AND THERMOSTAT IN COOLING POSITION:

1. In the cooling cycle, discharge gas is pumped to the outdoor coil which is the condenser. The indoor coil is the evaporator.
2. If fan switch is in ON position, a circuit is made through blower relay to provide continuous blower operation.
3. With fan switch in AUTO position, a circuit is made from thermostat cooling contact through blower relay to provide blower operation.
4. System will cycle with thermostat demand to provide cooling as needed.

SECTION IX: SYSTEM OPERATION

For more information on the control operation, refer to the "OPERATION INSTRUCTIONS - DEMAND DEFROST CONTROL BOARD" publication.

REQUIRED CONTROL SETUP

IMPORTANT

The following steps must be taken at the time of installation to insure proper system operation.

1. Consult system wiring diagram to determine proper thermostat wiring for your system.
2. If hot heat pump configuration is desired, change HOT HEAT PUMP jumper to ON position. This setting MUST be set on the defrost board.
3. If installation includes a fossil fuel furnace, change FUEL jumper to ON position. This setting MUST be set on the defrost board.
4. Set low temperature cutout (LTCO), balance point (BP), switch point (SP), and Y2 Lock jumpers as desired. These settings may be modified by communicating thermostat.
5. Verify proper system functionality. Confirm room thermostat operation including fault code display capability.
6. Upon completion of installation, verify that no fault codes are stored in memory. Clear the fault code memory if necessary.

DEFROST OPERATION

The following defrost curve selection jumper positions are set from factory.

TABLE 3: Defrost Initiate Curves

<table>
<thead>
<tr>
<th>Defrost Curve Selection Jumper Position</th>
<th>PIN 1</th>
<th>PIN 2</th>
<th>PIN 3</th>
<th>PIN 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 SEER Heat Pump Model</td>
<td>2-Ton</td>
<td>2.5-Ton</td>
<td>3-Ton</td>
<td>4-Ton</td>
</tr>
<tr>
<td></td>
<td>3.5-Ton</td>
<td>5-Ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 SEER Heat Pump Model</td>
<td>2-Ton</td>
<td>4-Ton</td>
<td>3-Ton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Ton</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: For information on the 5 & 6 pins, refer to the "Operation Instructions - Demand Defrost Control Board" publication.

FIGURE 21: Heat Pump Flow Diagram
SECTION X: INSTRUCTING THE OWNER
Assist owner with processing warranty cards and/or online registration. Review Owners Guide and provide a copy to the owner and guidance on proper operation and maintenance. Instruct the owner or the operator how to start, stop and adjust temperature setting.

When applicable, instruct the owner that the compressor is equipped with a crankcase heater to prevent the migration of refrigerant to the compressor during the “OFF” cycle. The heater is energized only when the unit is not running. If the main switch is disconnected for long periods of shut down, do not attempt to start the unit until 8 hours after the switch has been connected. This will allow sufficient time for all liquid refrigerant to be driven out of the compressor.

The installer should also instruct the owner on proper operation and maintenance of all other system components.

MAINTENANCE
1. Dirt should not be allowed to accumulate on the outdoor coils or other parts in the air circuit. Clean as often as necessary to keep the unit clean. Use a brush, vacuum cleaner attachment, or other suitable means.

2. The outdoor fan motor is permanently lubricated and does not require periodic oiling.
3. If the coil needs to be cleaned, it should be washed with Calgon Coilclean (mix one part Coilclean to seven parts water). Allow solution to remain on coil for 30 minutes before rinsing with clean water. Solution should not be permitted to come in contact with painted surfaces.
4. Refer to the furnace or air handler instructions for filter and blower motor maintenance.
5. The indoor coil and drain pan should be inspected and cleaned regularly to prevent odors and assure proper drainage.

CAUTION
IT IS UNLAWFUL TO KNOWINGLY VENT, RELEASE OR DISCHARGE REFRIGERANT INTO THE OPEN AIR DURING REPAIR, SERVICE, MAINTENANCE OR THE FINAL DISPOSAL OF THIS UNIT.

SUBCOOLING CHARGE TABLE IS ON THE CORNER POST OF THE OUTDOOR UNIT.
SECTION XI: WIRING DIAGRAM.

FIGURE 22: Wiring Diagram - Single Stage

DANGER - SHOCK HAZARD

TURN OFF ELECTRICAL POWER BEFORE SERVICING TO PREVENT POSSIBLE DAMAGE TO THE EQUIPMENT AND POSSIBLE PERSONAL INJURY.

CAUTION

TO PREVENT ELECTRICAL SHOCK OPEN REMOTE DISCONNECT SO ELECTRICAL SUPPLY TO HEAT PUMP IS SHUT OFF.

COMPONENTS SHOWN IN DASH LINES ARE OPTIONAL.

DUAL CAPACITOR SHOWN. SEPARATE CAPACITORS MAY BE USED ON ACTUAL UNIT.

WIRING MUST CONFORM TO NATIONAL AND LOCAL CODES.

