To address this construction issue: The pipeline segment must meet this additional construction requirement:

<table>
<thead>
<tr>
<th>Type of Requirement</th>
<th>Requirement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) Girth welds</td>
<td>(1) All girth welds on a new pipeline segment must be non-destructively examined in accordance with §192.243(b) and (c).</td>
</tr>
<tr>
<td>(c) Depth of cover</td>
<td>(1) Notwithstanding any lesser depth of cover otherwise allowed in §192.327, there must be at least 36 inches (914 millimeters) of cover or equivalent means to protect the pipeline from outside force damage.</td>
</tr>
<tr>
<td>(d) Initial strength testing</td>
<td>(1) The pipeline segment must not have experienced failures indicative of systemic material defects during strength testing, including initial hydrostatic testing. A root cause analysis, including metallurgical examination of the failed pipe, must be performed for any failure experienced to verify that it is not indicative of a systemic concern. The results of this root cause analysis must be reported to each PHMSA pipeline safety regional office where the pipe is in service at least 60 days prior to operating at the alternative MAOP. An operator must also notify a State pipeline safety authority when the pipeline is located in a State where PHMSA has an interstate agent agreement, or an intrastate pipeline is regulated by that State.</td>
</tr>
<tr>
<td>(e) Interference currents</td>
<td>(1) For a new pipeline segment, the construction must address the impacts of induced alternating current from parallel electric transmission lines and other known sources of potential interference with corrosion control.</td>
</tr>
</tbody>
</table>

[72 FR 62176, Oct. 17, 2008]

Subpart H—Customer Meters, Service Regulators, and Service Lines

§ 192.351 Scope.

This subpart prescribes minimum requirements for installing customer meters, service regulators, service lines, service line valves, and service line connections to mains.

§ 192.353 Customer meters and regulators: Location.

(a) Each meter and service regulator, whether inside or outside a building, must be installed in a readily accessible location and be protected from corrosion and other damage, including, if installed outside a building, vehicular damage that may be anticipated. However, the upstream regulator in a series may be buried.

(b) Each service regulator installed within a building must be located as near as practical to the point of service line entrance.

(c) Each meter installed within a building must be located in a ventilated place and not less than 3 feet (914 millimeters) from any source of ignition or any source of heat which might damage the meter.

(d) Where feasible, the upstream regulator in a series must be located outside the building, unless it is located in a separate metering or regulating building.

§ 192.355 Customer meters and regulators: Protection from damage.

(a) Protection from vacuum or back pressure. If the customer’s equipment might create either a vacuum or a back pressure, a device must be installed to protect the system.

(b) Service regulator vents and relief vents. Service regulator vents and relief vents must terminate outdoors, and the outdoor terminal must—

(1) Be rain and insect resistant;

(2) Be located at a place where gas from the vent can escape freely into the atmosphere and away from any opening into the building; and

(3) Be protected from damage caused by submergence in areas where flooding may occur.

(c) Pits and vaults. Each pit or vault that houses a customer meter or regulator at a place where vehicular traffic is anticipated, must be able to support that traffic.

§ 192.357 Customer meters and regulators: Installation.

(a) Each meter and each regulator must be installed so as to minimize anticipated stresses upon the connecting piping and the meter.

(b) When close all-thread nipples are used, the wall thickness remaining after the threads are cut must meet the minimum wall thickness requirements of this part.

(c) Connections made of lead or other easily damaged material may not be used in the installation of meters or regulators.

(d) Each regulator that might release gas in its operation must be vented to the outside atmosphere.

§ 192.359 Customer meter installations: Operating pressure.

(a) A meter may not be used at a pressure that is more than 67 percent of the manufacturer’s shell test pressure.

(b) Each newly installed meter manufactured after November 12, 1970, must have been tested to a minimum of 10 p.s.i. (69 kPa) gage.

(c) A rebuilt or repaired tinned steel case meter may not be used at a pressure that is more than 50 percent of the pressure used to test the meter after rebuilding or repairing.

§ 192.361 Service lines: Installation.

(a) Depth. Each buried service line must be installed with at least 12 inches (305 millimeters) of cover in private property and at least 18 inches (457 millimeters) of cover in streets and roads. However, where an underground structure prevents installation at those depths, the service line must be able to withstand any anticipated external load.

(b) Support and backfill. Each service line must be properly supported on undisturbed or well-compacted soil, and material used for backfill must be free of materials that could damage the pipe or its coating.

