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T (1)

or

(2)

where t and td are in degrees Celsius and RH is in
percent. In this article I first give an overview of the
mathematical basis of the general relationship be-
tween the dewpoint and relative humidity, and con-
sider the accuracy of this and other approximations.
Following that, I discuss several useful applications
of the simple conversion, and conclude with a brief
perspective on the early history of research in this
field.

DEFINITIONS AND ANALYTICAL RELA-
TIONSHIPS. Relative humidity is commonly de-
fined in one of two ways, either as the ratio of the ac-
tual water vapor pressure e to the equilibrium vapor
pressure over a plane of water es (often called the
“saturation” vapor pressure),
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, (3)

or as the ratio of the actual water vapor dry mass mix-
ing ratio w to the equilibrium (or saturation) mixing
ratio ws at the ambient temperature and pressure:

(4)

The two definitions are related by w = ee(P - e)-1  and
ws = ees(P - es)

-1, where e(0.622) is the ratio of the mo-
lecular weights of water and dry air, and P is the am-
bient air pressure. For many applications, the two
definitions in Eqs. (3) and (4) are essentially equiva-
lent, because normally e < es  P; however, as will be
shown below, in cases such as the dewpoint where
exponentials are involved, the difference can become
nonnegligible. The temperature to which an air par-
cel at initial temperature t and pressure P must be
cooled isobarically to become saturated is td (i.e., the
initial mixing ratio w, which is conserved, equals ws
at the new temperature td). Normally the definition
is expressed implicitly in terms of the vapor pressure

(5)

To express td in terms of RH, an expression for the
dependence of es on t is needed. Over the past two
centuries, an immense number of such expressions
have been proposed (probably exceeding 100), both
on empirical and theoretical bases. A nice review and
evaluation of many of these is given by Gibbins (1990).
One of the most widely used, highly accurate empiri-
cal expressions is

 (6)

which is commonly known as the Magnus formula,
although, as discussed below, this is a rather inaccu-
rate attribution. Alduchov and Eskridge (1996) have
evaluated this expression based on contemporary va-
por pressure measurements and recommend the fol-
lowing values for the coefficients: A1 = 17.625, B1 =
243.04°C, and C1 = 610.94 Pa. These provide values
for es with a relative error of < 0.4% over the range
-40°C £ t £ 50°C.

Substituting Eq. (6) in Eq. (5) yields td as a func-
tion of the ambient vapor pressure and temperature

(7)

Combining this with Eq. (3) then gives

(8)

which is a highly accurate conversion from RH to td,
provided that RH is defined using Eq. (3); the error
that results if Eq. (4) is used is discussed below. The
relationship between td, t, and RH based on Eq. (8) is
shown in Fig. 1, with sample values in Table 1. This
conversion, broken down into multiple steps, with
older coefficients (from Tetens 1930), was recently
recommended for public use in a nice compilation of
several humidity formulas (USA Today, 6 November
2000, currently available online at www.vivoscuola.it/
u s / r s i gpp3202 /um id i t a / a t t i v i t a / humid i t y_
formulas.htm, or from the author on request).

A simpler, well-known analytical form for es can
be obtained by solving the Clausius–Clapeyron equa-
tion,

(9)

where T is the temperature in Kelvin (T = t + 273.15),
Rw is the gas constant for water vapor (461.5 J K-1 kg-1),
and L is the enthalpy of vaporization, which varies
between L = 2.501 ¥ 106 J kg-1 at T = 273.15 K and L
= 2.257 ¥ 106 J kg-1 at T = 373.15 K. Assuming that L
is approximately constant over the temperature range
encountered in the lower atmosphere allows Eq. (9)
to be integrated to yield

(10)
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where C2 depends on the reference temperature for
which the value of L is chosen (e.g., C2 = 2.53 ¥ 1011 Pa
at T = 273.15 K). Substituting this together with Eq.
(5) into Eq. (3) and rearranging to solve for td gives
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(11)

This gives a good approximation to Eq. (8) when T is
close to the value for which L is chosen (see Table 1),
with small but nonnegligible errors away from the
chosen reference temperature (see below).

