
UC San Diego
Recent Work

Title
Air Pollution and Defensive Expenditures: Evidence from Particulate-Filtering Facemasks

Permalink
https://escholarship.org/uc/item/1bz8c9ms

Authors
Mu, Quan
Zhang, Junjie

Publication Date
2014-11-03

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1bz8c9ms
https://escholarship.org
http://www.cdlib.org/


Air Pollution and Defensive Expenditures: Evidence from
Particulate-Filtering Facemasks∗

Quan Mu†
Peking University

Junjie Zhang ‡
UC San Diego

November 1, 2014

Abstract

Rational individuals take preventive measures to avoid costly air pollution exposure. This
paper provides new empirical evidence of pollution avoidance that Chinese urban residents
purchase particulate-filtering facemasks against ambient air pollution. The analysis is con-
ducted with detailed and comprehensive data available on daily facemask purchases and air
quality that became available only very recently. We find that this transitory air pollution
avoidance behavior exhibits dynamics and nonlinearities, with significant increases of face-
mask purchases during extreme pollution episodes. The daily model shows that a 100-point
increase in Air Quality Index (AQI) increases the consumption of all masks by 54.5 percent
and anti-PM2.5 masks by 70.6 percent. The estimates from the aggregated model with flexible
pollution levels are used to simulate the benefit of air quality improvement. If 10 percent of
heavy pollution days (AQI≥201) were eliminated, the total savings on facemasks alone would
be approximately 187 million USD in China. This result suggests that reducing the occur-
rence of “airpocalypse” events represents a significant opportunity to improve social welfare.
Nevertheless, our estimates are likely only the lower bound of the benefit of clean air because
facemasks can only partially reduce the negative health effects of air pollution and the costs of
other avoidance behaviors are not included.
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1 Introduction

Air pollution is associated with negative health effects. In order to reduce costly pollution expo-

sure, rational individuals take compensatory activities to create a better personal environment for

themselves. Air pollution may be avoided in the first place. In the short run, individuals can ad-

just or cancel outdoor activities (Bresnahan, Dickie, and Gerking, 1997; Neidell, 2009). In the long

run, urban residents can sort into places with better air quality, taking into account a large array

of location attributes and individual preferences (Banzhaf and Walsh, 2008). If pollution exposure

is inevitable, individuals can mitigate the negative health effects through pharmaceutical or med-

ication usage (Deschenes, Greenstone, and Shapiro, 2012). These deliberate pollution-averting

activities reflect individuals’ trade-offs between the cost of the preventive measures and the ben-

efit of the reduced pollution exposure.1 Therefore, studying defensive expenditures of consumers

on pollution avoidance sheds light on the welfare implications of air pollution control policies.

This paper provides new empirical evidence of transitory avoidance behavior by investigat-

ing the relationship between residential demand for particulate-filtering facemasks and ambient

air pollution. Facepiece respirators remove particulate matter (PM) out of the air to protect the

respiratory system.2 If outdoor activities cannot be avoided, wearing facemasks with appropriate

filters is arguably the most cost-effective way, and possibly the only way, to limit contact with

harmful particulates. Existing studies on the use of facemasks against PM pollution are mostly

related to occupational hazard, especially in developed countries, which has an inelastic demand

due to mandatory workplace-related health and safety regulations (NIOSH, 1995; CDC, 1998). In

comparison, the popularity of anti-PM facemasks among urban residents in developing countries

to defend against airborne PM pollution, especially PM2.5, is a recent phenomenon. Despite of

the importance of these masks as a cost-effective measure to avoid pollution, we are not aware of

previous studies on the residential demand for facemasks for pollution avoidance.

Our empirical study focuses on China because of the severity of air pollution and the popu-

1There has been a growing empirical literature on pollution avoidance besides air pollution. For water pollution,
households install water filters or purchase bottled water in response to drinking water violations (Smith and Desvous-
ges, 1986; Graff Zivin, Neidell, and Schlenker, 2011). Other notable examples of pollution avoidance includes reducing
fish consumption in response to FDA mercury advisories (Shimshack, Ward, and Beatty, 2007) and adaptation to cli-
mate change by changing residential energy consumption (Deschenes and Greenstone, 2011).

2For example, N95, the most popular model approved by the National Institute for Occupational Safety and Health
(NIOSH, 1995), filters at least 95 percent of particles.
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larity of facemask usage. The 2010 Global Burden of Disease Study reveals that air pollution is

the 4th leading health risk factor for Chinese people (Yang et al., 2013). Air pollution is associ-

ated with elevated rates of mortality, which causes between 350,000 and 500,000 premature deaths

each year in China (Chen et al., 2013b). The main driver of air pollution is particulate matter.

A recent quasi-experimental study suggests that total suspended particulates (TSPs) reduce life

expectancies of residents in North China by over five years (Chen et al., 2013a). To reduce air

pollution exposure, the use of facemasks, especially those against PM2.5, has gained popularity

since a series of “airpocalypse” events in 2011.3 Furthermore, the information disclosure of fine

particulates since 2013 has incentivized urban residents to purchase anti-PM2.5 facemasks. These

particulate-filtering masks are more specialized and thus more expensive than those traditionally

used by Chinese people for warmth in winter.

The analysis is conducted with detailed and comprehensive data available on daily facemask

purchases, air quality, and weather at the city level across China. The facemask purchase data

come from two e-commerce websites in the Alibaba Group: Taobao.com and Tmall.com. These

two websites dominate China’s online shopping activities and are the main retail channels for

anti-PM2.5 facemasks. The air pollution data, web-scraped from the Ministry of Environmental

Protection (MEP), are the first batch of PM2.5 pollution information disclosed since China enacted

the new air quality standards in 2013. To address the concern that air pollution data may be

manipulated by local authorities (Ghanem and Zhang, 2014), we obtained the PM2.5 data from

the US Embassy in five provincial capital cities for robustness checks. We also collected rele-

vant weather variables at the station level from the National Climatic Data Center under the US

National Oceanic and Atmospheric Administration (NOAA). Combining all of the above infor-

mation, the final panel data set covers 190 cities at the daily level from January 2013 to April 2014,

which contains a rich set of variables that allow us to apply flexible econometric specifications.

We use the day-to-day fluctuations in air quality to identify its marginal effect on facemask

expenditures. We focus on particulate respirators that are mainly used to filter PM. These face-

masks, especially those labeled as anti-PM2.5, are less likely being used on a daily basis to keep

warm or prevent spreading germs because of the high price and the special design. Nevertheless,

3Airpocalypse is a newly coined term to informally describe a severely hazy day in China. In this paper, we use it
to describe a day with Air Quality Index above 201.
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one major concern is that some factors that are correlated with short-run air pollution–especially

weather and epidemic–may also affect facemask purchases. Therefore, we include potentially con-

founding weather variables such as temperature, humidity, wind speed, or wind direction. Lack

of epidemic data, various fixed effects to control for the impact of disease on mask use. In partic-

ular, our preferred specification uses the city-by-year-by-month-by-week fixed effect (City-Week

FE), which allows us to flexibly control for unobservable shocks to facemask demand that varies

across cities and over weeks. With these covariates and fixed effects, the high daily variation in air

pollution provides a possible source of exogenous variation. We have also conducted extensive

robustness checks to address some other potential threats to identification.

We find a statistically significant relationship between daily air quality and anti-PM facemask

purchases. Individuals respond to the pollution information with lags up to four days; this lag is

likely caused by dynamic avoidance behavior or due to the lags in the online transaction recording

system. The preferred model shows that a 100-point increase in Air Quality Index (AQI) boosts to-

tal purchases of anti-PM2.5 facemasks by 70.6 percent and total purchases of all facemasks by 50.4

percent. Furthermore, we use air quality levels to flexibly control for the nonlinear response to air

pollution: the avoidance behavior is likely more pronounced during extreme pollution episodes.

We aggregate the model to both the weekly and monthly level to cancel the dynamic avoidance

behavior. Our preferred model shows that, relative to the days with excellent air quality (AQI ≤

50), one extra heavily polluted day (201≤AQI≤ 300) increases monthly anti-PM2.5 facemask pur-

chases by 11.1, and 7.6 percent on the purchases of all facemasks. When AQI rises to the severely

polluted level (AQI ≥ 301), the semi-elasticity jumps to 29.2 and 23.4 percent, respectively. These

results are robust to wide a variety of specification tests.

