Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers
 Only Molded Case Circuit Breakers
 (FA, KA, QB, LA, MA, NA Legacy Square DTM Circuit Breakers)

Catalog
0601CT9101 R11/15
2015
Class 601

CONTENTS
Description Page
Introduction. Page 5
100 Ampere Frame Page 25
225 / 250 Ampere Frame Page 44
600 Ampere Frame. Page 66
1200 Ampere Frame. Page 90
2000 / 2500 Ampere Frame Page 98
Accessories Page 116

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

INTRODUCTION 5
Molded Case Circuit Breaker Types 6
Internal Operating Mechanisms 8
Circuit Breaker Tripping Characteristics 10
Construction 12
UL 489 Test Procedure 13
Ratings for Molded Case Circuit Breakers 15
Return and Exchange Policy 21
Catalog Numbers 22
100 AMPERE FRAME 25
Description 25
Applications 25
Selection Data 26
Dimensions. 30
Tripping Curves 32
Let-through Curves 42
225 / 250 AMPERE FRAME 44
Description 44
Applications 44
Selection Data 45
Dimensions 48
Tripping Curves 49
Let-through Curves 64
600 AMPERE FRAME 66
Description 66
Applications 66
Selection Data 66
Dimensions 67
Tripping Curves 68
Let-through Curves 77
800 / 1000 AMPERE FRAME 79
Description 79
Applications 79
Selection Data 79
Dimensions 81
Tripping Curves. 82
1200 AMPERE FRAME 90
Description 90
Applications 90
Selection Data 91
Dimensions 92
Tripping Curves 93
2000 / 2500 AMPERE FRAME 98
Description 98
Applications 98
Selection Data 98
Dimensions 101
Tripping Curves 104

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

ACCESSORIES 116
Factory and Field Installation Types 116
Shunt Trip 119
Ground Fault Shunt Trip 119
Undervoltage Trip 121
Undervoltage Trip Time-delay Unit 122
Auxiliary Switch 123
Alarm Switch 124
Micrologic ${ }^{\text {TM }}$ Ground Fault Module 125
Electrical Operators 127
Circuit Breaker Handle Accessories 132
Circuit Breaker Cylinder Locks 132
Walking Beam Mechanical Interlock 133
Operating Mechanisms 135
UL Listed Terminations. 136
Control Wire Terminations. 136
Lug Delete 136
Power Distribution Connectors 139
Rear Connecting Studs 139
I-Line ${ }^{\text {TM }}$ Accessories 140
KA Insert Kit 140
LC, LI, LE, LX and LXI Circuit Breaker Termination Clip Kit. 141
Replacement Handles 141
Mechanical Key Interlock Adaptor Plate. 141
Visi-blade ${ }^{\text {TM }}$ Circuit Breakers 142
Sub-feed Lugs 142

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Introduction

For PowerPact ${ }^{\text {TM }} \mathrm{H}-$, J-, L-, M-, P- and R-Frame circuit breakers see class 611 and 612 catalogs on the Schneider Electric website, www.schneider-electric.com.

This catalog introduces legacy thermal-magnetic circuit breakers, magnetic only circuit breakers, and molded case switches. Most of the legacy devices are obsolete but will be in service for many years. Catalog topics include the following:

- Construction standards
- Ratings and tripping characteristics
- Catalog numbers used when ordering (to specify the circuit breakers and accessories used with it)
- Return and exchange policies

The frame size sections contain application information on thermal-magnetic and magnetic only circuit breakers and molded case switches. They are presented in subsections based on their amperage ratings as shown below.

- 100 A Frame
- 225 / 250 A Frame
- 400 A Frame
- 600 A Frame
- 800 A Frame
- 1000 A Frame
- 1200 A Frame
- 2000 / 2500 A Frame
- Magnetic Only
- Molded Case Switches

The "Accessories" section contains the accessories used with thermal-magnetic circuit breakers, magnetic only circuit breakers and molded case switches. Ordering information for the accessories is also provided.

Circuit breakers are designed to protect electrical systems from damage caused by overloads, short circuits, and ground faults. A molded case circuit breaker is defined by the National Electrical Manufacturers Association ${ }^{\circledR}\left(\right.$ NEMA $\left.^{\circledR}\right)$ as, "... a device assembled as an integral unit in supporting and enclosing housing of insulated material, designed to open and close a circuit by non-automatic means, and to open the circuit automatically on a predetermined overcurrent, without injury to itself when properly applied within its rating."