LINEAR REGRESSIONS FOR MOIST AIR. As
can be seen from Eqs. (8) and (11) and Fig. 1, the re-
lationship between td and RH for any given T is non-
linear. However, for RH > 50% the relationship be-
comes nearly linear; Fig. 2a shows the relationship
based on Eq. (8), along with the simple approxima-
tion based on Eq. (1). A linear regression for RH = b
- a (t - td) [the form of Eq. (2)] based on values com-
puted with Eq. (8) for temperatures ranging from 0°
to 30°C and RH > 50% yields the slopes listed in Table
2; two cases are considered, a fixed intercept at RH =
100%, and a free intercept (in which case the com-
puted intercept is approximately 97.8% for all tem-
peratures in this range). The slope a varies from 4.62
to 5.81 for the fixed intercept and from 4.34 to 5.45

for the free intercept, which is within about ±15% of
the value of 5 suggested for the rule of thumb [Eq. (2)].

MATHEMATICAL BASIS OF THE LINEAR
APPROXIMATION. The principle linearity of the
relationship between RH and the dewpoint depres-
sion (t - td) in moist air (Fig. 2a) has been noted pre-

FIG. 1. Relationship between dewpoint temperature and
relative humidity for selected dry-bulb temperatures
based on Eq. (8): (a) td as a function of RH and (b) RH
as a function of td.

100.0 15.00 15.00 (0.00) 15.00 (0.00) 15.00 (0.00) 15.10 (0.10) 15.75 (0.75)
95.0 14.21 14.21 (0.00) 14.00 (-0.21) 14.26 (0.06) 14.20 (-0.01) 14.63 (0.43)
90.0 13.37 13.38 (0.00) 13.00 (-0.37) 13.46 (0.08) 13.30 (-0.07) 13.51 (0.14)

85.0 12.50 12.50 (0.00) 12.00 (-0.50) 12.58 (0.08) 12.40 (-0.10) 12.40 (-0.10)
80.0 11.58 11.58 (0.00) 11.00 (-0.58) 11.64 (0.06) 11.50 (-0.08) 11.28 (-0.30)
75.0 10.60 10.61 (0.00) 10.00 (-0.60) 10.63 (0.02) 10.60 (0.00) 10.16 (-0.44)
70.0 9.57 9.58 (0.00) 9.00 (-0.57) 9.55 (-0.02) 9.70 (0.13) 9.04 (-0.53)
65.0 8.47 8.47 (0.00) 8.00 (-0.47) 8.40 (-0.07) 8.80 (0.33) 7.93 (-0.55)
60.0 7.30 7.29 (0.00) 7.00 (-0.30) 7.19 (-0.10) 7.50 (0.20) 6.81 (-0.49)

55.0 6.03 6.02 (-0.01) 6.00 (-0.03) 5.91 (-0.12) 6.25 (0.22) 5.69 (-0.34)
50.0 4.66 4.64 (-0.02) 5.00 (0.34) 4.56 (-0.09) 5.00 (0.34) 4.57 (-0.08)

TABLE 1. Dewpoint temperatures (°C) and absolute differences for moist air with a dry-----bulb tempera-
ture of t = 15°C.

RH (%) Eq. (8) Eq. (11)* Eq. (1)* Eq. (21)* Eq. (19)* Eq. (20)*

* Absolute differences (in °C) to Eq. (8) are given in parentheses.
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viously, for instance, by Sargent (1980) on an empiri-
cal basis, and theoretically by Bohren and Albrecht
(1998). In particular, Bohren and Albrecht (1998)
made use of this to explain why dewpoint is often pre-
ferred by meteorologists over relative humidity as an
indicator of human comfort. Their approach to show-
ing the linear nature of the curves in the moist regime
begins by rearranging Eq. (11) to solve for RH (here,
following their derivation, the absolute temperature
T and the absolute dewpoint Td will be used for
convenience):

(12)

When the exponent satisfies the condition

(13)

the exponential can be approximated by a Taylor ex-
pansion, discarding the second- and higher-order
terms:

(14)

which can be rewritten in the form of Eq. (2), with the
dewpoint depression expressed in degrees Celsius

(15)

where

(16)