Since facemasks protect against the effects of ambient air pollution, the value of marginal

changes in air pollution can be measured by the increased expenditures on facemasks. With-

out a market price for air quality, defensive expenditures provide one way to bound the economic

cost of air pollution (Courant and Porter, 1981; Harrington and Portney, 1987; Bartik, 1988). Using

this approach, our model can quantify the cost of one-day air pollution in China. A back-of-the-

envelope calculation shows that the cost of one severely polluted day (AQI ≥ 301) would be 610

thousand Yuan, or about 100 thousand USD, in China. Furthermore, we use the estimates from the

monthly aggregated model to simulate the benefit of hypothetical air pollution control policies. If
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10 percent of both these heavily and severely polluted days were eliminated by any mixture of air

pollution control policies, the total savings for China would be 1.146 billion Yuan, or about 187

million USD.

The remainder of the paper is organized as follows. Section 2 introduces the empirical back-

ground to the report. Section 3 describes the data sources and summary statistics. Section 4

presents the empirical strategy of the paper. Section 5 reports empirical results and robustness

checks. Section 6 discusses the policy implications from the results. Section 7 concludes the paper.

2 Empirical Background

2.1 Efficacy of anti-PM facemasks

Particulate matter is the main driver of air pollution in China: PM10 and PM2.5 caused 36% and

59% of pollution days in 2013, respectively. Long et al. (2014) estimate that 1.322 billion people, or

98.6% of the total population, are exposed to PM2.5 above the WHO’s daily guideline for longer

than half a year. Particulate matter (PM), especially fine particulate matter, has deleterious effects

on health (Pope III and Dockery, 2013; Dominici, Greenstone, and Sunstein, 2014). Both short-run

time series analysis and chronic exposure cohort studies have found strong correlation between

PM levels and elevated morbidity and mortality (Brunekreef and Holgate, 2002; Englert, 2004;

Pope III and Dockery, 2006). Among the sub-indicators of PM (PM2.5, PM10, and TSP), PM2.5 is of

particular harm to public health in terms of both toxicity and duration. Fine particulates can reach

deep into the body where it can cause harm to both respiratory and cardiovascular systems.

Wearing particulate-filtering facemasks is a popular transitory defensive activity against PM

pollution. Particulate respirators have typically been used in polluted workplaces to protect the

health of workers. After an intense and prolonged period of pollution in Beijing in October 2011,

which was widely covered in national media, urban residents started to resort to anti-PM face-

masks to protect themselves against the ambient air pollution in the city. Since this pollution

event, the use of facemasks has increasingly gained popularity in Beijing and other heavily pol-

luted cities.

Particulate-filtering facepiece respirators remove particles out of the air to protect the respi-

ratory system. The regulation on the certification of the particulate filtering respirators was first
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promulgated by the NIOSH (1995). China established its own standards by the Standardization

Administration in 2009.4 Anti-PM facemasks are categorized by both the filtration efficiency and

the types of particulate matter they can filter. According to standards in different countries, fil-

tration efficiency ranges from over 80 percent to 100 percent. Individuals can choose the type of

facemasks based on the source and level of pollution. For instance, the N95 respirator, which is

the best-selling model in China, is designed to filter at least 95 percent of airborne particles but is

not resistant to oil.

It is also noteworthy that the performance of air-purifying facemasks hinges on various en-

vironmental and behavioral factors. For example, inappropriate fitting of facemasks can lead to

poor filtration performance (CDC, 1998). Therefore, field experiments are required to measure the

actual effect of facemasks on protecting health. There is only one known experiment that studied

the daily use facemasks against the ambient air pollution. This experiment in Beijing found that

wearing a typical anti-PM facemask reduced personal exposure to particulate matter by 96.6 per-

cent.5 As a result, in this experiment, facemasks were found to diminish the adverse effects of air

pollution on blood pressure and heart rate variability (Langrish et al., 2009).

2.2 Anti-PM facemask market

We study online purchases of anti-PM facemasks mainly because the online shopping data are

available with a fine spatial and temporal resolution. The data are obtained from the dominant

e-commerce websites in China: Taobao.com and Tmall.com, both under the Alibaba Group.6 Ac-

cording to the China Internet Network Information Center (CINIC), about 75 percent of Chinese

Internet users, or 474 million, visit Taobao.com on a daily basis and 50 percent, or 316 million, visit

Tmall.com. Taobao.com is a monopoly in the consumer-to-consumer (C2C) e-commerce space in

China with a market share of approximately 97 percent; it also boasts nearly a billion items for

sale while being one top 20 most-visited websites globally. Tmall.com is the largest player in the

business-to-consumer (B2C) e-commerce in China, accounting for about 50 percent of the market

4The existing technical standard is designed for filtering respirators at workplace. Up till now, the new standards
for daily facemask usage still at the drawing-board stage.

5The anti-PM facemask used in this experiment is 3M Dust Respirator 8812.
6Alibaba Group is a publicly traded company listed on the New York Stock Exchange (NYSE). Its initial public

offering (IPO) on September 19, 2014 is the largest in history.
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share.7

It is a natural concern that the unobservable facemask purchases from the brick-and-mortar

businesses (B&M) might impact the external validity of this study. We argue that e-commerce

prevails over B&M in the anti-PM facemask market for the following reasons. First, online prices

are normally lower than that of local stores due to lower fixed and operations costs, which explains

the tremendous growth of e-commerce in recent years.

Second, shipping and handling of online orders is both cheap and fast. Many online stores

offer free shipping and handling for certain number of purchases; otherwise they charge an addi-

tional fee of about 5-12 Yuan, or 1-2 USD.8 The shipping and handling time is between zero to four

days due to efficient levels of logistics in China. In particular, in many big cities, which tend to be

both population and pollution centers, a buyer can receive their order on the same day. Therefore,

shipping and handling is not an obstacle of online shopping.

Third, the major manufacturer of anti-PM facemasks relies on e-commerce as their main retail

channel. The 3M Company has the largest market share for anti-PM2.5 facemasks.9 The 3M Com-

pany does not have stand-alone B&M retail stores in China. Instead, it has two official flagship

stores with thousands of third-party distributors on Tmall.com and JD.com.

Fourth, Internet users are likely to be the majority of consumers, and online shoppers, for

anti-PM facemasks. Although these people account for about half of the Chinese population in

2013, or 618 million10, they live in the major cities with both high Internet penetration and AQI

information disclosure. Since major cities are the most likely to have high levels of pollution,

these consumers are the most likely to seek out particulate filtering masks. Those who have no

access to the Internet access tend to live in remote areas without AQI information. Since remote

areas usually have better air quality and lower income, these consumers are less likely purchase

facemasks. Furthermore, pollution information is mainly distributed online and concern about

fine particulates initially spread on the Internet before it became a national issue.

7All the daily visits and market share data are calculated based on the data from CINIC.
8The exchange rate of USD/RMB was 6.3125 in 2013 according to the China Statistical Yearbook.
9The market share data were collected from JD.com, the second largest e-commerce company in China.

10Source: China Internet Network Information Center. 2014. China Internet Development Report 32:5-7
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2.3 Air pollution information

Air pollution is a critical public health concern in Chinese cities. To reduce the negative health

impacts of air pollution, the Chinese government discloses air quality information to encourage

pollution avoidance. The Ministry of Environmental Protection of China (MEP) enacted the new

Ambient Air Quality Standard (GB3095-2012) and AQI Guidelines on February 29, 2012. The

switch from Air Pollution Index (API) to Air Quality Index (AQI) reflected two major revisions:

(1) PM2.5 and ozone were included as new criteria pollutants; and (2) the frequency of reporting

pollution increased from daily to hourly. In accordance with the new rules, to date, 190 cities

have been required to report hourly concentrations of six criteria pollutants: NO2, SO2, PM10,

PM2.5, CO, and O3. This real-time pollution information is then submitted to the MEP’s National

Environmental Monitoring Center (CNEMC) and where it is disclosed to the public on its official

website.

The MEP uses daily AQI, which is a normalized index transformed from the pollutant con-

centrations, to represent the overall air quality in a city. AQI ranges from 0 to 500, with a larger

number indicating poorer air quality. It is classified into six levels of air quality: excellent for AQI

≤ 50, good for 51 ≤ AQI ≤ 100, lightly polluted for 101 ≤ AQI ≤ 150, moderately polluted for 151

≤ AQI ≤ 200, heavily polluted for 201 ≤ AQI ≤ 300, and severely polluted for 301 ≤ AQI ≤ 500.

In addition, the AQI reporting also includes the primary pollutant, color codes, potential health

effects, and a cautionary statement for specific sensitive groups of people. Please see Figure A1 in

the Appendix for more details.

