Other HEALTH AND SAFETY GUIDES available: (continued on inside back cover)

Acetaldehyde (No. 90, 1995)
Acrolein (No. 67, 1992)
Acrylamide (No. 45, 1991)
Acrylonitrile (No. 1, 1986)
Aldicarb (No. 64, 1991)
Aldrin and dieldrin (No. 21, 1988)
Allethrin (No. 24, 1989)
Amitrole (No. 85, 1994)
Ammonia (No. 37, 1990)
Arsenic compounds, inorganic, other than arsine (No. 70, 1992)
Atrazine (No. 47, 1990)
Barium (No. 46, 1991)
Benomyl (No. 81, 1993)
Bentazone (No. 48, 1990)
Beryllium (No. 44, 1990)
Brodifacoum (No. 93, 1995)
Bromadiolone (No. 94, 1995)
1-Butanol (No. 3, 1987)
2-Butanol (No. 4, 1987)
tert-Butanol (No. 7, 1987)
Camphechlor (No. 40, 1990)
Captafol (No. 49, 1990)
Captan (No. 50, 1990)
Carbaryl (No. 78, 1993)
Carbendazim (No. 82, 1993)
Chlordane (No. 13, 1988)
Chlordanes (No. 41, 1990)
Chloroform (No. 87, 1994)
Chlorothalonil (No. 98, 1995)
Cyhalothrin and lambda-cyhalothrin (No. 38, 1990)
Cypermethrin (No. 22, 1988)
Deltamethrin (No. 30, 1989)
1,2-Dichloroethane (No. 55, 1991)
1,3-Dichloropropene, 1,2-dichloropropane, and mixtures of 1,3-dichloropropene and 1,2-dichloropropane (No. 76, 1992)
2,4-Dichlorophenoxyacetic acid (2,4-D) (No. 5, 1987)
Dichlorvos (No. 18, 1988)
Difenacoum (No. 95, 1995)
Dilubenzuron (No. 99, 1995)
Dimethoate (No. 20, 1988)

Dimethyl sulfate (No. 29, 1989)
Dimethylarsinic acid, methanearsonic acid, and salts (No. 69, 1992)
Dimethylformamide (No. 43, 1990)
Diquat (No. 52, 1991)
Endosulfan (No. 17, 1988)
Endrin (No. 60, 1991)
Epichlorohydrin (No. 8, 1987)
Ethylene oxide (No. 16, 1988)
Fenitrothion (No. 65, 1991)
Fenvalerate (No. 34, 1989)
Folpet (No. 72, 1992)
Formaldehyde (No. 57, 1991)
Heptachlor (No. 14, 1988)
Hexachlorobutadiene (No. 84, 1993)
Hexachlorocyclohexanes, alpha- and beta- (No. 53, 1991)
Hexachlorocyclopentadiene (No. 63, 1991)
n-Hexane (No. 59, 1991)
Hydrazine (No. 56, 1991)
Hydroquinone (No. 101, 1996)
Isobenzan (No. 61, 1991)
Isobutanol (No. 9, 1987)
Isophorone (No. 91, 1995)
Kelevan (No. 2, 1987)
Lindane (No. 54, 1991)
Magnetic fields (No. 27, 1990)
Methamidophos (No. 79, 1993)
Methomyl (No. 97, 1995)
Methyl bromide (Bromomethane) (No. 86, 1994)
Methyl isobutyl ketone (No. 58, 1991)
Methyl parathion (No. 75, 1992)
Methylene chloride (No. 6, 1987)
Mirex (No. 39, 1990)
Monocrotophos (No. 80, 1993)
Morpholine (No. 92, 1995)
Nickel, nickel carbonyl, and some nickel compounds (No. 62, 1991)
Paraquat (No. 51, 1991)
Parathion (No. 74, 1992)
Pentachlorophenol (No. 19, 1988)
Permethrin (No. 33, 1989)
Phenol (No. 88, 1994)
d-Phenothrin (No. 32, 1989)
CRESOLS
HEALTH AND SAFETY GUIDE

This is a companion volume to
Environmental Health Criteria 168: Cresols

Published by the World Health Organization for the International Programme on Chemical Safety (a collaborative programme of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization)
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization.

