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Introduction.-In 1946, during the great Giacobinid meteor shower,
H. E. Landsberg' collected several small magnetic particles that apparently
were associated with the shower. Since some of these particles, a few
microns in length, were extremely angular in shape (wedge-shaped and
opaque), it seemed unlikely that they could have been the end-products
of vaporizing meteors. Landsberg concluded that they must have been
stopped by the atmosphere without being heated above their melting-points.
As a result of his suggestion I have developed the present theory to in-
vestigate the process whereby temperature radiation can dissipate the
energy gained by encounters with atmospheric molecules sufficiently
rapidly to permit finite meteoric particles to be stopped without melting.
Some basic concepts of this theory have been discussed by E. Opik2 and an
application made in the case of an isothermal atmosphere.
The term micro-meteorite appears to be an appropriate designation for one

of these small particles.
In every sense the micro-meteorites represent the lower extreme to the

ascending sequence embracing meteor, fireball and meteoritic craterformation.
Hence, the theory is a limited meteor theory, partially applicable to the
unobservable beginning of a meteor.
We may now assume and later (Part II) prove that interaction between

the air molecules striking and those leaving the micro-meteorite may be
neglected. The molecular mean free paths, even after correction for the
relatively slow velocity of air molecules thermally emitted, are greater than
the linear dimensions of the micro-meteorite.

Let us suppose that the micro-meteorite presents a certain surface
area, A, to the atmosphere, which it encounters with velocity, V. This
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surface may be an average frontal area in case the body is rotating, or a
fixed area in case the body does not rotate. If A (4), 0), a function of the
ordinary spherical coordinates, represents the actual cross-sectional profile
of the micro-meteorite as seen from direction 4 and 0, then the average
frontal area, A 1, is given by

1 rr 2r
Al = f A() , ) sin ) dd d@. (1)

This average area, A1, may or may not equal the frontal area A. The
thermal radiating area, B, however, will be specific for a particle of a given
shape; it is given by

B = 4A1. (2)

Let us assume that the temperature of the micro-meteorite is at all times
uniform over the area B. This assumption is equivalent to an assumption
that the heat conductivity is infinite or that the heat capacity is zero.
We shall first develop the theory on the assumption that the heat capacity
is negligible and later investigate the nature of the error made.
The air molecules impinge on the forward surface with relative velocity,

V, because, by definition, the mean free path of the outgoing molecules
relatively to the moving body is larger than its linear dimensions. To
evaluate the energy transfer to the surface of the body we may make use
of the concept of the accommodation coefficient, a, which is defined in
terms of the kinetic energy of the air molecules, referred to the coordinate
system of the moving body. The accommodation coefficient is, then, the
actual loss of kinetic energy by the air molecules, as a result of the encoun-
ter, divided by the loss if all of them were momentarily to adhere to the sur-
face and be re-emitted at the thermal velocity corresponding to the surface
temperature. Since the thermal energies, both original and at the surface
temperature, are relatively small compared to the kinetic energy at ve-
locity, V, these energies may be neglected with an error less than 1%0
(minimum V = 11.2 km./sec.). Hence a represents the fraction of the
molecular energy at velocity, V, that is transmitted to the micro-meteorite.

Since the air molecules will encounter the body with relative energies
of the order of 8 to 800 electron volts, while the work function of the sur-
face will be only a few volts, the molecules will certainly penetrate the sur-
face for several molecular layers except at the lowest velocities. We must
conclude that few of them will leave with high velocities; the losses by dis-
sociation, excitation and ionization can be only a few volts. Hence a
must be nearly unity at most velocities.

In air of density, p, the micro-meteorite will meet in time, dt, an air
mass, dma, given by
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dma = ApVdt. (3)

The corresponding energy gain, dEg, amounts to

a a
dE = - V2dma = 2ApV3dt. (4)

2 2

Part of this energy will be utilized in raising the temperature of the
meteoroid, part radiated by black-(or gray)-body radiation, part used in
dissociation, excitation and ionization and perhaps part used in disengaging
material from the surface. If the accommodation coefficient is defined to
include the dissociation, excitation and ionization and if vaporization is
negligible, we may deal here explicitly with only the heating and radiation
terms.
We may assume that the meteoroid was previously in temperature

equilibrium with the night side of the Earth (or Sun and Earth during
the day) at temperature To. With a gray-body emissivity coefficient of
,B, the loss of energy by radiation, dEr, of a surface at temperature T8 is

dE7 = jBa (TS4 -To4)dt, (5)

where o- is the Stefan-Boltzmann constant.
If the meteoroid is small (s < 1 cm.), of mass, m, and if the coefficient

of heat conductivity is at all comparable to that of ordinary rocks, the
internal temperature should differ negligibly from the surface temperature
in time intervals somewhat smaller than one second. The permissible limits
to this assumption will be discussed later. If, then, the heat capacity per
gram is C8, the temperature will vary as

mCWdTs = dEg - dEr. (6)