These air pollution reports are available from various channels. In addition to traditional me-

dia sources such as newspaper, TV, or radio, the Internet has become a major source of informa-

tion. First, the MEP has disclosed pollution information on its official website since 2000. Second,

real-time air quality information is also disseminated by all Internet portals, major websites, smart

phone apps, and social networks.11 These emerging new media sources cover about half of the

Chinese population with Internet access: one seventh of the population have smart phones, over

one third have Weibo accounts, and half have Wechat accounts.
11To name a few, air pollution information is disseminated by popular websites such as Mojichina http://www.

mojichina.com/, PM2.5 in http://www.pm25.in/, and World’s air quality http://aqicn.org/; well-known
smart phone apps such as Moji, Tianqitong, and Weather forecasting; social media such as Weibo and Wechat.
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Besides the official pollution reports, residents in five capital cities–Beijing, Shanghai, Guangzhou,

Chengdu, and Shenyang–have access to the air quality information disclosed by the US Embassy

in these cities. The US Embassy reports real-time AQI following the Air Quality Guidelines of

the US Environmental Protection Agency (US EPA). Please see Figure A1 in the Appendix for the

levels of US AQI. Both hourly PM2.5 concentrations and the corresponding US AQI are reported

on Twitter.12 Although Twitter is blocked in China, many third-party websites and smart phone

apps provide side-by-side comparisons of the MEP AQI and the US AQI. Therefore, the US AQI

has become a well-known alternative to the official air quality information.

3 Data

3.1 Data sources

We have assembled a unique data set that includes air pollution, facemask purchases, and weather

from various sources. The data set is aggregated to the city and daily level. The final data set

covers 190 cities from January 2013 to April 2014.

Facemask purchases. The data of daily facemask purchases, in the form of a normalized index,

come from Taobao.com and Tmall.com. The data include two mask indices: total mask index and

anti-PM2.5 mask index. A record of a purchase enters the index system only when the transaction

is complete, which is the time at which a consumer receives the package. The facemask data set

covers the period from January 2013 to April 2014 for 316 cities on a daily basis. Only several pre-

fectures in Tibet and some cities with small populations have no data. We also collected original

anti-PM2.5 facemask transaction records from 176 online stores on Taobao.com and Tmall.com.

These online stores are required to disclose transaction records of the most recent month on their

own home pages. Due to resource constraints, we only examine the sales data from late September

2013 to October 2013. Although 4,400 online stores sold anti-PM2.5 facemasks during that month,

our sample accounted for 70 percent of the total completed transactions. We aggregate the actual

sales data from the store level to the national level.

AQI. The station-level air pollution data were obtained from web-scraping the website of the

12The official twitter account names are: @BeijingAir for Beijing, @CGChengduair for Chengdu, @CGShanghaiair for
Shanghai, @CGGuangzhouair for Guangzhou, and @CGShenyangair for Shenyang.
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Ministry of Environment Protection (MEP) of China.13 MEP has established a national environ-

mental monitoring network that covers 988 ground-based monitoring stations in 190 cities by the

end of 2013, increasing from 74 cities at the beginning of the year. The data that we are using

are from January 2013 to April 2014. The data set provides hourly concentrations of six criteria

pollutants: NO2, SO2, PM10, PM2.5, CO, and O3. Since most people pay attention to AQI instead

of individual pollutant concentrations, we also generate daily AQI for each city from the hourly

station-level data.

Weather. The weather data come from the National Climatic Data Center under the National

Oceanic and Atmospheric Administration (NOAA) of the United States. The data set for our

analysis covers 499 weather stations, using measurements every three hour from 2013 to 2014.

Weather variables are potentially confounding factors for anti-PM facemask purchases. The vari-

ables used in this paper include visibility (in statute miles), temperature (in Fahrenheit), dew point

(in Fahrenheit), wind speed (in miles per hour), and wind direction (in compass degrees). All of

these weather variables are daily averages at the city level, which matches the temporal and spa-

tial resolution of the mask indices.

3.2 Mask index

The actual sales data are not disclosed by the Alibaba Group, including Taobao.com and Tmall.com,

in order to protect its trade secrets. Instead, only the Taobao Index is released, which is converted

from actual sales, to facilitate its sellers and buyers to understand market trends. The mask index

is a part of the broader Taobao Index that synthesizes the online shopping activities on Taobao.com

and Tmall.com. The Taobao Index is arguably the most comprehensive indicator of China’s e-

commerce market. The data include two mask indices: total mask index and anti-PM2.5 mask

index. The total mask index measures the aggregated purchases of all kinds of facemasks in a city

during each day. The anti-PM2.5 mask index only includes the purchase record of those facemasks

labeled specifically as anti-PM2.5.

The mask index is monotonically increasing in actual sales but the functional form is unknown.

Therefore, we use the original sales records to recover this relationship. Because the transforma-

13The MEP does not provide the compiled data of air pollution in 2013. Even the information released online will be
retracted after a period of disclosure.
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tion is deterministic, in theory we only need two-day sales data to estimate a linear function. Of

course, with more data points, we can test for more specifications. Although we have only 14

days of actual sales data for anti-PM2.5 facemasks, they are sufficient to estimate the functional

relationship between actual sales and mask index.

The functional form is approximated by regressing overall sales on the mask index at the na-

tional level. The dependent variable is the quantity or total value of mask sales. We have tested

various specifications of the relationship, and it turns out that the linear function has the best

model fitting. Although our sample size is very small, the regression shows a strong relationship

between facemask sales and the mask index. In the linear model, the mask index can explain

99 percent of variations of facemask sales. The regression result is reported in Table 2. It shows

that a 1-unit mask index corresponds to 63 online orders or 566 Yuan expenditures on anti-PM2.5

facemasks.

3.3 Summary statistics

The distribution of air pollution levels and primary pollutants for all cities in 2013 is illustrated in

Figure 1. On average, only 17 percent of days attained level-1 air quality, which is considered as

“excellent” with an AQI below 50. In contrast, approximately 9 percent of days were categorized

as “heavily polluted” or “severely polluted” with an AQI over 200. The annual average AQI for

all Chinese cities was 98 in 2013, which falls in the domain of “good air quality” according to

MEP’s definition. The air pollution was mainly caused by particulate matters; combined, PM10

and PM2.5 were primary pollutants in 95 percent of pollution days.

The annual average concentration for PM10 was 108 μg/m3in 2013, which is over five times

the guideline recommended by the World Health Organization (WHO). The annual average con-

centration for PM2.5 was 68 μg/m3, which is close to seven times the WHO guideline. The spatial

distribution of particulate pollution is shown in Figure 2. Because particulates with sizes are

generated from different process, PM10 and PM2.5 exhibit distinct spatial characteristics, and gen-

erally, PM10 pollution is worse in northern China, while PM2.5 pollution is worse in the east.

The histogram of the mask index is illustrated in Figure 3. It demonstrates that both mask in-

dices are heavily skewed towards zero as the vast majority of observations are close to zero. How-
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ever, the tail is very long because of the effect of extreme pollution episodes. The daily average

mask index is 11 for all facemasks, and 4 for anti-PM2.5 facemasks, which implies approximately

4,282 and 3,694 orders at the city level.

The spatial distribution of mask index at the prefecture level is depicted in Figure 4. This figure

shows that both the total mask index and anti-PM2.5 mask index cover most prefectures across the

31 provinces of China. The demand for anti-PM facemasks is mainly from a number of larger cities

and the spatial pattern of the mask index is quite close to that of the PM2.5 distribution in Figure

2, which suggests a link between fine-particulate pollution and mask purchases. The summary

statistics of other variables used in the empirical analysis are reported in Table 1.

4 Empirical Model

4.1 Motivation

We use a random-utility model to describe an individual’s decision as to whether to purchase

anti-PM facemasks. We assume that individual i chooses alternative j (purchasing facemasks or

outside good) at time t to maximize the following utility function:

uijt = v (xijt; θ) + εijt. (1)

In this form, xijt is a collection of variables that determine mask purchases such as ambient air

quality, facemask attributes, and individual characteristics. The unobservable error term is desig-

nated by εijt. The deterministic part of the utility function is designated by v() and parameterized

by θ. It is specified as a linear function such that vijt = x′ijtθ.

Due to the fact that pollution avoidance behaviors other than purchasing facemasks are not

observed in the data set, they are combined as the outside option and their utility is normalized to

zero. It is worth noting that there are other avoidance behaviors beside anti-PM facemasks, such

as canceling outdoor activities to reduce exposure to air pollution.