Because T and Td only vary by about 10% in the tem-
perature regime that is mainly of interest (around
270–300 K), b1 is nearly constant, and, thus, the rela-
tionship between RH and t - td in Eq. (15) is nearly
linear. Assuming Td ª T, this gives b1 ª 6.0 for T =
300 K and b1 ª 7.4 for T ª 270 K [note that Bohren
and Albrecht (1998) did not compute values for b1,
because they were mainly concerned with the quali-
tative form of the relationship]. These are somewhat
larger in magnitude than the linear regression slopes
in Table 2. This is because the assumption in Eq. (13)
applies best near saturation; for a typical temperature
of T = 285 K, Eq. (13) reduces to approximately
0.07 (T - Td) =  1, which only holds well if T - Td  �

30 4.34 4.62
25 4.50 4.79
20 4.67 4.97
15 4.85 5.16
10 5.03 5.37
5 5.24 5.58
0 5.45 5.81

TABLE 2. Slopes (a, in % °C-----1) of the linear
regression RH = b ----- a (t ----- td) = (b ----- at) +++++ atd for
the curves in Fig. 2a, based on the values
computed with Eq. (8), for a free intercept b
and for a fixed intercept at RH = b = 100%.

t (°C) b = free b = 100

FIG. 2. (a) Relationship between td and RH for moist air;
thick colored broken lines show values based on Eq. (8)
for selected dry-bulb temperatures with line styles as
in Fig. (1), thin solid black lines show values based on
Eq. (1); and (b) difference between td computed with
Eq. (1) minus values from Eq. (8) for selected dry-bulb
temperatures with line styles as in Fig. (1), where col-
ored curves show values computed using Eq. (3) for RH
and gray curves show values using Eq. (4) for RH as-
suming an air pressure of P = 1013 hPa.

n
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 3 K; this is about 1/3 of the overall quasi-linear range,
which extends up to a dewpoint depression of about
10 K (Fig. 2a).

A more accurate expression for the slope tangent
to any point in the RH versus t - td relationship can
be obtained by dividing both sides of Eq. (11) by (100
- RH) and rearranging to obtain

(17)

where

 (18)

The magnitude of the slope is now seen to decrease
with RH; it also decreases for higher values of T (as
does b1). At RH = 50%, this gives b2 ª 4.3 for T = 300 K
and b2 ª 5.4 for T = 270 K; thus, the overall slopes us-
ing Eqs. (17) and (18) are in accord with the linear
regressions in Table 2. Note that it is also possible to
obtain nearly the same expression as in Eqs. (17) and
(18) by using the series expansion 1(1 - x)-1 =1 + x +
x2 + . . . directly on Eq. (11), and discarding the sec-
ond- and higher-order terms, which is valid to do over
a larger range of dewpoint depressions than the ap-
proximation in Eq. (13).

ACCURACY AND OTHER APPROXIMA-
TIONS. How accurate is the simple conversion in
Eqs. (1) and (2)? Sample values for Eq. (1) for t = 15°C
are given in Table 1, and the error in the rule of
thumb relative to Eq. (8) is plotted in Fig. 2b for a
range of temperatures. Generally, the conversion is
accurate to better than 1°C for td or 5% for RH for
most of the range 0° < t < 30°C and 50% < RH < 100%,
with exceptions at the extreme temperatures. To an
extent, the largest errors can be compensated for by
noting the form of the error in Fig. 2b (e.g., subtract-
ing 1°C for t ª 30°C and RH � 60%, and adding 1°C
for t ª 0°C and RH � 80%). When a high degree of
accuracy (� 1% error) is required, for example, for
modeling, publication of tables or current weather re-
ports, then this simple conversion is clearly inad-
equate. However, there are several applications for
which this accuracy is sufficient that the rule of
thumb can be very useful, as discussed in the next
section.