WHO Library Cataloguing in Publication Data

Cresols: health and safety guide.

(Health and safety guide ; no. 100)

ISBN 92 4 151100 1 (NLM Classification: QD 341.P5)
ISSN 0259-7268

The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available.

© World Health Organization 1996

Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

Computer typesetting by HEADS, Oxford OX8 8NY, England

The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Federal Republic of Germany) provided financial support for, and undertook the printing of, this publication.

Printed by Wissenschaftliche Verlagsgesellschaft mbH · D-70009 Stuttgart 10
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1. PRODUCT IDENTITY AND USES</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Identity</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Physical and chemical properties</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Analysis</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Production and uses</td>
<td>8</td>
</tr>
<tr>
<td>2. SUMMARY AND EVALUATION</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Environmental fate</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Exposure</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Uptake, metabolism, and excretion</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Effects on organisms in the environment</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Effects on experimental animals and in vitro test systems</td>
<td>11</td>
</tr>
<tr>
<td>2.6 Effects on humans</td>
<td>12</td>
</tr>
<tr>
<td>3. CONCLUSIONS</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Human health</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Environment</td>
<td>13</td>
</tr>
<tr>
<td>4. HUMAN HEALTH HAZARDS, PREVENTION AND PROTECTION, EMERGENCY ACTION</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Human health hazards, prevention and protection, first aid</td>
<td>14</td>
</tr>
<tr>
<td>4.1.1 Information for physicians</td>
<td>14</td>
</tr>
<tr>
<td>4.1.2 Health surveillance advice</td>
<td>14</td>
</tr>
<tr>
<td>4.2 Explosion and fire hazards</td>
<td>14</td>
</tr>
<tr>
<td>4.2.1 Explosion hazards</td>
<td>14</td>
</tr>
<tr>
<td>4.2.2 Fire hazards</td>
<td>14</td>
</tr>
<tr>
<td>4.3 Storage</td>
<td>15</td>
</tr>
<tr>
<td>4.4 Transport</td>
<td>15</td>
</tr>
<tr>
<td>4.5 Spillage</td>
<td>15</td>
</tr>
<tr>
<td>4.6 Disposal</td>
<td>15</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5. HAZARDS FOR THE ENVIRONMENT AND THEIR PREVENTION</td>
<td>16</td>
</tr>
<tr>
<td>6. SUMMARY OF CHEMICAL SAFETY INFORMATION</td>
<td>17</td>
</tr>
<tr>
<td>7. CURRENT REGULATIONS, GUIDELINES, AND STANDARDS</td>
<td>20</td>
</tr>
<tr>
<td>7.1 Exposure limit values</td>
<td>20</td>
</tr>
<tr>
<td>7.2 Specific restrictions</td>
<td>20</td>
</tr>
<tr>
<td>7.3 Labelling, packaging, and transport</td>
<td>20</td>
</tr>
<tr>
<td>7.4 Waste disposal</td>
<td>20</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>22</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Environmental Health Criteria (EHC) monographs produced by the International Programme on Chemical Safety include an assessment of the effects on the environment and on human health of exposure to a chemical or combination of chemicals, or physical or biological agents. They also provide guidelines for setting exposure limits.

The purpose of a Health and Safety Guide is to facilitate the application of these guidelines in national chemical safety programmes. The first three sections of a Health and Safety Guide highlight the relevant technical information in the corresponding EHC. Section 4 includes advice on preventive and protective measures and emergency action; health workers should be thoroughly familiar with the medical information to ensure that they can act efficiently in an emergency. Within the Guide is a Summary of Chemical Safety Information which should be readily available, and should be clearly explained, to all who could come into contact with the chemical. The section on regulatory information has been extracted from the legal file of the International Register of Potentially Toxic Chemicals (IRPTC) and from other United Nations sources.

The target readership includes occupational health services, those in ministries, governmental agencies, industry, and trade unions who are involved in the safe use of chemicals and the avoidance of environmental health hazards, and those wanting more information on this topic. An attempt has been made to use only terms that will be familiar to the intended user. However, sections 1 and 2 inevitably contain some technical terms. A bibliography has been included for readers who require further background information.