An individual chooses the alternative that maximizes her utility. Let dit designate the binary

choice variable with one indicating purchasing a facemask and zero indicating other behavior.
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The probability that individual i will choose option j is:

Pr (dijt = 1) = Eε1 (uijt ≥ uikt, ∀k) . (2)

If ε has i.i.d type-I extreme value distribution across i, j and t, the choice probability in Equation

(2) is represented by a multinomial logit model.

The random-utility model is used to motivate our empirical specification. Due to the fact that

we lack individual-level purchase data, we aggregate this model to the city level. Another justifi-

cation for aggregation is that the facemask data are characterized by extremely low frequency of

purchases and the data are dominated by the records of zero purchases in many cities and days.

Therefore, we aggregate the individual choice variable d to the city level y. Let m index city and

N designate its population size, total facemask purchases in the city

ymt =
N∑
i=1

dijt. (3)

The “law of rare events” applies in this aggregation (Cameron and Trivedi, 1998). Since the

population of a city is large, the total purchase of facemasks follows the Poisson distribution with

the following probability density function:

f (ymt|xmt) =
e−µmtµymt

mt

ymt!
, where µmt = exp (v (xmt; θ)) . (4)

In this form, µmt = E (ymt|xmt) is the mean of the Poisson distribution. Model (4) reflects the fact

that a Poisson model is consistent with the random-utility model in Equation (1). In particular, a

repeated logit model can be aggregated to a Poisson model, which is discussed by Hellerstein and

Mendelsohn (1993) and was used in an empirical study by Zhang (2011).

4.2 Empirical Strategy

The baseline specification considers a daily market for anti-PM facemasks at the city level. Our

goal is to estimate a demand function to evaluate the marginal effect of air pollution on mask pur-

chases. Based on the intuition of the Poisson model, we use the following exponential conditional
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expectation function (CEF):

lnE (ymt|xmt) = αamt + β′wmt + γ′zmt + δm + λmt. (5)

In this form, ymt is the mask index for city m at day t, amt is the ambient air quality, wmt is a vector

of weather variables, zmt includes other controls such as the day of week and whether it is holiday,

δm is a city fixed effect, and λmt represents various types of time fixed effects.

We run the above regression separately for the total mask index and anti-PM2.5 mask index. As

for ambient air quality, we use mean AQI values and AQI bins in different specifications. Weather

conditions can confound the relationship between air pollution and facemask purchases, so we

control for wind direction (DIR), wind speed (SPD), temperature (TEMP), and dew point (DEWP).

Dew point is mainly used as a proxy of humidity because the latter variable is not available in the

NOAA weather data set.

We include a rich set of fixed effects to control for unobservable determinants for facemask

purchases. We use city fixed effects (City FE) to control for city-level differences in facemask con-

sumption. City FE absorbs all factors that do not change over time such as culture and geographic

location. We also use three different time fixed effects to control for shocks that vary over time.

The first one is date fixed effect (Date FE) that controls for unobservable facemask price and at-

tributes that are common to all cities. Second, we use an interaction between province and date

fixed effects (Province-Date FE) to control for regional time trends in facemask purchases. Third,

we use the interaction of city and week fixed effects (City-Week FE) to control for time-varying

local demand shifters such as media coverage, information disclosure, online shopping trends,

or shipping costs. With City-Week FE, we also include day of week (DOW) and holiday (HOL)

dummies to control for the vagaries of daily patterns of online shopping.

Although our specification is motivated by the Poisson model, the consistent estimation of the

conditional mean parameters does not hinge on the Poisson distribution. As long as the expo-

nential CEF in Equation (5) is true, the Poisson pseudomaximum likelihood (PML) estimator is

robust to distributional misspecification (Cameron and Trivedi, 1998). Another advantage of this

approach is that the fixed-effect Poisson PML estimator is not subject to the incidental parameter

problem (Lancaster, 2002). This makes the nonlinear fixed effect model appealing to empirical

13



researchers. Furthermore, the dependent variable does not have to be count variables. Therefore,

although mask index is a continuous variable, it can be fully handled by PML. One concern of the

Poisson model is its assumption of the equality of the conditional variance and mean. However,

this concern can be mitigated by clustering standard errors.

We prefer the fixed-effect Poisson model because the dependent variable is significantly skewed

towards zero (see Figure 3), so the Poisson model fits the data very well. By comparison, the lin-

ear model fits poorly for the extremely skewed non-negative distribution and its estimation results

are associated with large standard errors. Log-linear model is another alternative.14 Because the

facemask purchase data have a large number of zeros, log-linear model usually adopts the form

of ln(ymt + k), which might be sensitive to the choice of constant k in some cases. Therefore, we

estimate both linear and log-linear models for robustness checks.

4.3 Threat to Identification

Our empirical strategy is to use the day-to-day fluctuation in air quality to identify the causal

effect of air pollution on defensive expenditures. To address the concern that the drivers of short-

run air quality may also affect facemask purchases, we control for weather, day of week, holiday,

city fixed effects, and various time fixed effects. After controlling for these important potentially

confounding variables, the high frequency variation in air pollution provides a possible source of

exogenous variations. However, there still remain some potential threats to identification.

First, facemask prices, including their shipping and handling costs, are not observable. If sell-

ers raise their prices during heavy pollution days, omitting prices is likely to underestimate the

marginal effect of air quality on facemask purchases. Since online stores set uniform prices nation-

wide, the unobservable prices can be controlled by the date fixed effect. Based on the limited price

14The alternative specification is motivated by the linear transformation of the multinomial logit model (Berry, Levin-
sohn, and Pakes, 1995). Let smj designate the market share for facemask type j and sm0 as the share of the outside
product:

smjt

sm0t
= exp

(
γamt + β′wmt + δm + λmjt

)
.

The corresponding log-linear CEF is

E
(
ln
smjt

sm0t

∣∣∣xmjt

)
= γamt + β′wmt + δm + λmjt. (6)

Please note that the two CEFs in (5) and (6) have different specifications. However, their coefficients can be interpreted
in a similar manner.
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information that was collected from JD.com, we find that sellers adjust price infrequently. If price

is not adjusted on a daily basis, using Date FE throws away many beneficial variations. Therefore,

we also test the week and month fixed effects. In case local discounts and promotions are offered,

the Province-Date or City-Week FE is used to control for potential local price differences.

Second, facemask attributes–such as filtration efficiency, comfort of wearing, or appearance–

affect facemask purchases but are not available. As air pollution gets worse, individuals are likely

to choose more efficient (and more expensive) facemasks. facemask attributes are also correlated

with weather since facemasks can be used to defend against cold air besides pollution. The di-

rection of the omitted variable bias (OVB) is unclear. Since our data only differentiate anti-PM2.5

facemasks and all facemasks, our strategy is to run separate regressions for each of these facemask

types. Through this method, we not only treat unobservable facemask attributes as a facemask-

specific constant, but also allow for heterogeneous coefficients for different facemasks.

Third, the aggregated consumer attributes at the city level–such as income, population, health

conditions, and culture–are either unobservable or, at best, available annually up until only 2012.

These variables are correlated with both air quality and facemask purchases. For example, air

quality affects the overall health conditions of the residents in a city, and the latter will also deter-

mine the demand for anti-PM facemasks. To address this concern, our preferred model controls

for the unobservable city attributes by the city-by-year-by-month-by-week (City-Week) FE and it

allows for the socioeconomic and demographic attributes to vary across cities and over weeks.

Fourth, defensive expenditures on facemasks produce joint benefits. Facemasks have been

widely used among the residents in Chinese cities before air pollution was a major concern. These

facemasks can be used to keep warm, prevent spreading germs, and even for fashion purpose.

However, for the purposes of facemask use other than air pollution, the anti-PM2.5 facemask is

not the first choice because it is more expensive than other facemasks, and the City-Week fixed

effect is able to control for the preference for facemask usage other than pollution avoidance for

each city in a very fine time scale.

The final concern is caused by the presence of other avoidance behaviors. In the short run,

individuals can cancel outdoor activities or change the location of activities to reduce pollution

exposure. In the long run, air pollution can cause residential sorting. These alternative avoidance

behaviors can be caused by air pollution and become substitutes for the purchases of anti-PM
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facemasks. However, these behaviors are unlikely to affect our estimation results for a number of

reasons. First, our model measures the reduced-form effect of air pollution on facemask purchases,

which has incorporated the impact of other avoidance activities. Second, since non-facemask

defensive behavior is a consequence of air pollution, its inclusion would raise the concern of “bad

control.” Third, our paper focuses on the short-run pollution avoidance, residential sorting can be

regarded as fixed especially as we include the City-Week FE. In addition, due to the tight system

of household registration in China, moving between cities is rather restricted. Fourth, in order to

cancel out the effect of rescheduling outdoor activities, we can aggregate the data to the weekly

or monthly level, and we also include the dummy for day of week as a proxy for the difficulty of

changing outdoor activities.