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Molded Case Circuit Breaker Types

This catalog discusses the following types of molded case circuit breakers:

- Thermal-magnetic, including current limiting circuit breakers
- Magnetic only (Mag-Gard ${ }^{\text {TM }}$) circuit breakers
- Molded case switches

- Thermal-Magnetic Molded Case Circuit Breakers

Thermal-magnetic molded case circuit breakers are the most common overcurrent protection devices. Their primary functions are to provide a means to manually open a circuit and automatically open a circuit under overload or short circuit conditions. Thermal-magnetic circuit breakers use bimetals and electromagnetic assemblies to provide overcurrent protection. Their characteristic inverse time tripping under overload conditions is ideally suited for many applications varying from residential to heavy industrial loads. For higher level (short circuit) overcurrents, instantaneous trip characteristics allow molded case circuit breakers to interrupt with no intentional delay.

- Current Limiting Circuit Breakers

Current limiting circuit breakers are used for overcurrent protection and switching on ac systems where high fault currents may be encountered. They have permanent trip units containing individual thermal

FIL
Current Limiting Circuit Breaker and magnetic trip elements in each pole like thermal-magnetic circuit breakers. But they go one step further by limiting the amount of current that normally passes through a circuit breaker during a severe fault on the circuit being protected. Schneider Electric ${ }^{T M}$ brand current limiting circuit breakers are designed to take advantage of the electromagnetic repulsion created by closely spaced, parallel contact arms carrying current in opposite directions. This repulsion, intensified by an "O" shaped magnet surrounding the contact arms, causes the contacts to blow open in less than one millisecond under fault conditions above 10 to 15 times the handle rating of the circuit breaker. This high speed contact separation enhances the ability of the I -Limiter ${ }^{\mathrm{TM}}$ circuit breakers to limit both peak current and $\mathrm{I}^{2 \mathrm{t}}$ letthrough energy. UL^{\circledR} requires that peak current and I^{2} t let-through curves be available for current limiting circuit breakers.

The following steps describe the short circuit interrupting process of current limiting circuit breakers at fault levels within the current limiting range:

1. Contacts Part—The electromagnetic repulsion between the contact arms exceeds the spring force that holds the contact arms together. The repulsion blows the contact open.
2. Limited Peak Current Reached-The intense magnetic field inside the "O" shaped magnet forces the arc (between the opening contacts) into the stack plates.
3. Limiter Latch Holds Contacts Open—After Ip has been reached, the current must then be driven to zero. At the same time this occurs, a specially designed limiter latch holds the contacts open until interruption is complete.
4. Interruption Complete-To complete interruption, the arc voltage is sustained at a high enough level to overcome source voltage and thereby drive the current to zero (complete interruption). This requires a rapid rise in arc resistance and is accomplished by maintaining arc length while quickly cooling the arc. Cooling the arc causes a loss of ionization which increases arc resistance.

- Magnetic Only Circuit Breakers

FAL
Magnetic Only Circuit Breaker

KHL
Automatic Molded Case Switch

Mag-Gard magnetic only circuit breakers comply with National Electrical Code (NEC) requirements for providing motor circuit protection when installed as part of a listed combination controller having motor overload protection.

Mag-Gard instantaneous trip circuit breakers (often referred to as motor circuit protectors) are similar in construction to thermal-magnetic circuit breakers. They are designed as disconnect devices for use in combination with motor starters. Mag-Gard circuit breakers are built without thermal detection elements (bimetals), therefore, they provide short circuit protection only. Mag-Gard circuit breakers have an adjustable amperage pick up so they can be set to open instantaneously at current values slightly above the motor starting inrush current. This setting coordinates the pick-up time-current response of the Mag-Gard with the overload relay of the starter to give the best possible motor protection. According to the 2002 NEC ${ }^{\circledR}$, "Where the setting specified in Table 430.52 is not sufficient for the starting current of the motor, the setting of an instantaneous trip circuit breaker shall be permitted to be increased but shall in no case exceed 1300 percent of the motor full-load current for other than Design E motors or Design B energy efficient motors and no more than 1700 percent of full-load motor current for Design E motors or Design B energy efficient motors. Trip settings above 800 percent for other than Design E motors or Design B energy efficient motors and above 1100 percent for Design E motors or Design B energy efficient motors shall be permitted where the need has been demonstrated by engineering evaluation. In such cases, it shall not be necessary to first apply an instantaneous-trip circuit breaker at 800 percent or 1100 percent." Current interrupting ratings for these UL recognized components are established in combination with motor starters and properly sized overload relays and contactors. Mag-Gard circuit breakers are tested in combination with Schneider Electric starters per UL Standard 845.