Revision of the information in this Guide will take place in due course, and the eventual aim is to use standardized terminology. Comments on any difficulties encountered in using the Guide would be very helpful and should be addressed to:

The Director
International Programme on Chemical Safety
World Health Organization
1211 Geneva 27
Switzerland
THE INFORMATION IN THIS GUIDE SHOULD BE CONSIDERED AS A STARTING POINT TO A COMPREHENSIVE HEALTH AND SAFETY PROGRAMME
1. PRODUCT IDENTITY AND USES

1.1 Identity

Common name: Cresols (o, m, p-isomers)

Common structure:

\[
\begin{align*}
&\text{o-cresol} & &\text{m-cresol} & &\text{p-cresol} \\
&\begin{array}{c}
\text{OH} \\
\text{CH}_3
\end{array} & &
\begin{array}{c}
\text{OH} \\
\text{CH}_3
\end{array} & &
\begin{array}{c}
\text{OH} \\
\text{CH}_3
\end{array}
\end{align*}
\]

Common synonyms:

- 2-methyl phenol
- 2-hydroxy toluene
- o-cresyllic acid
- o-kresol (German)

Chemical formula: \(\text{C}_7\text{H}_8\text{O} \)

Common trade name:
- cresylic acid (mixture of the three isomers)
- cresylic acids (mixture of phenols)
- tricresol (mixture of o, m, p- isomers)
- dicresol (mixture of m- and p- isomers)
- lysol (mixture of 60 cresol: 40 soap)

CAS registry number:

- 95-48-7 (o-cresol)
- 109-39-4 (m-cresol)
- 106-44-5 (p-cresol)

RTECS number:

- G06300000
- G06125000
- G06475000
PRODUCT IDENTITY AND USE

Relative molecular mass: 108.14

Conversion factors:
- air at 25 °C: 1 ppm = 4.42 mg/m³
 1 mg/m³ = 0.23 ppm
- water: 1 ppm = 1 mg/litre
- solid or semi-solid: 1 ppm = 1 mg/kg

1.2 Physical and Chemical Properties

Cresols are isomeric substituted phenols with a methyl substituent at one of the o-, m-, or p- positions relative to the OH-group. Physically, they are white crystalline solids or yellowish liquids with a strong phenol-like odour. The compounds are highly flammable, moderately soluble in water and soluble in ethanol, ether, acetone, or alkali hydroxides. Chemically, these alkylphenols undergo electrophilic substitution reactions at the vacant o- or p- positions or undergo condensation reactions with aldehydes, ketones, or dienes.

Physical and chemical data on cresols are presented in the Summary of Chemical Safety Information (section 6).

1.3 Analysis

Cresols can be detected and quantified in a number of environmental media and biological samples. The most commonly used methods for determining the presence of cresols are gas chromatography-mass spectrophotometry (GC-MS) and high-performance liquid chromatography (HPLC). Sample detection limits are 1.33 ng/m³ for air; 4-10 μg/litre for water; 300 μg/kg for soil and 0.5-1.0 mg/litre for urine. Air odour thresholds were reported to be 1.4-22, 0.007-1.2, and 0.002-0.04 mg/m³ for o-, m-, and p-cresol, respectively.

1.4 Production and Uses

Cresols and cresol derivatives occur naturally in the oils of various flowering plants and trees, such as jasmine, easter lily, yucca, conifers, oaks, and sandalwoods. p-Cresol is found in the urine of animals and humans. Commercially, cresols are produced as by-products in the...
fractional distillation of crude oil and coal tars and in coal gasification. They are also formed as by-products during the combustion of wood, coal, and cigarettes. The various isomers can be manufactured by the methylation of phenols, toluene sulfonation and alkaline hydrolysis, or the hydrolysis of 2-isopropyltoluene or alkaline chlorotoluene. Worldwide production is not known; annual production in the USA for 1990 was reported to be 38.3 million kg.

Cresols have a wide variety of uses as solvents, disinfectants, or intermediates in the preparation of numerous products. They are commonly used in the production of fragrances, antioxidants, dyes, pesticides, and resins. In addition, p-cresol is used in the production of lubricating oils, motor fuels, and rubber polymers, while m-cresol is also used in the manufacture of explosives.
2. SUMMARY AND EVALUATION

2.1 Environmental Fate

Environmental transport of cresols occurs through the vapour phase of the atmosphere and from the atmosphere to surface water and soil by rain-scavenging. Because of their volatilization, binding to sediment, and biodegradation, only small amounts of cresols are found in water. In soils, cresols are slightly to highly mobile, depending on the K_{oc} value of the soil. Cresols have been detected in groundwater; therefore leaching does occur in soil.