5 Results

5.1 Baseline model

Following the specification of the exponential CEF in Equation (5), we regress daily facemask

index on AQI, weather (WEA), holiday (HOL), day of week (DOW), and a set of city and time

fixed effects. Weather includes temperature (TEMP), dew point (DEWP), wind speed (SPD), and

wind direction (DIR). We test three combinations of fixed effects to control for city- and time-

varying unobservable information that may affect facemask purchases. The first one uses city and

date fixed effects. To allow for region-specific time trends, the second one uses city and province-

by-date fixed effects. The last one uses city-by-year-by-month-by-week fixed effect to control for

the unobservable information that varies across cities and over weeks.

We run separate regressions for the anti-PM2.5 mask index and the total mask index. The

model is estimated by means of the Poisson pseudo-maximum likelihood (PML) estimator. The

standard errors are clustered at the city, province-date, and city-week levels, respectively. For

the sake of brevity, we only report the estimate for AQI and suppress the others. The estimation

results are presented in Table 3 and three models yield similar estimates. Since City-Week FE is
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the most flexible one, we use it in the following baseline specification for the daily model:

lnE (Maskmt|xmt) =αAQImt + β1TEMPmt + β2SPDmt + β3DIRmt + β4DEWPmt

+ γ1HOLt + γ′2DOWt + City-Week FEmt.

The parameter of central interest is the coefficient for AQI, which is by divided by 100. With the ex-

ponential conditional expectation function, γ measures the semi-elasticity of facemask purchases

with respect to air quality:

α =
∂E (Maskmt|xmt)

∂AQImt

1

E (Maskmt|xmt)
. (7)

Therefore, the interpretation of the Poisson model is analogous to the semi-log linear model that

regresses the log of facemask purchases on air quality and other control variables.

The results of the preferred specification (columns (3) and (6) in Table 3) show that a 100-point

increase in the AQI results in 23 percent growth in the anti-PM2.5 mask index, and 21 percent in

the total mask index.15 Both estimates are statistically significant at 1 percent level. The results

demonstrate unambiguous evidence that individuals respond to increased air pollution by pur-

chasing more anti-PM facemasks. Specifically, the response is more pronounced for the facemasks

that can filter fine particulates. This result is intuitive due to the fact that PM2.5 is the main cause

of air pollution and individuals take preventive measures against the most harmful pollutant.

5.2 Dynamic avoidance behavior

The baseline model assumes that individuals only respond to contemporaneous pollution infor-

mation. However, it is likely that pollution information has a dynamic effect on avoidance behav-

ior (Graff Zivin and Neidell, 2009). We probe the intertemporal issue by including four successive

lags of AQI in the baseline model.16 It results in the following distributed-lag model:

lnE (Maskmt|xmt) =

4∑
k=0

αkAQImt−k + β′WEAmt + γ1HOLt + γ′2DOWt + City-Week FEmt.

15Please note AQI is scaled in hundreds of points for ease of interpretation.
16We also tested more lags of AQI, but they produce virtually identical estimates. Only up to four successive lags of

AQI are significant.
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The above model includes City-Week FE that corresponds to the preferred specification in the

previous section. The estimation result of the dynamic model is reported in Table 4. We find that

individuals respond to current and past pollution information with intertemporal effects up to

four-day lags.

We find that the contemporaneous AQI has the largest effect on facemask purchases. The

impact of the lagged information is tapering except for the fourth-day lag. This is likely caused

by the transaction recording system in the e-commerce sector. The shipping and handling time of

online orders usually ranges from zero to four days, depending on the distance and the choice of

parcel delivery company.17 A transaction is regarded as complete only when the buyer receives

the order. Therefore, the purchase record from online stores would enter the sales index four days

later. This explains the reason that the coefficient of the fourth-day lag of AQI is larger than many

other lags.

Accounting for the dynamics of avoidance behavior considerably increases the estimated semi-

elasticity. Column (1) in Table 4 shows that a 100-point increase in AQI leads the anti-PM2.5 mask

index to grow by 19.5 percent in the same day, 17.3 percent in the second day, 9.7 percent in the

third day, and 16.2 percent in the fourth day. The total semi-elasticity of anti-PM2.5 facemask

purchases with respect to AQI is 70.6 percent. For all facemasks, the total semi-elasticity is 54.5

percent as shown in column (2). These two effects are significantly larger than those estimated by

the baseline model in Table 3, suggesting that intertemporal avoidance behavior and transaction

recording system have non-trivial impacts on the results, though we are not able to identify the

effect for each cause separately.

Comparing the results in Tables 3 and 4, the contemporaneous effect of the static model is

only slightly higher than that of the dynamic model for both mask indices. This suggests that

the past pollution information is not fully embedded into the current AQI, and the static model is

likely to significantly underestimate individuals’ response to air pollution. Therefore, we prefer

the semi-elasticity estimated by the intertemporal model in Table 4 rather than the baseline result.

17The shipping and handling time of online orders could be longer than four days for the remote areas. As Beijing
accounts for 90 percent of facemask purchases and the majority of sellers are centered in the east or the north, the
delivery time of most online orders is within four days. Although we do not have accurate data to show the distribution
of delivery time, the promise of “zero to four days” is the common expectation of consumers.
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5.3 Temporal Aggregation

A typical online order contains several facemasks that can last for multiple pollution days. An

anti-PM mask can also be used multiple times as long as it is within its service time limits.18

Therefore, forward-looking consumers are less likely to purchase facemasks for a single pollution

day but for a certain period of pollution days. In addition, in anticipation of air pollution, indi-

viduals may store facemasks in advance because high-quality anti-PM facemasks sell out quickly

during extreme pollution episodes. In these cases, consumers smooth facemask purchases over

time. A daily model ignores the smoothing effect and it will under-estimate the effect of air quality

on facemask purchases.

We aggregate mask index to the weekly or monthly level to address these concerns. Temporal

aggregation also deals with the concern of dynamic avoidance behavior discussed in the previous

subsection. Let τ index week or month and bar represents average. The aggregate model re-

gresses weekly or monthly facemask index on average AQI, average weather, number of holidays

(#HOLs), and city-by-year-by-month (City-Month FE) or city-by-year (City-Year FE) fixed effect

such that:

lnE

(∑
t∈τ

Maskmt|xmτ

)
=γAQImτ + β′WEAmτ + γ#HOLsτ + City-Month/Year FEmτ .

The model is estimated by Poisson PML and the standard errors are clustered at the city-month

or city-year level. We abuse notation for the parameters in the above equation. Additionally,

it is noteworthy the parameters of the aggregate model are not directly comparable to those

of the daily model because of the exponential CEF. To illustrate this point, E (
∑

t ymt|xmτ ) =∑
exp(x′mtθ). Due to convexity,

∑
exp(x′mtθ) ≥ T exp(x̄′mτθ) = exp(x̄′mτθ + lnT ). The regres-

sion we are running is E (
∑

t ymt|xmτ ) = exp(x̄′mτπ). Therefore, even if without an intertemporal

effect, the coefficients of AQI in the daily and aggregate models are different.

The estimation results, as shown in Table 5, demonstrate that the semi-elasticities are signifi-

cantly larger than those of the baseline model. Specifically, the more aggregated the model is, the

greater the estimate becomes. Notably, the estimated semi-elasticity of the monthly model is very

18See NIOSH’s recommendation on the use of particulate filter respirators: http://www.cdc.gov/niosh/npptl/
topics/respirators/disp_part/RespSource3healthcare.html
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close to that of the distributed-lag model in Table 4. This is not a pure coincidence; since pollution

information has lags up to four days, the weekly model may not fully absorb the intertemporal

effect; the monthly model can better capture the dynamics of pollution-facemask relationship.

5.4 Nonlinearity

Previously, we assumed that the semi-elasticity in Equation (7) is a constant. However, since

the majority of facemask purchases occurred during extreme pollution episodes, individuals’ re-

sponses are more sensitive during highly polluted days. We therefore allow the semi-elasticity to

be nonlinear in AQI. Instead of using polynomials of AQI, we use a more flexible specification

that includes six pollution levels as dummy variables:

lnE (Maskmt|xmt) =
5∑

k=1

αkLevelkmt + β′WEAmt + γ1HOLt + γ′2DOWt + City-Week FEmt.