The values in Table 1 are computed using Eq. (3)
for the definition of RH. With this definition, Eq. (8)
provides an accurate conversion over a wide range of
temperatures, as does Eq. (11) near the chosen refer-
ence temperature (the values in Table 1 were computed
with L = 2.472 ¥ 106 J kg-1, appropriate for a reference
temperature of T = 285 K). If instead Eq. (4) is used
for RH, and an air pressure of P = 1013 hPa is as-
sumed, then generally slightly smaller errors are com-
puted for the rule-of-thumb conversion in Eq. (1); this
is illustrated in Fig. 2b (gray curves). However, inter-
estingly, when Eq. (4) is used, then directly using Eqs.
(8) and (11) [i.e., assuming es =  P, so that Eqs. (3) and
(4) are equivalent] can lead to notable errors, com-
pared with the accurate values computed by instead
substituting Eq. (4) and e = (wP)(w + e)-1 into Eq. (7),
particularly at the lowest values of RH considered. For
RH = 50%, the error in Eq. (8) applied with Eq. (4)
ranges from -0.04°C at t = 0°C to -0.34°C at t = 30°C
(i.e., up to ~3% of the dewpoint depression), while the
error in Eq. (11) together with Eq. (4) is smallest at -
0.14°C for t = 10°–15°C (near the chosen reference
temperature of t = 285 K), increasing in magnitude
to -0.23°C at t = 30°C and -0.17°C at t = 0°C. These
errors can be contrasted with the maximum error for
Eq. (11) when Eq. (3) is used for RH, which is -0.13°C
at t = 0°C. Thus, if Eq. (4) is used to define RH, and
an accurate conversion is needed, then e should first
be computed [using Eq. (4) and e = (wP)(w + e)-1] and
then used in Eq. (7) to determine td, rather than di-
rectly employing Eqs. (8) or (11) with the given RH.

For cases where the rule of thumb in Eq. (1) is not
adequately accurate, but a simpler conversion than
Eqs. (7), (8), or (11) is desired, then various other ap-
proximations that have been proposed can be used.
Sargent (1980) gives a nice overview of a wide range
of approximations of various accuracies. In particu-
lar, he proposes an empirical linear fit that has the
same basic form as Eq. (1):

(19)

where K0 = 17.9 and K1 = 0.18 for 65% £ RH £ 100%,
and K0 = 22.5 and K1 = 0.25 for 45% £ RH £ 65%.
These are close to the equivalent values for the rule
of thumb of K0 = 20 and K1 = 0.2 in Eq. (1), but yield
a clearly more accurate conversion due to the two-
part fit to the slope (see Table 1). However, Sargent’s
conversion is already sufficiently complex to be pro-
hibitive for being used “on the fly.” Sargent (1980) also
proposed a higher-order fit, which includes a depen-
dence on the temperature:
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(20)

This is less accurate at higher humidities (see Table
1), but extends the range of applicability down to
lower humidities, giving td within 1°C for 40% £ RH
£ 100% and 0° < t < 30°C.

An alternative, more accurate second-order fit that
removes most of the error from the rule of thumb in
Eq. (1) can be obtained by 1) recognizing that the
dewpoint depression (t - td) depends approximately
on the square of the absolute temperature T 2 [see Eq.
(18)], and 2) noting that the form of the remaining
error (Fig. 2b) resembles a parabola centered near RH
= 85%. Applying these two modifications, with coef-
ficients for the parabola chosen to minimize the root-
mean-square error for 40% £ RH £ 100% and 0° < t <
30°C (while insisting that the intercept at RH = 100%
is td = t) yields

(21)

Values for this conversion are also given in Table 1;
the maximum error in td using Eq. (21) over the whole
range of 50% £ RH £ 100% and 0° < t < 30°C is 0.3°C
[assuming the use of Eq. (3) for RH].

At the other end of the spectrum, Sargent (1980),
Gibbins (1990), and others have evaluated a wide
range of complex expressions for es, most employing
various polynomial and exponential fits for measured
es values, such as the form of Goff and Gratch (1945,
1946); these can be used with Eqs. (3) or (4) to deter-
mine e from RH and es, which can then be used in
Eq. (7) to yield an even greater accuracy for td than
the analytical approximation in Eq. (8).

APPLICATIONS. There are several useful appli-
cations for the rule-of-thumb conversion in Eqs. (1)
and (2). One that I have found to be helpful on vari-
ous occasions is when maps of t and either td or RH
(but not both) are available, and one is interested in
knowing the approximate distribution of the other.
In particular, weather forecast and analysis Internet
sites will often provide maps of the surface air t and
td, but not RH. In this case, using the rule of thumb
in (2) allows the distribution of RH (in regions with
RH > 50%) to easily be estimated. With practice, one
can place maps of t and td next to each other and di-

rectly read off an approximate map of the RH; as long
as the main interest is knowing the basic range of the
RH values (e.g., ~90% versus ~70%) distributed over
a geographical region, the relatively small error (< 5%)
is not critical.