2.2 Exposure

Exposure to cresols can occur through air, water, or food. The median air concentration of o-cresols was $1.578 \, \mu g/m^3$ (0.359 ppb) for 32 source dominated sites in USA. In the USA, surface water concentrations ranged from below detection limits to $77 \, \mu g/litre$. Levels of $204 \, \mu g/litre$ were reported in Japan in a river polluted from industrial effluents. Concentrations as high as $2100 \, \mu g/litre$ for o-cresol and $1200 \, \mu g/litre$ for mixed m- and p-cresols have been detected in waste waters. Concentrations of all three isomers in groundwater from undefined sources ranged from below detection limits to $100 \, mg/litre$. Rainwater concentrations ranged from 240 to $2800 \, ng/litre$ for o-cresol and 380 to $2000 \, ng/litre$ for p- and m-cresol combined. Cresols have been detected in foods and beverages. Concentrations in spirit beverages ranged from 0.01 to 0.2 mg/litre. The amount in tobacco smoke was $75 \, \mu g/85-mm$, non-filter, American cigarette. The general population can be exposed to cresols through air inhalation, drinking-water, food, and beverage ingestion, and dermal contact. In general, the lack of adequate monitoring data makes the quantitative estimate of daily intakes of cresol from these sources impossible. Occupational exposure levels in air as high as $5.0 \, mg/m^3$ have been reported.

2.3 Uptake, Metabolism, and Excretion

Cresols are absorbed across the respiratory and gastrointestinal tracts and through the skin. The rate and extent of absorption of cresols have not been studied specifically; however, studies have shown that both gastrointestinal and dermal absorption are rapid and extensive. Cresols are distributed to
all the major organs. The primary metabolic pathway for cresols is conjugation with glucuronic acid and inorganic sulfate. Minor metabolic pathways for cresols include hydroxylation of the benzene ring and side-chain oxidation. The main route of elimination of cresols from the body is renal elimination in the form of conjugates.

2.4 Effects on Organisms in the Environment

Observations on microorganisms, invertebrates, and fish are available and show that cresols may represent a risk to non-mammalian organisms at point sources with high cresol concentrations, but not in the general environment.

2.5 Effects on Experimental Animals and In Vitro Test Systems

Acute poisoning with cresol vapours is unlikely due to the low vapour pressure of these compounds. Mean lethal concentrations of cresols for rats have been reported to be 29 mg/m3 for o- and p-cresols and 58 mg/m3 for m-cresols. Oral LD$_{50}$ values in rats have been reported to be 121, 207, and 242 mg/kg body weight for o-, p-, and m-isomers, respectively. Inter-species comparisons show that all three isomers are more toxic for mice than for rats and that toxicity increases with concentration. Systemic toxicity and death can result from dermal exposure. Dermal LD$_{50}$ values in rabbits were 890, 2830, 300, and 2000 mg/kg body weight for o-, m-, p-, and mixed cresols, respectively. In rats, dermal LD$_{50}$ values were 620, 1100, 750, and 825 mg/kg body weight for o-, m-, p-, and dicresol, respectively.

Cresols are highly irritating to the skin and eyes of rabbits, rats, and mice. Short-term exposure to inhaled mixtures of o-cresol aerosol and vapours resulted in irritation of the respiratory tract, small haemorrhages in the lung, body weight reduction, and degeneration of heart muscle, liver, kidney, and nerve cells. Short-term (28-days) oral exposure to approximately 800 mg/kg body weight per day and above resulted in reduced body weights, organ weight changes, and histopathological changes in the respiratory and gastrointestinal tracts of rats. In mice similarly exposed to 1500 mg/kg body weight, more severe effects were reported and, at the highest concentrations, death resulted from exposure to o-, and m-, and p-cresols, but not from exposure to mixtures of the isomers.
Exposure of rats to vapours of o-, m-, or p-cresol for up to 4 months resulted in weight loss, reduced locomotor activity, inflammation of nasal membranes and skin, and changes in the liver. Oral exposures of up to 13 weeks of mice, rats, and hamsters resulted in mortality, tremors, reduced body weights, haematological effects, increased organ weights, and hyperplasia of nasal, and forestomach epithelium.