(c) Grading for drainage. Where condensate in the gas might cause interruption in the gas supply to the customer, the service line must be graded so as to drain into the main or into drips at the low points in the service line.

(d) Protection against piping strain and external loading. Each service line must be installed so as to minimize anticipated piping strain and external loading.

(e) Installation of service lines into buildings. Each underground service line installed below grade through the outer foundation wall of a building must:

1. In the case of a metal service line, be protected against corrosion;
2. In the case of a plastic service line, be protected from shearing action and backfill settlement; and
3. Be sealed at the foundation wall to prevent leakage into the building.

(f) Installation of service lines under buildings. Where an underground service line is installed under a building:

1. It must be encased in a gas tight conduit;
2. The conduit and the service line must, if the service line supplies the building it underlies, extend into a normally usable and accessible part of the building; and
3. The space between the conduit and the service line must be sealed to prevent gas leakage into the building and, if the conduit is sealed at both ends, a vent line from the annular space must extend to a point where gas would not be a hazard, and extend above grade, terminating in a rain and insect resistant fitting.

(g) Locating underground service lines. Each underground nonmetallic service line that is not encased must have a means of locating the pipe that complies with §192.321(e).

§ 192.363 Service lines: Valve requirements.

(a) Each service line must have a service-line valve that meets the applicable requirements of subparts B and D of this part. A valve incorporated in a meter bar, that allows the meter to be bypassed, may not be used as a service-line valve.
§ 192.365 Service lines: Location of valves.

(a) Relation to regulator or meter. Each service-line valve must be installed upstream of the regulator or, if there is no regulator, upstream of the meter.

(b) Outside valves. Each service line must have a shut-off valve in a readily accessible location that, if feasible, is outside of the building.

(c) Underground valves. Each underground service-line valve must be located in a covered durable curb box or standpipe that allows ready operation of the valve and is supported independently of the service lines.

§ 192.367 Service lines: General requirements for connections to main piping.

(a) Location. Each service line connection to a main must be located at the top of the main or, if that is not practical, at the side of the main, unless a suitable protective device is installed to minimize the possibility of dust and moisture being carried from the main into the service line.

(b) Compression-type connection to main. Each compression-type service line to main connection must:

(1) Be designed and installed to effectively sustain the longitudinal pull-out or thrust forces caused by contraction or expansion of the piping, or by anticipated external or internal loading; and

(2) If gaskets are used in connecting the service line to the main connection fitting, have gaskets that are compatible with the kind of gas in the system.

§ 192.369 Service lines: Connections to cast iron or ductile iron mains.

(a) Each service line connected to a cast iron or ductile iron main must be connected by a mechanical clamp, by drilling and tapping the main, or by another method meeting the requirements of §192.273.

(b) If a threaded tap is being inserted, the requirements of §192.151 (b) and (c) must also be met.

§ 192.371 Service lines: Steel.

Each steel service line to be operated at less than 100 p.s.i. (689 kPa) gage must be constructed of pipe designed for a minimum of 100 p.s.i. (689 kPa) gage.

§ 192.373 Service lines: Cast iron and ductile iron.

(a) Cast or ductile iron pipe less than 6 inches (152 millimeters) in diameter may not be installed for service lines.

(b) If cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service line which extends through the building wall must be of steel pipe.

(c) A cast iron or ductile iron service line may not be installed in unstable soil or under a building.

§ 192.375 Service lines: Plastic.

(a) Each plastic service line outside a building must be installed below ground level, except that—

(1) It may be installed in accordance with §192.321(g); and

(2) It may terminate above ground level and outside the building, if—

(i) The above ground level part of the plastic service line is protected against deterioration and external damage; and

(ii) The plastic service line is not used to support external loads.

(b) Each plastic service line inside a building must be protected against external damage.

§ 192.377 Service lines: Copper.
Each copper service line installed within a building must be protected against external damage.

§ 192.379 New service lines not in use.
Each service line that is not placed in service upon completion of installation must comply with one of the following until the customer is supplied with gas:
(a) The valve that is closed to prevent the flow of gas to the customer must be provided with a locking device or other means designed to prevent the opening of the valve by persons other than those authorized by the operator.
(b) A mechanical device or fitting that will prevent the flow of gas must be installed in the service line or in the meter assembly.
(c) The customer’s piping must be physically disconnected from the gas supply and the open pipe ends sealed.