A related application involves comfort levels.
Wallace and Hobbs (1977) noted that air with td >
20°C is generally considered uncomfortable, and air
with td > 24°C is perceived as “sticky,” almost regard-
less of the actual dry-bulb temperature t and, thus,the
RH. Bohren and Albrecht (1998) similarly noted that
“when you ask a knowledgeable meteorologist for a
forecast of how comfortable a hot summer’s day in
the humid eastern United States will be, you are likely
to be given a temperature and a dew point rather than
a temperature and relative humidity,” and went on
to provide insight into the physical basis for this by
expanding on the derivation of a linear relationship
discussed above. Despite this relationship between td
and comfort, most people I knew while growing up
in the southeastern United States were far more fa-
miliar with the relative humidity than the dewpoint,
and if they happened to have a home weather station,
it was almost certain to show t, P, and RH, not td.
Particularly interesting for amateur meteorologists is
that in this case, the rule-of-thumb conversion makes
it easy to go from RH to td, and, thus, to have a bet-
ter direct indicator of expected comfort levels.

Another use of the dewpoint is familiar to pilots and
operational meteorologists: the lifting condensation
level zLCL, that is, the cumulus cloud-base height, is
closely related to the dewpoint depression, and a first-
order estimate can be obtained from the simple formula

, (22)

where t and td are near-surface values and z is in
meters [note that often a coefficient of 120 rather than
125 is used, though I find 125 to give more accurate
values over a wider range of typical surface tempera-
tures when Eq. (3) is used for RH]. It is interesting to
note that the physical principle of this relationship was
actually pointed out already over 150 yr ago by the
meteorologist J. P. Espy, although he lacked an accu-
rate value for the dry adiabatic lapse rate, so that his
value for the coefficient in Eq. (22) (originally in feet
and Fahrenheit) was about 1/3 too large (McDonald
1963). With modern knowledge of these parameters,
Eq. (22) is now generally accurate to within about
±2% for 50% £ RH £ 100% and 0° < t < 30°C; example
values are listed in Table 3, along with accurate val-
ues based on an iterative solution for a lifted,
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nonentraining parcel, for which Eq. (3) is used to
define RH. When Eq. (4) is instead used, notably
lower values of zLCL are computed for both the itera-
tive solution and Eq. (22), by 0.5% at t = 0°C, and up
to 4% lower at t = 30°C.

Using the rule of thumb discussed here, this rela-
tionship can be reformulated in terms of RH. Directly
substituting Eq. (1) into Eq. (22) gives

. (23)

However, as can be seen in Fig. 2b, Eq. (1) tends to
underestimate td for lower temperatures, which re-
sults in an overestimate of the cloud-base height us-
ing Eq. (23). I have found that it is easy to adjust for
this tendency by incorporating the temperature into
the coefficient:

, (24)

where t here is the dry-bulb surface temperature in
degrees Celsius. This gives zLCL to within ±15% for the

whole range of 50% £ RH £ 100% and 0° < t < 30°C;
sample values from Eq. (24) and their relative devia-
tions from the accurate values are listed in Table 3 and
are shown in Fig. 3. If one rounds off to the nearest
integer for the temperature-based coefficient, then
this provides a very simple way to estimate the cumu-
lus cloud-base height using only surface air measure-
ments of RH and t, without needing a calculator.
However, it should not be used in situations involv-
ing safety issues, such as actual flight-route planning.
When greater accuracy is needed, then either Eq. (22)
should be used with an accurate value for td, or other
highly accurate approximations can be used, such as
suggested by Bolton (1980).

There are also other applications beyond those
discussed above. For instance, the dewpoint is useful
in determining how well traditional evaporative
(“swamp”) coolers will work, and it is the theoretical
minimum temperature that can be achieved by mod-
ern indirect evaporative coolers. Extensive evapora-
tive cooling is popular mainly in dry regions, such as
Arizona, New Mexico, and Colorado, where the rule-
of-thumb conversion does not apply (because RH <
50%); however, it can also be helpful in the summer-
time in moister regions such as Europe where air con-
ditioning is not prevalent in homes. Then, a quick
look at the humidity reading on a home weather sta-
tion can give a nice indication of whether or not it is