Oral and inhalation exposures to cresol isomers have resulted in lengthened estrus cycles, and histopathological changes in the uterus and ovaries of rats and mice. No adverse effects were observed on spermatogenesis in rats or mice. Mild fetotoxic effects have been reported in rats and rabbits exposed to o-, and p-cresols, but only minor treatment-related developmental effects have been reported. Some evidence of genotoxicity has been reported in in vitro studies with o- and p-cresols but not m-cresol. No positive results were obtained in in vivo studies; however, some evidence of promotive activities in skin has been reported. No studies of carcinogenicity have been reported for any cresol isomers.

2.6 Effects on Humans

Ingestion of cresols results in burning of the mouth and throat, abdominal pain, and vomiting. Target organs of ingested cresols in humans are the blood and kidneys and effects on the lungs, liver, heart, and central nervous system have also been reported. In severe cases, coma and death may result. Dermal exposure has been reported to cause severe skin burns, scarring, systemic toxicity, and death.

Occupational exposure to cresols usually results from dermal contact. Acute exposures have resulted in severe burns, anuria, coma, and death. Very few data are available regarding the reproductive effects of cresols and no data are available on carcinogenicity in humans.
3. CONCLUSIONS

3.1 Human Health

Cresols, at concentrations normally found in the environment, do not pose any significant risk for the general population. However, the potential for adverse health effects exists for specific subpopulations and under conditions of high exposure.

No information is available regarding the effects of long-term exposure to cresols. Thus, information to assess the carcinogenic hazard of cresols is inadequate. On the basis of the results of short-term studies, an NOAEL of 50 mg/kg body weight per day has been identified for all three isomers of cresols. Applying an uncertainty factor of 300 was recommended as follows: 10 to account for interspecies variation; 10 to account for the lack of long-term toxicity studies and possible genotoxic and promoting activity of cresols; and 3 to account for intraspecies variation based on the rapid and complete metabolism. Thus, an ADI of 0.17 mg/kg body weight per day can be developed for cresols.

\[
\text{NOAEL} = 50 \text{ mg/kg per day} \\

\text{Uncertainty factor} = 300 \\

\text{ADI} = 0.17 \text{ mg/kg body weight per day.}
\]

3.2 Environment

Observations on microorganisms, invertebrates, and fish show that cresols may present a risk for non-mammalian organisms at point sources with high cresol concentrations, but not in the general environment.
4.1 Human Health Hazards, Prevention and Protection, First Aid

The human health hazards associated with certain types of exposure to cresols, together with preventive and protective measures and first aid are shown in the Summary of Chemical Safety Information (section 6).

4.1.1 Information for physicians

High oral or dermal exposure to cresols may rapidly prove fatal. Exposed patients should be decontaminated and treated symptomatically. Maintenance of breathing and circulation is necessary in cases of severe poisoning. There is no specific antidote. Treatment of local lesions and systemic intoxication is symptomatic.

Monitor blood, liver, and kidney functions. Call the nearest Poisons Information Centre for further advice.

4.1.2 Health surveillance advice

The blood of individuals exposed to cresols on a frequent or long-term basis should be examined for haematological changes. Periodic medical examinations should also include testing of kidney and liver functions, and skin and eye sensitivity or irritation. Special attention should be given to pregnant females and females of child-bearing age.

4.2 Explosion and Fire Hazards

4.2.1 Explosion hazards

The vapours of cresols may become explosive when exposed to heat or flames; the flash-point is approximately 80 °C. Cylinders containing liquid may explode in heat.

4.2.2 Fire hazards

Highly flammable and volatile cresols can cause severe toxic effects, including burning and irritation of the skin, eyes, and nasal membranes.
4.3 Storage
Cresols should be stored in well-sealed containers in cool, well-ventilated areas, away from sources of ignition.

4.4 Transport
Transport should be in well-sealed, protective containers which should be labelled indicating the high flammability and corrosive and poisonous nature of the substance.