§ 192.381 Service lines: Excess flow valve performance standards.
(a) Excess flow valves to be used on single residence service lines that operate continuously throughout the year at a pressure not less than 10 p.s.i. (69 kPa) gage must be manufactured and tested by the manufacturer according to an industry specification, or the manufacturer’s written specification, to ensure that each valve will:
(1) Function properly up to the maximum operating pressure at which the valve is rated;
(2) Function properly at all temperatures reasonably expected in the operating environment of the service line;
(3) At 10 p.s.i. (69 kPa) gage:
 (i) Close at, or not more than 50 percent above, the rated closure flow rate specified by the manufacturer; and
 (ii) Upon closure, reduce gas flow—
 (A) For an excess flow valve designed to allow pressure to equalize across the valve, up to a maximum of 20 cubic feet per hour (.01 cubic meters per hour); and
 (B) For an excess flow valve designed to prevent equalization of pressure across the valve, to no more than 0.4 cubic feet per hour (.01 cubic meters per hour); and
(4) Not close when the pressure is less than the manufacturer’s minimum specified operating pressure and the flow rate is below the manufacturer’s minimum specified closure flow rate.
(b) An excess flow valve must meet the applicable requirements of Subparts B and D of this part.
(c) An operator must mark or otherwise identify the presence of an excess flow valve in the service line.
(d) An operator shall locate an excess flow valve as near as practical to the fitting connecting the service line to its source of gas supply.
(e) An operator should not install an excess flow valve on a service line where the operator has prior experience with contaminants in the gas stream, where these contaminants could be expected to cause the excess flow valve to malfunction or where the excess flow valve would interfere with necessary operation and maintenance activities on the service, such as blowing liquids from the line.

§ 192.383 Excess flow valve installation.
(a) Definitions. As used in this section:
Replaced service line means a gas service line where the fitting that connects the service line to the main is replaced or the piping connected to this fitting is replaced.
Service line serving single-family residence means a gas service line that begins at the fitting that connects the service line to the main and serves only one single-family residence.
(b) Installation required. An excess flow valve (EFV) installation must comply with the performance standards in §192.381. The operator must install an EFV on any new or replaced service line serving a single-family residence after February 12, 2010, unless one or more of the following conditions is present:
(1) The service line does not operate at a pressure of 10 psig or greater throughout the year;
§ 192.451 Scope.

(a) This subpart prescribes minimum requirements for the protection of metallic pipelines from external, internal, and atmospheric corrosion.

(b) [Reserved]

§ 192.452 How does this subpart apply to converted pipelines and regulated onshore gathering lines?

(a) Converted pipelines. Notwithstanding the date the pipeline was installed or any earlier deadlines for compliance, each pipeline which qualifies for use under this part in accordance with §192.14 must meet the requirements of this subpart specifically applicable to pipelines installed before August 1, 1971, and all other applicable requirements within 1 year after the pipeline is readied for service. However, the requirements of this subpart specifically applicable to pipelines installed after July 31, 1971, apply if the pipeline substantially meets those requirements before it is readied for service or it is a segment which is replaced, relocated, or substantially altered.

(b) Regulated onshore gathering lines. For any regulated onshore gathering line under §192.9 existing on April 14, 2006, that was not previously subject to this part, and for any onshore gathering line that becomes a regulated onshore gathering line under §192.9 after April 14, 2006, because of a change in class location or increase in dwelling density:

(1) The requirements of this subpart specifically applicable to pipelines installed before August 1, 1971, apply to the gathering line regardless of the date the pipeline was actually installed; and

(2) The requirements of this subpart specifically applicable to pipelines installed after July 31, 1971, apply only if the pipeline substantially meets those requirements.

§ 192.453 General.

The corrosion control procedures required by §192.605(b)(2), including those for the design, installation, operation, and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified in pipeline corrosion control methods.

§ 192.455 External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

(a) Except as provided in paragraphs (b), (c), and (f) of this section, each buried or submerged pipeline installed after July 31, 1971, must be protected against external corrosion, including the following:

(1) It must have an external protective coating meeting the requirements of §192.461.

(2) It must have a cathodic protection system designed to protect the pipeline in accordance with this subpart, installed and placed in operation within 1 year after completion of construction.

(b) An operator need not comply with paragraph (a) of this section, if the operator can demonstrate by tests, investigation, or experience in the area of application, including, as a minimum,