IF ANY OF THE ORIGINAL WIRE SUPPLIED WITH THIS UNIT MUST BE REPLACED, IT MUST BE REPLACED WITH 105°C THERMOPLASTIC OR ITS EQUIVALENT.
FIGURE 23: Wiring Diagram - 2 Stage with PSC Outdoor Fan Motor
FIGURE 24: Wiring Diagram - 2 Stage with ECM Outdoor Fan Motor

DANGER - SHOCK HAZARD

TURN OFF ELECTRICAL POWER BEFORE SERVICING TO PREVENT POSSIBLE DAMAGE TO THE EQUIPMENT AND POSSIBLE PERSONAL INJURY.

CAUTION

TO PREVENT ELECTRICAL SHOCK OPEN REMOTELY TO ELECTRICAL SUPPLY TO HEATPUMP IS SHUT OFF.

COMPONENTS SHOWN IN DASH LINES ARE OPTIONAL.

DUAL CAPACITOR SHOWN. SEPARATE CAPACITORS MAY BE USED ON ACTUAL UNIT.

WIRING MUST CONFORM TO NATIONAL AND LOCAL CODES.

IF ANY OF THE ORIGINAL WIRE SUPPLIED WITH THIS UNIT MUST BE REPLACED, IT MUST BE REPLACED WITH 105°CTHERMOPLASTIC OR ITS EQUIVALENT.

WHERE POWER SUPPLY HAS ONE (1) 230 VOLT CONDUCTOR AND ONE (1) NEUTRAL CONDUCTOR, CONNECT L2 OF CONTACTOR TO NEUTRAL.

LEGEND

AS - AMBIENT SENSOR
CAP - CAPACITOR
COMM - COMMUNICATION
COMP - COMPRESSOR
CC - CONTACTOR COIL
DS - DISCHARGE SENSOR
HPS - HIGH PRESS SWITCH
IR - ISOLATION RELAY
LS - LIQUID SENSOR
LPS - LOW PRESS SWITCH
OFM - OUTDOOR FAN MOTOR
RV - REVERSING VALVE
SC - START CAPACITOR
SR - START RELAY
VS - VARIABLE SPEED
XFRM - TRANSFORMER

COLOR CODE

BLK - BLACK
BLK/PNK - BLACK/PINK
BLU - BLUE
BRN - BROWN
BRN/PNK - BROWN/PINK
BRN/WHT - BROWN/WHITE
GRN - GREEN
GRY - GREY
ORG - ORANGE
PUR - PURPLE
RED - RED
SLV - SILVER
WHT - WHITE
YEL - YELLOW
Y/B - YELLOW/BLACK

DEFROST CONTROL

LEGS

AS - AMBIENT SENSOR
CC - CONTACTOR COIL
COMP - COMPRESSOR
COMM - COMMUNICATION
L1 - FIRST LEG
L2 - SECOND LEG
LPS - LOW PRESS SWITCH
L1L2T1T2 - LOW VOLTAGE factories TERMINATIONS
OFM - OUTDOOR FAN MOTOR
SC - START CAPACITOR
SR - START RELAY
VS - VARIABLE SPEED
XFRM - TRANSFORMER

COLOR CODE

LOW VOLTAGE FACTORY WIRING
OPTIONAL WIRING
FIELD WIRING LINE VOLTAGE

HIGH VOLTAGE FACTORY WIRING

LOW VOLTAGE FACTORY WIRING
OPTIONAL WIRING
FIELD WIRING LINE VOLTAGE

2 STAGE COMPR SOL COIL

DEFROST CONTROL

LEGS

AS - AMBIENT SENSOR
CC - CONTACTOR COIL
COMP - COMPRESSOR
COMM - COMMUNICATION
L1 - FIRST LEG
L2 - SECOND LEG
LPS - LOW PRESS SWITCH
L1L2T1T2 - LOW VOLTAGE factories TERMINATIONS
OFM - OUTDOOR FAN MOTOR
SC - START CAPACITOR
SR - START RELAY
VS - VARIABLE SPEED
XFRM - TRANSFORMER

COLOR CODE

LOW VOLTAGE FACTORY WIRING
OPTIONAL WIRING
FIELD WIRING LINE VOLTAGE

HIGH VOLTAGE FACTORY WIRING

LOW VOLTAGE FACTORY WIRING
OPTIONAL WIRING
FIELD WIRING LINE VOLTAGE

2 STAGE COMPR SOL COIL
SECTION XII: START UP SHEET

Heat Pump and Supplementary Heat Start-Up Sheet

Proper start-up is critical to customer comfort and equipment longevity

Owner Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State or Province</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment Data

- [] Upflow
- [] Downflow
- [] Horizontal Left
- [] Horizontal Right

<table>
<thead>
<tr>
<th>Indoor Unit Model #</th>
<th>Indoor Unit Serial #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indoor Coil Model #</th>
<th>Indoor Coil Serial #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outdoor Unit Model #</th>
<th>Outdoor Unit Serial #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Filter, Thermostat, Accessories

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Filter Size</th>
<th>Filter Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermostat Type</th>
<th>Other System Equipment and Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections -- Per Installation Instructions and Local Codes