4.5 Spillage
In the case of spillage, wear protective gloves and glasses and avoid direct contact with skin. Evacuate and ventilate the area. Absorb leaking liquid in sand, earth, or inert material, and deposit in sealed containers. Collect powdered material in the most convenient and safe manner and deposit in a sealable container.

4.6 Disposal
Dispose of as hazardous waste.
5. HAZARDS FOR THE ENVIRONMENT AND THEIR PREVENTION

Cresols are present in the environment in the air, water, and soil, and may undergo rapid chemical and biological transformation. It is unlikely that cresols bioaccumulate in the environment or food chain.

Cresols are moderately toxic for aquatic bacteria, algae, and protozoa. The acute toxicity of cresols for invertebrates is low to moderate. Cresols have also been shown to be toxic for fish and birds.

Contamination of the environment can be reduced by controlling emissions from industrial point sources. In addition, proper methods for the storage, transport, and waste disposal of cresols are recommended to reduce the incidence of accidental releases of cresols into the environment.
6. SUMMARY OF CHEMICAL SAFETY INFORMATION

This summary should be easily available to all health workers concerned with, and users of, cresols. It should be displayed at, or near, entrances to areas where there is potential exposure to cresols, and on processing equipment and containers. The summary should be translated into the appropriate language(s). All persons potentially exposed to the chemical should also have the instructions in the summary clearly explained.

Space is available for insertion of the National Occupational Exposure Limit, the address and telephone number of the National Poison Control Centre, and local trade names.
SUMMARY OF CHEMICAL SAFETY INFORMATION

Cresols (o, m, p isomers)

C₇H₈O

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>o-cresol</th>
<th>m-cresol</th>
<th>p-cresol</th>
<th>Other characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative molecular mass</td>
<td>108.14</td>
<td>108.14</td>
<td>108.14</td>
<td>White crystalline solid or yellowish liquid;</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>30.94</td>
<td>12.22</td>
<td>34.74</td>
<td>soluble in ethanol, ethyl ether, acetone,</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>191.0</td>
<td>202.32</td>
<td>201.94</td>
<td>benzene, aqueous alkali hydroxides; phenolic-</td>
</tr>
<tr>
<td>Water solubility (25 °C)</td>
<td>25.95</td>
<td>22.70</td>
<td>21.52</td>
<td>like odour, highly corrosive, and strong</td>
</tr>
<tr>
<td>Relative density (25 °C)</td>
<td>1.135</td>
<td>1.030</td>
<td>1.154</td>
<td>irritant; highly reactive with metal (steel,</td>
</tr>
<tr>
<td>Vapour density</td>
<td>3.7</td>
<td>3.72</td>
<td>3.72</td>
<td>chromium, aluminum) and their alloys;</td>
</tr>
<tr>
<td>Vapour pressure (25 °C)</td>
<td>0.31</td>
<td>0.143</td>
<td>0.13</td>
<td>soluble in water</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Ignition temperature (°C)</td>
<td>558</td>
<td>558</td>
<td>558</td>
<td></td>
</tr>
</tbody>
</table>

Hazard/symptom

Prevention/protection

<table>
<thead>
<tr>
<th>Hazard/symptom</th>
<th>First aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin: Irritant, corrosive; severe burns and scarring</td>
<td>Protective clothing, gloves, and shoes Wash immediately with large amount of water; remove contaminated clothing; obtain medical care</td>
</tr>
<tr>
<td>Eyes: Corrosive, strong irritant; lacrimation, redness</td>
<td>Safety glasses Wash with water continuously for 30 min; obtain medical care immediately</td>
</tr>
<tr>
<td>Inhalation: Irritation and burning of nasal membrane; burning in nose and throat</td>
<td>Adequate ventilation, use of respirators</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ingestion: Irritation and burning of mouth, throat, and gastrointestinal tract; vomiting</td>
<td>Store in properly sealed containers; avoid contact with food or beverages</td>
</tr>
<tr>
<td>Environment: Toxic for aquatic and terrestrial organisms</td>
<td>Avoid environmental releases from industrial processes and accidental spills</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spillage</th>
<th>Storage</th>
<th>Fire and explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuate and ventilate area; collect leaking liquid in sealed containers; absorb liquid in earth, sand, or inert material; wear protective clothing</td>
<td>Store away from food and incompatible materials (metals) in well-labelled containers and well-ventilated areas; sources of ignition/open flames, and smoking, must be prohibited</td>
<td>Flash-point 81-86 °C; may be explosive in reactions with metals; do not use near open fires; poisonous gas may be produced in a fire</td>
</tr>
</tbody>
</table>
The information in the table on p. 21 has been extracted from the International Register of Potentially Toxic chemicals (IRPTC) legal file.