The dummy of AQI levels is aligned with the MEP AQI Guidelines on the classification of air

quality. Level 1, or excellent air quality with AQI ≤ 50, is restricted as zero. The estimate of α is

therefore compared with level-1 air quality. The above specification is consistent with the baseline

model except for the semi-parametric specification of pollution levels.

The regression result of the flexible daily model is reported in columns (1)-(2) in Table 6. We

find that individuals purchase anti-PM facemasks mainly during serious pollution days. Com-

pared to the days with excellent air quality (AQI ≤ 50), a heavily polluted day (201 ≤ AQI ≤ 300)

increases the anti-PM2.5 mask index by 18, and 16 percent on the index of all facemasks. When

AQI rises to the severely polluted level (AQI ≥ 300), the semi-elasticity jumps by 72 and 66 per-

cent, respectively. Other lower pollution levels have statistically insignificant effect on facemask

purchases compared to the level-1 air quality. Furthermore, the estimation results confirm that the

purchases of anti-PM2.5 facemasks are more responsive to AQI than other facemasks are.

To account for the intertemporal dynamics, the daily model with flexible pollution levels is

also aggregated to the weekly or monthly level. In the aggregated model, the key variable “Level”

measures the number of days at each pollution level. The specification appears similar to the

temporally aggregated model in the previous section except for flexible pollution levels. However,

aggregation by the number of pollution days in each category is more reasonable. Because most
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facemasks are purchased during extreme pollution episodes, using average AQI in a period does

not capture the particular pattern of demand.

Columns (3)-(6) in Table 6 present estimation results for the aggregated model with AQI levels.

These results generally support the conclusion that the semi-elasticity of facemask purchases with

respect to air pollution is increasing with the pollution level. However, compared to clean days

(AQI ≤ 50), the aggregated model shows that individuals purchase more facemasks even when

AQI is below 200. The semi-elasticity for the high pollution level in the aggregated model is

significantly smaller than that of the daily model. The difference in the estimated semi-elasticities

between the aggregated and daily models is likely due to the dynamic avoidance behavior that

has been discussed in the previous section.

5.5 Heterogeneity

We consider several layers of heterogeneity in responses to air pollution. First of all, the avoidance

behavior is affected by individuals’ perceptions of air quality through visibility. When visibility

declines markedly during hazy days, citizens would notice such changes more clearly and are

likelier to buy anti-PM facemasks. To analyze the effect of visibility, we interact it with AQI and

find statistically significant effects in the interaction term. The results are reported in columns

(1)-(2) in Table 7. The estimated semi-elasticity is (0.255 − 0.028 × VSB) for anti-PM2.5 facemasks

and (0.236−0.023×VSB) for all facemasks. It implies that 1-mile degradation in visibility reduces

the semi-elasticity of anti-PM2.5 mask index with respect to AQI by 2.8 percentage point, and 2.3

percentage point for the total mask index. This result suggests that observations of haze make

individuals more responsive to formal pollution information.

Second, the semi-elasticity of facemask purchases is perhaps related to local provision of health

care. One hypothesis is that better access to local medical services is likely to reduce the cost

of treatment and make the defensive expenditures like facemasks less appealing. We consider

three variables: number of hospitals, hospital beds, and doctors per capita. However, we find

no statistically significant effect of heterogeneity related to any of these local medical conditions.

These results are summarized in columns (3)-(4) in Table 7.

Third, we are concerned with the spatial heterogeneity of avoidance behavior. Although we
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have controlled for unobservable city attributes, the elasticity of defensive expenditure is common

to all regions. We run the baseline regression separately for six traditional regions in China: north,

northeast, east, south central, southwest, and northwest.19 The estimated semi-elasticities are

illustrated in Figure 5. The result reveals that all regions have similar semi-elasticities (around 20

percent) except for Southwest China, where AQI has an insignificant effect on facemask purchases.

5.6 Robustness Checks

The credibility of air pollution data in China has been a major concern. Ghanem and Zhang (2014)

find suggestive evidence that a large number of Chinese cities manipulated Air Pollution Index

(API) during 2001-2010 in order to achieve a certain number of “blue-sky days.” In particular,

about half of the cities are likely to under-report PM10 levels. If air quality data are misreported, it

introduces measurement errors and attenuates the parameter of AQI in the demand function for

anti-PM facemasks. The quality of air pollution data has been improved significantly since 2010,

partly thanks to the direct reporting system established by MEP. Nevertheless, we still conducted

several robustness checks on the data quality.

In order to assess the potential data quality problem, we use the US Embassy data in five

cities–Beijing, Shanghai, Guangzhou, Chengdu, and Shenyang–as the robustness checks. These

estimation results are reported in Table 8. Columns (1) and (4) use MEP AQI in the five cities,

while columns (2) and (5) use station AQI-PM2.5, which is the daily averaged individual pollutant

AQI of PM2.5 at the monitoring station level.20 Columns (3) and (6) use US AQI reported by the

US Embassy. The sample is restricted to the five cities with US Embassy or Consulates.

The models that use city-level MEP AQI have significantly smaller estimates than the models

that use US AQI. The difference is attributed to the fact that MEP AQI includes 6 criteria pollutants

while US AQI only includes PM2.5. In addition, MEP AQI averages readings from all stations in

a city, including downtown and suburban locations, while the US Embassy is normally located

in downtown. For this reason, we use the PM2.5-specific AQI from the monitoring station that

19North China includes Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia. Northeast China includes Liaoning,
Jilin, and Heilongjiang. East China includes Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, and Shandong. South
Central China includes Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan. Southwest China includes Chongqing,
Sichuan, Guizhou, Yunnan, Tibet. Northwest China includes Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.

20The stations with distance to the US Embassy/Consulates: Beijing Nongzhanguan(1.8km), Shanghai Jingan
(4.3km), Guangzhou Tianhezhiyou(2.2km), Chengdu Sanwayao (4.3km), Shenyang Wenyilu(2.7km).
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is closest to the US Embassy or Consulate. We find the estimated semi-elasticities by two air

pollution measures are reasonably close, which suggests that the recent MEP AQI is reliable.

We also test for the robustness of our model specification. Specifically, we estimate the base-

line model by linear and semi-log specifications. In each model, we include three combinations

of fixed effects: City FE plus Date FE, City FE plus Province-Date FE, and City-Week FE. The lin-

ear model’s estimation result, reported in Table A1 in the online Appendix, shows that a 100-point

increase in AQI boosts the anti-PM2.5 mask index by 3.54 points, or 89 percent more facemask pur-

chases. Correspondingly, it increases the total mask index by 51 percent higher levels of facemask

purchases. These estimates are significantly higher than those of the Poisson model. In contrast,

the elasticities estimated by the semi-log model, reported in Table A2 in the online Appendix, are

close to our preferred estimates in the fixed-effect Poisson model.

Individuals might use future pollution information to make decision on defensive expendi-

tures since many cities report one-day-ahead pollution forecasts. However, the data of pollution

forecasts are not available. To address this concern, we include four leads of AQI in the baseline

model. The estimation results show that none of these leads are statistically significant. This might

be explained by two reasons. First, individuals only pay attention to existing information instead

of forecasts. Second, AQI forecasting is based on historic pollution levels and weather conditions.

Since we have already controlled for these determinants in our model, pollution forecasts do not

provide additional information to the regression.

6 Policy Implication

The substitutability between ambient air pollution and facemasks sheds new light on the value

of air pollution control policies. Because facemask purchases signify the cost of air pollution, this

defensive expenditures approach can be used to value the marginal benefit of air quality improve-

ment (Courant and Porter, 1981). Specifically, the willingness to pay (WTP) for a marginal change

in air quality is the marginal rate of substitution between facemasks and pollution, multiplied by

the mask price. Because of the existence and use of other pollution-avoidance behaviors, the cost

of masks is likely to serve as the lower bound of the air pollution cost.

Our preferred model estimates that a 100-point increase in the AQI leads to a 70.6 percent
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increase in expenditures on anti-PM2.5 masks and a 54.4 percent increase for all types of masks.

We aggregate the city-specific pollution costs to the national level. It shows that the cost of one-

day of air pollution in China, with the AQI increasing from 105 to 205, is 80,247 USD, of which,

38,356 USD comes from anti-PM2.5 masks. These estimates are very low because AQIs are still

below the heavily polluted levels. Our previous results show that individuals purchase masks

mainly during serious pollution days.