100.0 0.0 0.0 (0.0) 0.0 (0.0)
95.0 100.1 99.4 (-0.8) 115.0 (14.8)
90.0 204.8 203.4 (-0.6) 230.0 (12.3)
85.0 314.3 312.7 (-0.5) 345.0 (9.8)
80.0 429.3 427.8 (-0.3) 460.0 (7.1)
75.0 550.5 549.5 (-0.2) 575.0 (4.5)
70.0 678.6 678.4 (0.0) 690.0 (1.7)
65.0 814.5 815.8 (0.2) 805.0 (-1.2)
60.0 959.5 962.9 (0.4) 920.0 (-4.1)
55.0 1115.0 1121.2 (0.6) 1035.0 (-7.2)
50.0 1282.9 1292.8 (0.8) 1150.0 (-10.4)

TABLE 3. Lifting condensation levels (m) and
relative differences (%) for moist air with a
surface dry-bulb temperature of t = 15°C and
pressure P = 1013 hPa.

RH (%) Iterative* Eq. (22)** Eq. (24)**

* Iterative solution for a nonentraining parcel lifted from
the starting conditions at the surface through a layer
with an ambient lapse rate of Ga = 6.5°C km-1, with the
convergence condition that |wws

-1 - 1| < 10-5 at the
lifting condensation level.

** Relative differences (%) to the iterative solution are
given in parentheses.

FIG. 3. The lifting condensation level zLCL as a function
of RH for two surface air temperatures; thick colored
broken lines show accurate values calculated iteratively
with the same nonentraining parcel model as used for
Table 3, while the gray curves show approximate val-
ues using the simple formula in Eq. (24).
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worth setting up a fan and a drying rack with wet
laundry in order to cool off at least a few degrees when
possible, which we found to frequently be useful dur-
ing the first part of the anomalously hot European
summer of 2003 [as can be seen from Eq. (1), assum-
ing at best a 50% cooling efficiency from this primi-
tive engineering, this is only worthwhile if RH £ 70%].

A final widely useful application for the simple
conversion is in science education. Most students are
already basically familiar with the relative humidity,
and the rule of thumb provides a simple way to ex-
tend this to having a feeling for the meaning of
dewpoint temperatures and dewpoint depressions.
This provides a particularly nice insight when stu-
dents then link this to cloud-base levels through Eq.
(24), which can be put into practice outside on days
with appropriate weather conditions.

HISTORICAL PERSPECTIVE. Practical relation-
ships involving the humidity parameters td (or t - td)
and RH have long been of interest, and several dif-
ferent approximate conversions have been proposed,
most notably the empirical linear fit in Eq. (19) from
Sargent (1980), which is similar to Eq. (1). Neverthe-
less, despite a rather extensive search through recent
and historical literature, as well as on the Internet, I
have not yet been able to find mention of the simple
rule of thumb and its applications as discussed here.

The earliest recorded careful measurements of the
dewpoint that I could find were made by Dalton
(1802), who was interested in understanding the pro-
cess of evaporation of liquid water into moist air. He
suspected that the rate of evaporation depended on
the temperature, which determines the equilibrium
vapor pressure (es) of the liquid water, as well as the
moisture content of the ambient air (which he called
the “force of the aqueous atmosphere”). To quantify
this moisture content, he filled a glass with cold spring
water and watched to see if dew formed on the out-
side. If so, he poured out the water, let it warm up a
bit, dried off the glass, and poured the water back in,
repeating this until the first time that dew did not
form; measuring the temperature of the water in the
glass gave him the dewpoint (Dalton called this the
“condensation point”). He then used his new table of
es as a function of temperature (also published in the
same work) to determine the vapor pressure in am-
bient air, reasoning (correctly) that this would be
equal to es at the dewpoint temperature. Finally, he
performed a large set of experiments in which he
measured the rate of evaporation of water at different
temperatures in a small tin container, using a balance
to determine the change in weight, and found that the

rate of evaporation was indeed proportional to the dif-
ference between es at the temperature of the water in
the container and the vapor pressure in the ambient air.