- [] Unit is level
- [] Supply plenum and return ducts are connected and sealed
- [] Refrigerant piping complete and leak tested
- [] Gas piping is connected (if applicable)
- [] Vent system is connected (if applicable)
- [] Condensate drain for indoor coil properly connected
- [] Condensate drain for furnace (if applicable)

Electrical: Line Voltage

- [] Indoor unit (volts AC)
- [] Outdoor unit (volts AO)
- [] Overcurrent Protection Breaker / Fuses Amperes

- [] Ground wire is connected
- [] Polarity is correct (120vac indoor units) black is L1 (hot), white is N (neutral)

Electrical: Low Voltage

- [] Thermostat wiring complete
- [] Heat anticipator is set to the recommended value listed in the Installation Instructions

- [] Heat anticipator recommended value

- [] Low voltage values: "R" and "C" at indoor unit control board (volts AC)
- [] "R" and "C" Outdoor unit control board (volts AO)

Supplementary Heating Set-Up

- [] Heating Type
 - [] Electric Air Handler
 - [] Natural Gas
 - [] LP Gas (Requires LP Conversion Kit)

- [] Inlet Gas Pressure (in. w.c.)
- [] Manifold Gas Pressure (in. w.c.)
- [] LP Gas Conversion Kit Part # Used

- [] Calculated input in btuh - clock the gas meter (Nat Gas Only)
- [] LP Kit Installed By

- [] Electric Heat Kit Part # (if applicable)

- [] KW installed
- [] Rated BTU/H (furnaces)

Venting (if applicable)

- [] Venting system properly sized, within the limitations of the charts in the installation instructions.

<table>
<thead>
<tr>
<th>Intake Size</th>
<th># of 90 Degree Ells</th>
<th># of 45 Degree Ells</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exhaust Size</th>
<th># of 90 Degree Ells</th>
<th># of 45 Degree Ells</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Air Side: System Total External Static Pressure

<table>
<thead>
<tr>
<th>Supply static before indoor coil (in w.c."</th>
<th>Supply static after indoor coil (in w.c."</th>
<th>Return Static (in w.c." before filter</th>
<th>Return Static (in w.c." after filter (furnace side)</th>
<th>Total External Static Pressure</th>
<th>Maximum Rated ESP (in w.c."</th>
</tr>
</thead>
</table>

Cooling & Heat Pump Indoor Blower Set-Up

<table>
<thead>
<tr>
<th>ECM</th>
<th>COOL</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>ADJUST</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>DELAY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X-13</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSC</td>
<td>Low</td>
<td>Medium Low</td>
<td>Medium</td>
<td>Medium High</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return Air: Dry Bulb</th>
<th>Wet Bulb</th>
<th>Supply Air: Dry Bulb</th>
<th>Wet Bulb</th>
<th>Temperature Drop</th>
<th>Outside Air: Dry Bulb</th>
</tr>
</thead>
</table>

Supplementary Heating Indoor Blower Set-Up

<table>
<thead>
<tr>
<th>ECM</th>
<th>HEAT</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>X-13</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>PSC</th>
<th>Low</th>
<th>Medium Low</th>
<th>Medium</th>
<th>Medium High</th>
<th>High</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Return Air: Dry Bulb</th>
<th>Wet Bulb</th>
<th>Supply Air: Dry Bulb</th>
<th>Wet Bulb</th>
<th>Temperature Rise</th>
</tr>
</thead>
</table>

Defrost Control Board

Fill in the information i.e., "ON", "OFF" or the appropriate "Value" for the fields that apply to the defrost control board installed

- [] YorkGuard VI
- [] Demand Defrost
- [] Time and Temperature

- Low Temp Cut Out
- Balance Point
- Defrost Curve
- Y2 Lock
- FFUEL
- Switch Point

- Hot Heat Pump
- Bonnet Sensor Present
- Run Time: Time and Temperature board only 30, 60 or 90 minutes

Refrigerant Charge and Metering Device

<table>
<thead>
<tr>
<th>R-410A</th>
<th>TXV</th>
<th>Fixed Orifice</th>
<th>Additional Liner</th>
<th>Finisher</th>
<th>Liquid Line Temp</th>
<th>High Side Pressure</th>
<th>Suction Line Temp</th>
<th>Low Side Pressure</th>
<th>Subcooling</th>
<th>Superheat</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th># Elbows</th>
<th># 45s</th>
<th>Total Added - lbs.</th>
<th>Oz.</th>
</tr>
</thead>
</table>

Cycle Test

- [] Operate the unit through several heating cycles from the thermostat, noting and correcting any problems
- [] Operate the unit through continuous fan cycles from the thermostat, noting and correcting any problems
- [] Operate the unit through a cooling cycles, noting and correcting any problems
- [] Operate the unit through an emergency heating cycles, noting and correcting any problems

Clean Up

- [] Installation debris disposed of and indoor and outdoor areas cleaned up?

Owner Education

- [] Provide owner with the owner's manual
- [] Explain operation of system to equipment owner
- [] Explain thermostat use and programming (if applicable) to owner
- [] Explain the importance of regular filter replacement and equipment maintenance

Comments Section

Page 2 of 2 (7/7/16)