Concerning individuals’ nonlinear responses to air quality, we also estimate the cost of extreme

pollution episodes. Our preferred nonlinear model estimates that one extra severely polluted day

(AQI≥301) within a month leads to 23.4 percent growth in the monthly total mask index, relative

to a day with excellent air quality (AQI≤50). In comparison, the marginal effect of an extra heavily

polluted day (201≤AQI≤300) on monthly mask purchases is 7.6 percent. Using the relationship

between the mask index and actual sales of masks, a back-of-the-envelope calculation shows that

the cost of one severely polluted day would be 610 thousand Yuan (about 100 thousand USD)

in China. We also also use these estimation results to simulate the benefit of hypothetical air

pollution control policies. During our study period between January 2013-April 2014, there were

2,934 heavily polluted city days and 933 severely polluted city days in China. If 10 percent of both

these heavily and severely polluted days were eliminated by any mixture of air pollution control

policies, the total savings for the society would be 1.146 billion Yuan (approximately 187 million

USD) for China.

7 Conclusion

In this paper, we document the relationship between anti-PM facemask purchases and ambient air

pollution in Chinese cities. We not only provide new empirical evidence on pollution avoidance

behavior, but we also use the estimated relationship to quantify the cost of air pollution. Our

results suggest that reducing the occurrence of “airpocalypse” events, which we define as AQI≥

200, will significantly reduce expenditures from Chinese consumers on facemasks. These results

complement the literature that estimate the welfare cost of air pollution using the “cost of illness”

approach, and thus contribute to the current debate on the optimal pollution level in China.

This being said, our estimation results and policy simulation outcomes should be interpreted
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with caution. Using the expenditures on facemasks, we likely quantify only a small part of the

cost of air pollution. Facemasks are not the only way to avert air pollution. Other defensive

expenditures–such as indoor air purifiers and medication–are also a significant portion of pollu-

tion costs. Even for facemasks themselves, our data only cover the e-commerce market and the

facemask purchases in the B&M business are not included. Therefore, the estimated cost in this

paper is the likely only the lower bound of the air pollution cost.
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Figure 1: AQI levels and primary pollutants. The daily pollution data cover all cities that disclose
AQI in 2013.
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Figure 2: Annual mean PM10 and PM2.5 concentrations (μg/m3) in 2013. The data are based on
the annual mean concentrations of 532 monitoring stations. Spatial interpolation is implemented
by means of kriging.
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Figure 3: Distribution of anti-PM2.5 mask and all mask index in 2013. The left column illustrates
the distribution over the whole support. The right panel zooms in the area for close to zero (1 for
anti-PM2.5 mask index and 5 for all mask index).
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Figure 4: Mean daily sales index for all masks and anti-PM2.5 facemasks in 2013. The spatial
resolution is prefecture.
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Figure 5: Mask purchases in six Chinese regions respond heterogeneously to air pollution. The
graph illustrates the parameter estimate (± 1.96 SE) of AQI in model (3) in Table 3. The regression
is run separately for each region and each mask type (PM2.5 and all). Six traditional regions are:
North China (N), Northeast China (NE), East China (E), South Central China (SC), Southwest
China (SW), and Northwest China (NW).
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Table 1: Summary statistic

Variable Label N Mean SD Min Max

All Masks Total mask index 40,584 10.901 69.156 0 7602.200

Anti-PM2.5 Masks Anti-PM2.5 mask index 40,584 3.850 38.837 0 4412.090

AQI Air Quality Index 40,584 104.991 69.407 0 500

DIR Wind direction 40,584 245.880 139.347 20 888

SPD Wind speed 40,584 5.876 3.264 0.250 35.571

TEMP Temperature 40,584 53.617 19.011 -17.357 96

DEWP Dew point 40,584 40.359 21.852 -28.429 82

VSB Visibility 40,569 7.0665 4.196 0 18.800

HOL Holiday 40,584 0.024 0.154 0 1
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Table 2: Relationship between Anti-PM2.5 Mask Index and Sales

Quantity Value
(1) (2)

Mask Index 62.811*** 565.610***
(1.749) (18.847)

t 35.920 30.010
p-value 0.000 0.000
Confidence Interval [59.001, 66.621] [524.547, 606.673]

N 13 13
R2 0.991 0.987

Notes: Dependent variable is the quantity or value of anti-PM2.5 mask sales at
the national level. The only independent variable is anti-PM2.5 mask index. The
daily sales data span from late September 2013 to October 2013. ***p < 0.01,
**p < 0.05, *p < 0.1.
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Table 3: Fixed-effect Poisson model: daily mask index

Anti-PM2.5 Masks All Masks

(1) (2) (3) (4) (5) (6)

AQI 0.279*** 0.248*** 0.227*** 0.275*** 0.244*** 0.210***
(0.062) (0.052) (0.040) (0.048) (0.054) (0.033)

Weather Yes Yes Yes Yes Yes Yes
Holiday Yes Yes
Day of week Yes Yes
Date FE Yes Yes
City FE Yes Yes Yes Yes
Province-Date FE Yes Yes
City-Week FE Yes Yes

N 40,584 33,283 40,327 40,584 33,285 40,351
Log Likelihood -240602 -62245 -51438 -512345 -149482 -90164

Notes: Model is estimated by the Poisson pseudo-maximum likelihood (PML) estimator. Dependent variable is daily
mask index. AQI is divided by 100. Weather includes temperature, dew point, wind speed, and wind direction. Holi-
day and day of week are dummy variables. The coefficient of AQI is interpreted as the percentage of change in mask
index with respect to 100-point change in AQI. Standard errors in parenthesis clustered at the city, province-day, and
city-week level respectively. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table 4: Dynamic effects of pollution information

Daily Mask Index
PM2.5 All

(1) (2)

AQIt 0.195*** 0.195***
(0.035) (0.033)

AQIt−1 0.173*** 0.095***
(0.025) (0.021)

AQIt−2 0.097*** 0.073***
(0.026) (0.024)

AQIt−3 0.079*** 0.059**
(0.026) (0.024)

AQIt−4 0.162*** 0.123***
(0.042) (0.033)

Weather Yes Yes
Holiday Yes Yes
Day of week Yes Yes
City-Week FE Yes Yes

N 39,747 39,771
Log Likelihood -47424 -85164

Notes: Specification is the fixed-effect Poisson model. Dependent vari-
able is daily mask index. AQI is divided by 100. Weather includes
temperature, dew point, wind speed, and wind direction. Holiday and
day of week are dummy variables. The coefficient of AQI is interpreted
as the percentage of change in mask index with respect to 100-point
change in AQI. We tested various leads and lags; only the lags up to
four days are significant. Standard errors clustered at the city-week
level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table 5: Intertemporal smoothing: weekly and monthly aggregation

Weekly Mask Index Monthly Mask Index

PM2.5 All PM2.5 All
(1) (2) (3) (4)

AQI 0.338*** 0.352*** 0.710** 0.537**
(0.117) (0.117) (0.247) (0.247)

Weather Yes Yes Yes Yes
City-Month FE Yes Yes
City-Year FE Yes Yes

N 7,074 7,074 1,433 1,433
Log Likelihood -91562 -91562 -82529 -82529

Notes: Specification is the fixed-effect Poisson model. Dependent variable is weekly or monthly
mask index. AQI is divided by 100. Weather includes temperature, dew point, wind speed,
and wind direction. Holiday and day of week are dummy variables. The coefficient of AQI is
interpreted as the percentage of change in mask index with respect to 100-point change in AQI.
Standard errors clustered at the city-month or city-year level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table 6: Flexible AQI levels

Daily Mask Index Weekly Mask Index Monthly Mask Index

PM2.5 All PM2.5 All PM2.5 All
(1) (2) (3) (4) (5) (6)

Level 2 0.007 -0.012 0.180*** 0.172*** 0.074*** 0.058***
(51-100) (0.061) (0.038) (0.044) (0.025) (0.019) (0.010)

Level 3 0.070 0.032 0.219*** 0.174*** 0.096*** 0.078***
(101-150) (0.083) (0.048) (0.035) (0.015) (0.013) (0.011)

Level 4 0.065 -0.004 0.283*** 0.208*** 0.142*** 0.077***
(151-200) (0.080) (0.052) (0.052) (0.028) (0.022) (0.015)

Level 5 0.176** 0.158*** 0.359*** 0.312*** 0.111*** 0.076***
(201-300) (0.072) (0.055) (0.037) (0.028) (0.015) (0.015)

Level 6 0.721*** 0.661*** 0.302*** 0.304*** 0.292*** 0.234***
(301-500) (0.111) (0.103) (0.062) (0.063) (0.039) (0.036)