By equations (4) and (5), equation (6) becomes

dT, a
4 0)MC, - = - ApV3 - Ba(T84 -T4). (7)

dt 2

The precise conditions under which the heat capacity in the left member
of equation (7) can be neglected are not apparent a priori. We can, how-
ever, easily determine a resultant rough limit to the dimensions of the
micro-meteorite and later study the question more thoroughly. The maxi-
mum temperature, Tm, to which a micro-meteorite can be heated without
appreciable vaporization is just below the melting point of the least re-
fractory material in the meteoroid, approximately 1200°K. to 1700°K. for
typical stones.3 Iron, iron oxides and silica also fall within this range.
The. temperature rise from the equilibrium temperature at the Earth to
Tm is relatively large. Generally this rise will occur over a considerable
distance through the atmosphere since the radiation varies as T,4 while the
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heating is proportional to atmospheric density. We will find that the
heat capacity is negligible for fast micro-meteorites because they are so
small. For slow micro-meteorites an atmospheric density increase of a
factor of two will require roughly a half-second of atmospheric traverse at
normal incidence.

Hence, if the heat radiation in an interval of the order of half-second near
maximum temperature is large compared to the heat required to raise the
temperature from To to Tm we may safely neglect the heat capacity in
equation (7). The condition just defined is

2mC8 (Tm- To) «<fBo (Tm4- T04). (8)

The limiting radius, s, for a spherical meteor of density, p,, is, from
equation (8)

3fla
s <«

2
(Tm3 + Tm2To + TiTo2 + T03). (9)

2C8p,

The right member of equation (9) is of the order of 0.01 cm. for an iron
or stony meteorite. Hence we may safely ignore the heat capacity of
micro-meteorites of radii less than 10 microns.
With our current assumptions then, we may set the left-hand member

of equation (7) equal to zero and determine the surface temperature of a
micro-meteorite as a function of its velocity and the atmospheric density.
The result is

T4- TO4 = 2B . (10)

While the temperature of the micro-meteorite is rising, its velocity is
being reduced by atmospheric resistance. We may define the drag co-
efficient, D, by the equation

ADpP2
mdV = - dt. (11)

2

The drag coefficient will include a major component, of the order of
2 numerically, if we assume that air particles momentarily adhere to the
meteoroid and are reemitted isotropically. A smaller additional term
will arise from the non-isotropic reemission according to the hypothesis of
Tsien4 and Miss Heineman." No term will arise from evaporation of ma-
terial, however, since we assume (perhaps erroneously at high velocities)
that evaporation is negligible.
A rigorous inclusion of the reemission drag term would involve the sur-

face temperature of the micro-meteorite. Since the effect is rather small,
we may include it approximately after a solution has been made with D
constant.
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The simultaneous solution of equations (10) and (11) will provide a re-
lation among the temperature, velocity and time, if the atmospheric
density can be expressed as a function of the time. A complicated, vari-
able and poorly known relation between atmospheric density and height
actually exists at the atmospheric heights concerned. In the following
sections the fundamental equations will be solved for certain types of such
relations.

The Solution in an Isothermal Atmosphere.-Let us assume that the at-
mosphere is isothermal and that the mean molecular weight of the air is
also constant. Then the atmospheric density, p, varies with the height,
h, above sea level according to the relation

p = poe , (12)
where b, the logarithmic density gradient, is a positive constant and po
is constant.

Let us neglect the curvature of the Earth. Then for a particle entering
the atmosphere with velocity, V, from an apparent radiant at zenith dis-
tance, Z, the time and height are related by the equation

dh= -VcosZdt. (13)
Since meteoric velocities are so large we may neglect the effect of the

Earth's gravity, assuming that the pertinent part of the trajectory is a
straight line, and that the velocity is unaffected by gravity.6

Equations (11), (12) and (13) then lead to the following differential
relation between velocity and height:

V = ADPO e-bh dh. (14)
V 2m cos Z

We have already assumed that all of the quantities in equation (14) ex-
cept V and h may be treated as constants. Hence we may integrate equa-
tion (14) between the limits of Vm,,, the initial velocity at great heights
essentially infinity, to any pertinent velocity, V, and height, h. The in-
tegral of equation (14), when combined with equation (12) to eliminate
the height explicitly, yields the following relation between the velocity
and atmospheric density:

ADP
log ( V/V) = 2bm cos Z (15)