John Dalton’s experimental technique and his in-
sights in this field were remarkable. His vapor pres-
sure measurements were accurate enough to allow
him to realize that es approximately doubled for ev-
ery 22.5°F increase in temperature, and that the ratio
decreased with increasing temperature (from 2.17 at
32°F to 1.59 at 212°F). This same reasoning was used
by August (1828) in proposing the formula that later
came to be known as the “Magnus formula” [Eq. (6)].
Gibbins (1990) also noted that G. Magnus was not the
first to suggest the Magnus formula, but that this
honor apparently belongs to E. F. August. I would go
further and propose that Eq. (6) should properly be
called the “August–Roche” or the “August–Roche–
Magnus” formula (with possible coattribution to
Strehlke, as well). Magnus (1844) made a very care-
ful set of measurements of the equilibrium vapor pres-
sure of water, which he desired to fit with a usable
equation. He considered several different forms that
had previously been proposed, and came to the main
conclusion that the form of Eq. (6) was the best
(author’s translation of the original German follows):
“The form which is used by the French Academy and
by Th. Young, Creighton, Southern,Tredgold, and
Coriolis, and also by the authors of the entry for Steam
in the Encyclopaedia Brittannica [sic] . . . regardless
of the exponential coefficients one may choose . . . is
not as good as the form suggested by Roche, August
(1828), and Strehlke, which has also been arrived at
through theoretical considerations by von Wrede
(1841),” which is Eq. (6). So it was clear to Magnus
that attribution for the equation at least in part be-
longed to August (1828), the only one of the three
early investigators for which Magnus gives a refer-
ence. The original form of the equation proposed by
August used a base-10 logarithm, with A1 = 7.9817243,
which becomes A1 = 18.3786 when converted to the
appropriate value for the form of Eq. (6); for the other
coefficients he proposed that B1 = 213.4878°C and C1
= 2.24208 mm Hg. The values of A1 and B1 are not so
far off from the values later recommended by Magnus
(1844), A1 = 17.1485 (7.4475 in base 10) and B1 =
234.69°C, although C1 was considerably lower than
Magnus’ value of 4.525 mm Hg. After Magnus (1844),
and prior to more recent works like Alduchov and
Eskridge (1996), the most notable update of these
values was by Tetens (1930), who suggested that A1 =
17.27 (7.5 in base 10), B1 = 237.3°C, and C1 = 610.66 Pa.

So August clearly deserves at least shared attribu-
tion for this equation. Who were the others, though,
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that Magnus mentions? I have not been able to find
any evidence of Strehlke’s work associated with this
(any tips from readers would be appreciated). Von
Wrede (1841) independently comes across nearly the
same form, except without C1 in the equation, and,
thus, quite different coefficients A1 and B1; he was
apparently unaware of August’s work, and mentions
in a footnote that he had not been able to obtain a copy
of Roche’s work, which he had been told proposed a
similar formula. The reason for this was made clearer
by Magnus (1844) a few years later, who noted that
(author’s translation follows) “Roche had attempted
to propose such a theoretical formula, yet the report
for the French Academy of Sciences (1830) said that,
based on the available evidence, the formula would
not have the pleasure of the applause of the physi-
cists.” [The original report in French does, indeed,
read rather similarly.] Nevertheless, the extensive his-
torical account in the entry on steam in the
Encyclopaedia Britannica (1830–1842 ed.) of that pe-
riod lists about 20 equations for es(t), including that
of Roche, who “sent to the Academy of Sciences, in
1828, a memoir on this subject” [here they do not
mention its fate; it is also difficult to determine what
the coefficients Roche actually proposed were, be-
cause the equation is given differently in the
Encyclopaedia Britannica (1830–1842 ed., s.v.
“steam”) and in the French Academy of Sciences
(1830) report, though they are apparently signifi-
cantly different from those of August and his succes-
sors]. Surprisingly, however, the authors in the
Encyclopaedia Britannica (1830–1842 ed., s.v.
“steam”) do not mention the work of August (1828);
this might help to explain why it was neglected, and
why credit was instead later given to Magnus (1844).

Given the long history of research on atmospheric
moisture, it is hard to imagine that the simple rule
of thumb presented here for relating td, t, and RH, as
well as the simple computation of zLCL from t and RH
in Eq. (24), have gone unnoticed. I would certainly
appreciate any information from colleagues or from
science historians on whether earlier works can be
found in which this rule of thumb is discussed.
Nevertheless, these approximations seem to have
been either generally overlooked or forgotten—at
least they are not widely known in this age of the
pocket calculator and laptop (perhaps already since
the slide rule)—and I hope that this article will help
to bring them to the attention of the various commu-
nities that could benefit from their use, including
operational meteorologists, amateur meteorologists,
atmospheric scientists in various specializations, and
science educators.
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