Weather Yes Yes Yes Yes Yes Yes
Holiday Yes Yes Yes Yes Yes Yes
Day of Week Yes Yes
City-Week FE Yes Yes
City-Month FE Yes Yes
City-Year FE Yes Yes

N 40,327 40,351 7,074 7,074 1,433 1,433
Log Likelihood -51322 -89995 -30965 -64925 -23355 -59378

Notes: Specification is the fixed-effect Poisson model. Dependent variable is daily, weekly, or monthly mask index.
Weather includes temperature, dew point, wind speed, and wind direction. Holiday and day of week are dummy vari-
ables. For daily mask index, AQI levels are dummies. For weekly or monthly mask index, AQI levels are the number
of days falling within each level. Standard errors clustered at the city-month or city-year level. ***p < 0.01, **p < 0.05,
*p < 0.1.
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Table 7: Heterogeneity of response to air pollution

Daily Mask Index Daily Mask Index

PM2.5 All PM2.5 All
(1) (2) (3) (4)

AQI 0.255*** 0.236*** 0.142 0.224***
(0.041) (0.034) (0.119) (0.085)

AQI×VSB -0.028*** -0.023**
(0.009) (0.009)

AQI×Hospitals -0.090 -0.073
(0.086) (0.051)

AQI×Beds 0.001 0.001
(0.002) (0.002)

AQI×Doctors 0.000 -0.001
(0.004) (0.003)

Weather Yes Yes Yes Yes
Holiday Yes Yes Yes Yes
Day of Week Yes Yes Yes Yes
City-Week FE Yes Yes Yes Yes

N 40,310 40,334 39,752 39,776
Log Likelihood -51221 -89799 -50627 -88070

Notes: Specification is the fixed-effect Poisson model. Dependent variable is daily mask index.
AQI is divided by 100. VSB is visibility measured in statute miles. Weather includes tempera-
ture, dew point, wind speed, and wind direction. Holiday and day of week are dummy vari-
ables. Hospitals, beds and doctors are measured in per capita. The coefficient of AQI is in-
terpreted as the percentage of change in mask index with respect to 100-point change in AQI.
We tested various leads and lags; only the lags up to four days are significant. Standard errors
clustered at the city-week level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table 8: Alternative pollution information from the US Embassy in 5 cities

Anti-PM2.5 Masks All Masks

(1) (2) (3) (4) (5) (6)

AQI (City) 0.289*** 0.259***
(0.061) (0.050)

AQI-PM2.5 (Station) 0.368*** 0.312***
(0.055) (0.050)

US AQI-PM2.5 (Station) 0.371*** 0.303***
(0.084) (0.086)

Weather Yes Yes Yes Yes Yes Yes
Holiday Yes Yes Yes Yes Yes Yes
Day of Week Yes Yes Yes Yes Yes Yes
City-Week FE Yes Yes Yes Yes Yes Yes

N 2,138 2,020 2,138 2,138 2,020 2,138
Log Likelihood -14760 -12850 -14983 -20990 -28138 -21583

Notes: Specification is the fixed-effect Poisson model. Dependent variable is daily mask index. AQI is divided by
100. All models include weather(temperature, dew point, wind speed, and wind direction), holiday and day of week
dummies, and city-week fixed effects. The coefficient of AQI is interpreted as the percentage of change in mask in-
dex with respect to 100-point change in AQI. The regression only uses 5 cities that have US Embassy/Consulates
(Beijing, Shanghai, Guangzhou, Chengdu, and Shenyang). Station AQI-PM2.5 is the daily averaged individual pol-
lutant AQI of PM2.5 at the monitoring station level. The stations with distance to the US Embassy/Consulates: Bei-
jing Nongzhanguan(1.8km), Shanghai Jingan (4.3km), Guangzhou Tianhezhiyou(2.2km), Chengdu Sanwayao (4.3km),
Shenyang Wenyilu(2.7km). Standard errors clustered at the city-week level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Supplementary Materials for

Air Pollution and Defensive Expenditures: Evidence from
Particulate-Filtering Facemasks

A Air Quality Index

China’s Ministry of Environmental Protection (MEP) uses daily AQI to represent the overall air

quality in a city, which is calculated in three steps. First, daily mean concentrations of the six

criteria pollutants are averaged from hourly data from all stations within the city boundary over

a 24-hour period. Second, pollutant p’s concentration Cp is converted to a pollutant-specific sub-

index Ip following:

Ip =
Iu − Il

BPu −BPl
(Cp −BPl) + Il. (8)

In this form, BPu and BPl are the upper and lower breakpoints for pollutant concentration Cp

and Iu and Il are the AQI values corresponding to the two breakpoints. Finally, daily AQI is the

maximum of the pollutant-specific sub-indices such that:

AQI = max{INO2
, ISO2

, IPM10 , IPM2.5 , ICO, IO3
}. (9)

AQI ranges from 0 to 500, with a larger number indicating poorer air quality. AQI is then classified

into six categories according to the breakpoints of the air quality level and the index classes listed

in the AQI Guidelines: excellent for AQI≤ 50, good for 51≤AQI≤ 100, lightly polluted for 101≤

AQI ≤ 150, moderately polluted for 151 ≤ AQI ≤ 200, heavily polluted for 201 ≤ AQI ≤ 300, and

severely polluted for 301 ≤ AQI ≤ 500. In addition, the AQI reporting also includes the primary

pollutant, color codes, potential health effects, and a cautionary statement for specific sensitive

groups of people. Please see Figure A1 for more details.

42



0-50 Excellent 0-50 Excellent 0-50 Good

51-100 Good 51-100 Good 51-100 Moderate

101-150 Lightly polluted 101-150
Unhealthy for

sensitive groups

151-200 Moderately polluted 151- 200 Unhealthy

201-300 Moderately polluted 201-300 Heavily polluted 201-300 Very unhealthy

301-500 Heavily polluted 301-500 Severely polluted 301- 500 Hazardous

Air Pollution Index (API) US Embassy AQIAir Quality Index (AQI)

Lightly polluted

SO2, NO2, PM10  NO2, CO, O3, PM10, PM2.5  PM2.5

101-200

Figure A1: Comparison of MEP AQI and US AQI. The MEP AQI includes six criteria pollutants
while the US Embassy only monitors PM2.5 in 5 provincial capital cities including Beijing, Shang-
hai, Guangzhou, Chengdu, and Shenyang. The US Embassy AQI is the PM2.5-specific AQI that
corresponds to the US EPA standards.
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B Additional Results

Table A1: Linear model: daily mask index

Anti-PM2.5 Masks All Masks

(1) (2) (3) (4) (5) (6)

AQI 5.472** 1.739** 3.539* 9.553** 3.862** 5.611*
(2.273) (0.881) (1.857) (3.976) (1.854) (2.949)

Weather Yes Yes Yes Yes Yes Yes
Holiday Yes Yes
Day of week Yes Yes
Date FE Yes Yes
City FE Yes Yes Yes Yes
Province-Date FE Yes Yes
City-Week FE Yes Yes

N 40,584 40,584 40,584 40,584 40,584 40,584
R2 0.132 0.901 0.675 0.200 0.915 0.748

Notes: AQI is divided by 100. Weather includes temperature, dew point, wind speed, and wind direction. Holiday and
day of week are dummy variables. The coefficient of AQI is interpreted as the percentage of change in mask index with
respect to 100-point change in AQI. Standard errors clustered at the city level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table A2: Log-linear model: daily mask index

Anti-PM2.5 Masks All Masks

(1) (2) (3) (4) (5) (6)

AQI 0.234*** 0.175*** 0.137*** 0.130*** 0.070*** 0.076***
(0.030) (0.044) (0.020) (0.012) (0.016) (0.007)

Weather Yes Yes Yes Yes Yes Yes
Holiday Yes Yes
Day of week Yes Yes
Date FE Yes Yes
City FE Yes Yes Yes Yes
Province-Date FE Yes Yes
City-Week FE Yes Yes

N 40,584 40,584 40,584 40,584 40,584 40,584
R2 0.716 0.817 0.801 0.867 0.935 0.921

Notes: Dependent variable is log(y+ k), where y is daily mask index and k = 0.0000001. We also tested other values of
k and obtained similar results. AQI is divided by 100. Weather includes temperature, dew point, wind speed, and wind
direction. Holiday and day of week are dummy variables. The coefficient of AQI is interpreted as the percentage of
change in mask index with respect to 100-point change in AQI. Standard errors clustered at the city level. ***p < 0.01,
**p < 0.05, *p < 0.1.
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