Now the micro-meteorite can traverse the atmosphere undamaged only
if the velocity is reduced sufficiently to prevent the surface temperature
from exceeding a critical temperature, Tm, somewhat below the melting
point of the meteoritic materials. This restriction can be imposed if we
eliminate the density, p, between Equations (15) and (10) and then impose
a maximal condition on T. The first step gives
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abrnCosZ
Ts-To4 = - ,BoBD V3 log (V/V<,,). (16)

To determine the maximum temperature from equation (16) we must
make assumptions as to the functional forms of the accommodation co-
efficient, a, and the emissivity factor, ,l. In view of our lack of knowl-
edge of the detailed physical and chemical structure of the micro-meteorites
and, even with this knowledge, the uncertainty in the physical laws for a
and ,B, we may as well adopt constant values for these quantities as well as
for D. Hence, from the derivative of equation (16) the maximum tem-
perature is reached at the critical velocity, V, given by

log (Vc/V,.) = - 1, (17a)

or

Vc = V_lel' = 0.7165 V.,, (17b)

where e is the base of the natural logarithms.
We may now solve for the ratio of the mass to the effective surface

area, m/B, of the micro-meteorite from equation (16) for the maximum
temperature, Tm. The resulting critical ratio is

rnB = 3e#3D(Tm4 -T04) (18a)
ab cos Z VC,OI1a

Equation (18a) represents the maximum value of m/B for a micro-mete-
orite that is to be stopped, undamaged by the atmosphere. The maxi-
mum radius for a spherical particle of radius, s (sphere) and density, p., iS
then

s (sphere) = 9ef3uD(Tm4 _ T04) (18b)ap,b cos ZVa,38 1b

a result corresponding closely to Opik's Equation (53).2
It is of interest to note from equations (18) that the maximum particle

dimension depends directly upon the critical temperature to the fourth
power and upon the inverse cube of the original velocity. Low velocity and
high melting point strongly favor the passage of such a particle through
the atmosphere. Irregular or elongated shape favors the process for a
given meteoric mass. Because of the cos Z term, larger masses may enter
at lower angles of incidence.

For a rapidly spinning micro-meteorite in the shape of a right circular
cylinder of length I and radius s (cyl.), the maximum radius in terms of the
comparable sphere (equation 18b) of the same density and m/B ratio is
given by
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s (cyl.) = s (sphere) X
2 (s j (cyl.). (18c)

If the rapidly rotating cylindrical meteorite is to have the same radius as
the spherical one, then the length must be equal to the diameter of the
sphere. An extremely long cylindrical meteorite (I > s) will be stopped
when its radius is 2/3 or less the corresponding spherical radius (equation
18b). The maximum permissible dimensions of micro-meteorites with
other shapes or orientations can be determined by means of equations (1),
(2) and (18).

In applying equations (18) approximately to an atmosphere of variable
temperature it is necessary to obtain an appropriate value of the logarithmic
density gradient, b. The critical altitude is at the point of maximum tem-
perature for the micro-meteorite. From equations (15) and (17) we find
the critical density, Pm, at maximum temperature Tm as follows:

2bm cosZ (19)Pm = A (93AD
If the frontal area of the meteorite, A, is approximated by the average

area, A1, equations (2) and (18a) transform equation (19) into
PM 8e(Tm4 To4) (20)

The value of b and the height corresponding to Pm may be derived from
some standard atmosphere. The fact that the shape and mass of the
micro-meteorite and cos Z do not enter equation (20) is rather surprising.
In case there is reason to believe that the actual frontal area differs from
the average cross-sectional area, a correction term can easily be applied
for this factor in equation (20).
The drag coefficient, D, is a vital factor in equations (18) and (19). In

case the air molecules impinging on the surface of the micro-meteorite
are momentarily "captured" by the surface, but very quickly reemitted
with energies corresponding to the temperature of the surface, D is equal
to 2 with a small correction term for the Tsien-Heineman effect mentioned
above. This situation corresponds to that when the accommodation co-
efficient, a, is exactly unity. M. L. Wiedman7 finds that the accommoda-
tion coefficient for air on various metals is generally close to 0.9. At the
higher energies here considered, there is little doubt that the air molecules
will largely penetrate the surface molecular layers and be momentarily
captured. Since only a few can combine chemically and since condensa-
tion is impossible at the temperatures considered, there appears to be
little question that essentially all of the air molecules will be captured and
then reemitted with an average velocity, VT, corresponding to the tem-
perature of the surface. The average velocity is given by
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(vT)2 8k,Ts (21)

7rjh
where ki is the gas constant and ;zl is the molecular weight of the gas.