The reader should be aware that regulatory decisions about chemicals taken in a certain country can only be fully understood in the framework of the legislation of that country. Furthermore, the regulations and guidelines of all countries are subject to change and should be verified with the appropriate regulatory authorities before application.

7.1 Exposure Limit Values
Values for exposure limits are given in the table on page 21.

7.2 Specific Restrictions
Approved in the USA for use as a pesticide.

7.3 Labelling, Packaging, and Transport
In the USA, cresols (all isomers) have been designated as a hazardous substance R1987 and must be managed according to federal and/or state hazardous waste regulations.

7.4 Waste Disposal
In the USA, any sealed waste must be listed as hazardous waste, subject to handling, transport, storage, and disposal requirements, specified by CERLA, and the Clean Waste Act (effective date 1991). These regulations apply to all discharges.

As a commercial chemical, cresols must be identified as “toxic waste”, subject to restrictions and disposal regulations, permitting, and notification (effective date 1989).

Any discharge into surface waters requires a permit under the Clean Water Act (effective date 1987).
<table>
<thead>
<tr>
<th>Medium</th>
<th>Specification</th>
<th>Country/organization</th>
<th>Exposure limit description</th>
<th>Value</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>occupational</td>
<td>Argentina</td>
<td>8-h TWA</td>
<td>22 mg/m³</td>
<td>May 1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Czech Republic</td>
<td>TWA</td>
<td>20 mg/m³</td>
<td>1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CLV</td>
<td>40 mg/m³</td>
<td>1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germany</td>
<td>8-h TWA</td>
<td>22 mg/m³</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-min STEL</td>
<td>44 mg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Japan</td>
<td>TWA</td>
<td>22 mg/m³</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Russian Federation</td>
<td>TWA</td>
<td>0.5 mg/m³</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CLV</td>
<td>1.5 mg/m³</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>United Kingdom</td>
<td>8-h TWA</td>
<td>22 mg/m³</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td>TWA</td>
<td>22 mg/m³</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ACGIH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>ambient</td>
<td>Russian Federation</td>
<td></td>
<td>0.02 mg/m³</td>
<td>1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.028 mg/m³</td>
<td></td>
</tr>
</tbody>
</table>

a TWA: time-weighted average; CLV: ceiling value; STEL: short-term exposure limit.

b Refers to o-, m-, p-cresols unless otherwise specified.
BIBLIOGRAPHY

CEFIC (1979) *Transport emergency cards for individual products*. Chemical Industries Association Ltd.

Other HEALTH AND SAFETY GUIDES available:
(continued from inside front cover)

Phosphine (No. 28, 1989)
Phosphorus trichloride and phosphorus oxycarbide (No. 35, 1989)
Polybrominated biphenyls (PBBs) (No. 83, 1993)
Polychlorinated biphenyls and polychlorinated terphenyls (PCBs and PCTs) (No. 68, 1992)
Propachlor (No. 77, 1992)
Propylene oxide (No. 15, 1988)
Pyrrrolizidine alkaloids (No. 26, 1988)
Quintozene (No. 23, 1988)
Resmethrins (No. 25, 1989)
Rotenone (No. 73, 1992)
Tecnazene (No. 12, 1988)
Tetrachloroethylene (No. 10, 1987)
Tetradifon (No. 11, 1987)
Tetramethrin (No. 31, 1989)
Tri-allate (No. 89, 1994)
Trichlorfon (No. 66, 1991)
Trimellitic anhydride (No. 71, 1992)
Vanadium (No. 42, 1990)
Vinylidene chloride (No. 36, 1989)
Warfarin (No. 96, 1995)
Price: Sw. fr. 5.-
Price in developing countries: Sw. fr. 3.50