Oil burner gun operation (C) D Friedman - AudelStoichiometric Combustion: Perfect Fuel Combustion for Gas or Oil Burners

  • COMPLETE COMBUSTION, STOICHIOMETRIC - CONTENTS: What is the definition of Stoichiometric Combustion. Theoretical Fuel to Air Ratios for Complete Combustion (Stoichiometric Combustion). Oil Burners: characteristics of perfect combustion of fuel
    Gas Burners: characteristics of perfect combustion of fuel. Oil Burners: Guide to Oil Burners for heating systems, boilers & Furnaces: basic parts, operation, maintenance, performance & money-saving tips.
    Optimal fuel combustion process, boiler or furnace efficiency
  • POST a QUESTION or READ FAQs about heating oil or gas fuel combustion - perfect or stoichiometric combustion.
InspectAPedia tolerates no conflicts of interest. We have no relationship with advertisers, products, or services discussed at this website.

Here, courtesy of aerospace engineer Herman Vogel, we provide a definition of Stoichiometric Combustion and we explain and give formulas for Theoretical Fuel to Air Ratios for Complete Combustion (Stoichiometric Combustion).

Stoichiometric Combustion discusses theoretical fuel to air ratios for hydrocarbon fuels (kerosene, jet fuel, heating oil, LP gas, etc) in which a fuel is burned completely, producing only carbon dioxide and water, with no other byproducts.

Our sketch (page top) shows how an oil burner gun atomizes and sprays heating oil into the combustion chamber - Audel Oil Burner Guide

Green links show where you are. © Copyright 2017, All Rights Reserved.

Theoretical Fuel to Air Ratios for Complete Combustion (Stoichiometric Combustion)

Comparing colours of gas flames: yellow = unhealthy, yellow tips = normal for LPG or propane, soft blue flame = normal for natural gas (C) Daniel Friedman adapted from Bosch (2014)This article series answers most questions about central heating and water heating systems to aid in troubleshooting, inspection, diagnosis, and repairs. Contact us to suggest text changes and additions and, if you wish, to receive online listing and credit for that contribution.

The gas flame illustration at left is explained in deatil

This article (below) focuses on fossil fuel combustion efficiency using heating oil as an example.

Herman Vogel, Aerospace Engineer

In brief: Stoichiometric combustion is by thermodynamic definition the theoretical combustion of every drop of fuel when mixed with the correct amount of air (oxygen) to yield exhaust products of only CO2 and H2O.

Stoichiometric combustion is by thermodynamic definition the theoretical combustion of every drop of fuel when mixed with the correct amount of air (a basic mixture of oxygen and nitrogen gases) to yield exhaust products of only CO2 and H2O.

However, such combustion is ideal and in reality doesn't occur since the burning in furnaces, automobiles and jet-engines is always incomplete and less than 100% due to engineering design limitations.

Therefore while our two ideal exhaust products are relatively benign, non-stoichiometric combustion rules in the real world. This results in burning rich, as no matter how much extra air we cleverly add, it is never able to chemically react with all the fuel.

Theoretical air curve fdor complete combustion of natural gas (C) InspectApediaHence the resultant unburned fuel gets exposed to the high combustion temperatures and chemically reacts to form additional exhaust products of CO (Carbon Monoxide) and NO (Nitric Oxide), which can be dangerous exhaust products to both people and the environment.

Stoichiometric combustion has a chemical reaction equation attached to it:

C12H26(l) + 37/2 O2(g) + 2(37) N2(g) → 12 CO2(g) + 13 H2(g) + 2(37) N2(g)

For the above chemical reaction to be complete, both sides of the equation (about the arrow) must have its chemical elements matched.

So, if the left-side has 12 Carbon molecules, then the right-side must also have 12.

Note that we are using air which contains a weighted ratio of N2/O2 = 2x37 / (37/2) = 4 (100% air = 80% N2 + 20% O2), or four times as much Nitrogen exists in a given volume of air as does Oxygen.

Also, the above chemical reaction equation represents kerosene fuel which is considered a Dodecanese (liquid) hydrocarbon having the chemical formula C12H26.

That means it contains a molecular composition of 12-carbon atoms and 26-hydrogen atoms and is a liquid at room temperature.

Kerosene is the main constituent of Jet Propulsion (JP) fuels, where other additives include various blends of differently distilled crude oils.


The fuel to air ratio by chemical weight of the above relationship is:

Theoretical air curve fdor complete combustion of fuel oil (C) InspectApediaFAR = [mf_C12H26 / ma_O2+N2] = (12*12.011+26*1.008)/(37/2*32+2*37*28.014) = 0.064 or 6.4%

This says that for complete combustion of typical hydrocarbon fuels, and in particular kerosene, we need 6.4 lbs. of fuel for every 100 lbs. of air that we burn. Clearly, on a relative basis, we need a lot of air to completely burn our small amount of fuel.

The beauty of the above chemical equation is that not only does it define the required fuel-to-air ratio, but it also provides us with:

  1. The expectant adiabatic (pure, no losses in heat) flame temperature released by this chemical reaction as based on chemical heats of formation (4,310 R), and
  2. The heating value released per pound of kerosene (18,950 BTU/lbs.) as based on its chemical formulation plus heat of formation.

Technical Note: The temperature above is in units of R (Rankin) not (F). If it were F (farenheit) we have 4,310R - 460R = 3,850F.

What Does Complete Combustion (Stoichiometric Combustion) Mean to the Heating System Designer?

The above three pieces of information helps the furnace designer to properly size combustion chambers and their air-fans, and to burn the correct amount of fuel to keep a home comfortable.

It also helps the designer to choose the appropriate materials to avoid furnace melt-down. Note that the theoretical adiabatic flame temperature is very high.

While some of this temperature is reduced due to furnace heat losses, flame temperatures are generally controlled by intentionally burning lean. This dramatically reduces the theoretical flame temperature based on the lean chemistry of combustion, plus additional temperature reductions are realized by diluting high temperatures using the extra cold air entering the combustion chamber.

So, the furnace designer has a whole arsenal of possibilities to work with in designing today's reliable fuel oil furnaces.


Continue reading at OIL BURNER INSPECTION & REPAIR or select a topic from closely-related articles below, or see our complete INDEX to RELATED ARTICLES below.



Suggested citation for this web page

XXX at - online encyclopedia of building & environmental inspection, testing, diagnosis, repair, & problem prevention advice.


Or use the SEARCH BOX found below to Ask a Question or Search InspectApedia


Frequently Asked Questions (FAQs)

Click to Show or Hide FAQs

Ask a Question or Search InspectApedia

Use the "Click to Show or Hide FAQs" link just above to see recently-posted questions, comments, replies, try the search box just below, or if you prefer, post a question or comment in the Comments box below and we will respond promptly.

Search the InspectApedia website

Comment Box is loading comments...

Technical Reviewers & References

Click to Show or Hide Citations & References

Publisher's Google+ Page by Daniel Friedman