If the micro-meteorite is assumed to be spherical and the reemission
is uniform with respect to solid angle from a small area of the surface,
the momentum transfer to a hemisphere per average molecule is 4MVT/9.
Since the time lag of reemission must be small compared to a possible rota-
tion period of the micro-meteorite, this momentum transfer will oppose
the motion of the body. If we further .accept D = 2 as the best approxi-
mation to the drag coefficient without including reemission, the value
ofD becomes:

D = 2[1 + 4vT/(9V)I. (22)
A numerical calculation shows that the VT-correction in equation (22)

amounts at most to a few per cent in the velocity and temperature ranges
under consideration. Most of the deceleration of interest occurs fairly
near the critical region of maximum temperature. In adopting a con-
stant value of D, therefore, we may use VT applying at the maximum tem-
perature and compensate this error somewhat by adopting V = V0. in
equation (22).

It would be desirable to make some correction in the drag coefficient
for the fact that some of the impinging air molecules must deviate from
the assumed process of penetration and thermal reemission, but we have no
detailed information as to the surface characteristics of micro-meteorites.
The relative error made in D by this omission is less than 1 - a.
The remaining undetermined constant in Equation (18) is the emissivity

factor,' . Nothing precise can be known about this factor until micro-
meteorites have been studied carefully in the laboratory. Probably d is
very near unity. For want of better information we may set a = ,B 1,
so that their effects cancel in equation (18). We may adopt Tm = 1600°K.,
and To0- 300°K. The remaining quantities to be specified in equation
(18a) concern the atmosphere. The Tentative Standard Atmosphere
of the National Advisory Committee for Aeronautics8 represents good
modern estimates of upper-atmospheric densities and will be used for the
present calculation.
For a velo'city of 23 km./sec., corresponding to the 1947 Giacobinid

Meteor Shower, the atmospheric density at which a micro-meteorite of
limiting- dimensions attains maximum temperature (p = 8.2 X 10-1o
gm./cm.') occurs near the 112-km. level, by application of equation (20).
With an air temperature of 346°K. and b = 1.1 X 10-6 cm.-' the maxi-
mum radius of spherical iron particles for cos Z = 0.45 are then calculated
to be about 4 microns. Long cylindrical particles might have a diameter
as great as 6 microns, in good agreement -with Landsberg's observations
mentioned earlier.
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Part II of this paper will concern the solution of limiting dimensions
for micro-meteorites in an atmosphere of constant temperature gradient
and in the general case. A critical discussion of the assumptions adopted
here will be included as well as some elaboration of the numerical results.

* This paper was written as a part of the investigation for United States Naval Ord-
nance Contract-10449-05512.

1 Pop. Ast., 55, 322 (1947).
2 Pub. Univ. Tartu, 29, No. 5,51 (1937).
8See Daly, R. A., Igneous Rocks and the Depths of the Earth, McGraw-Hill Book Co.,

1933, p. 65.
4 Tsien, Hsue-Shen, J. Aero. Sci., 13, 653 (1946).
6 Heineman, M., Comm. Apl. Math., 1, 259 (1948).
"-See, e. g., Whipple, F. L., Proc. Am. Phil. Soc., 79, 499 (1938).
7 See Tsien, loc. cit.
8 Warfield, C. N., NACA, Tech. Note, No. 1200, Langley Field, Jan., 1947.

MERCAPTAN-INDUCED COAGULATION OF PROTEINS*
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FROM THE NATHAN GOLDBLATT MEMORIAL HOSPITAL FOR NEOPLASTIC DISEASES OF THE
UNIVERSITY OF CHICAGO, CHICAGO, ILL.

Communicated, October 29, 1950

In this paper it will be demonstrated that mercaptans ,possess the
property of inducing coagulation of certain proteins at room temperature
and neutrality. This effect throws light on the importance of -S-S-
bonds in the intramolecular folding of several proteins in the native state.
While the dispersive action of mercaptans on keratin is well known,

the coagulative action on soluble proteins apparently has not been de-
scribed. Goddard and Michaelis' found that wool readily dissolves at
room temperature in thioglycollate solutions at pH 10-13 because of
reduction of disulfide bonds. The following reaction'-4 occurs in the thiol-
disulfide system:

RS-SR + 2R'SH = 2RSH + R'S-SR'
Since greater alkalinity was required in the experiments of Goddard and
Michaelis than was needed for -the reduction of cystine by thiols, they'
postulated that an additional intramolecular bridge must be broken before
disulfides of keratin can be reduced; they assumed that the second bridge
was salt-like in character and that it was disrupted by removal of a proton
from the amino group in alkaline solution. Jones and Mecham5 observed
that a variety of keratins were dispersed at pH 7 and 40°C., by adding
urea or anionic detergents to the mercaptan solution. Mirsky and Anson2
found that thioglycollate in excess completely reduces disulfide groups in
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