- Molded Case Switches

Molded case switches are intended for use as disconnect devices only. UL Standard 489 requires molded case switches to be protected by a thermal-magnetic circuit breaker (or fuse) of equivalent rating. Molded case switches are labeled with their appropriate withstand ratings. Withstand rating is defined as the maximum current, at rated voltage, that the molded case switch will withstand, without damage, when protected by a circuit breaker (or fuse) with an equal continuous current rating.

Automatic molded case switches are similar in construction to thermal-magnetic circuit breakers, except that the thermal detection element is not present. These switches open instantaneously at a non-adjustable, factory preset, magnetic trip point calibrated to protect only the molded case construction, they are more compact than conventional disconnect switches and accept electrical accessories for added flexibility.

The following molded case switches are available from Schneider Electric:

Table 1: Molded Case Switches

Circuit Breaker	Frame Type
FH	100 A Frame
QB, QD, QG, QJ 1	70-250 A Frame
KH	250 A Frame
LH	400 A Frame
MH	$600-1000$ A Frame
NC	1200 A Frame
PH	2000 A Frame
PC	2500 A Frame

1 See Class 612, 613, and 734 catalogs for other PowerPact and Masterpact ${ }^{T M}$ circuit $^{\text {chen }}$ breakers.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Internal Operating Mechanisms

The following mechanisms allow the circuit breaker to operate:

- Thermal trip
- Magnetic trip
- Push-to-trip button
- Shunt trip
- Undervoltage trip

Note: Shunt trip and undervoltage trip are described in the Accessories section.

- Tripping Mechanism

The tripping mechanism is an assembly within the circuit breaker frame that causes the circuit breaker to open automatically under sustained overload, short circuit, or high level ground fault conditions.

The tripping mechanisms in two and three-pole circuit breakers operate such that an overcurrent on any given pole of the circuit breaker will cause all poles of the circuit breaker to open simultaneously. A thermal and magnetic factory calibration test (with current) is performed on each pole of every circuit breaker manufactured by Schneider Electric.

The sensing system of a thermal-magnetic circuit breaker is an integral part of the circuit breaker that continually monitors the current flowing through the circuit breaker. It detects abnormal current conditions and, depending on the magnitude of the current, initiates an inverse-time or an instantaneous tripping response. This action causes the tripping mechanism to open the circuit breaker contacts and interrupt current flow. The speed of the tripping process must be controllable and inversely matched to the severity of the overcurrent. The ability of a particular circuit breaker to interrupt a given level of overcurrent depends on the sensitivity of the circuit breaker.
Thermal-magnetic circuit breakers have two tripping elements.

- Thermal Trip

The molded case circuit breaker thermal trip element is a root means squared (RMS) sensing device. The bimetal thermal element is constructed from metals of dissimilar rates of expansion bonded together. The thermal portion responds to overloads by reacting to the heat generated both by the current flowing through the circuit breaker and by the heat contribution from the ambient conditions. The bending force of the bimetal causes the circuit breaker to trip. The deflection of the bimetal is predictable as a function of current and time. This is the inverse time tripping characteristics of the thermal element (i.e., the tripping time decreases as the magnitude of the current increases).
Schneider Electric calibrates the thermal elements for a specific amperage rating, and they are not field adjustable. The thermal trip elements are calibrated for $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature per UL Standard 489.

Figure 1: Thermal Trip Condition

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

- Magnetic Trip

The magnetic (instantaneous) trip element uses an electromagnetic assembly, in series with the load current, to trip the circuit breaker instantaneously (with no intentional delay) at or above a predetermined current value. During a short circuit of significant magnitude, the high level current passing through the conductor rapidly increases the magnetic field of the electromagnet which attracts the armature. As the armature is drawn toward the electromagnet, it initiates an unlatching action and opens the circuit breaker contacts.

Figure 2: Magnetic Tip Condition

Normal Condition

Magnetic Trip Condition

- Line and Load Connections

Thermal-magnetic circuit breakers, magnetic only circuit breakers, and molded case switches are provided with factory installed UL listed mechanical-type aluminum alloy lugs suitable for either aluminum or copper wire. In addition to mechanical lugs, Schneider Electric can supply copper mechanical lugs, aluminum or copper Versa-Crimp ${ }^{\text {TM }}$ compression lugs, and power distribution connectors. Circuit breakers can be ordered without lugs to accept bus connections.

Figure 3: Mechanical and Versa-Crimp Lugs

Schneider Electric also offers I-Line circuit breakers, which feature plug-on connectors. They are designed for easy installation and removal of the circuit breakers in our exclusive I-Line panelboards. I-Line circuit breakers use "blow-on" type connectors. In case of a short circuit, in the circuit being protected, the increased magnetic flux causes the plug-on connectors to grasp the panelboard bus bars even tighter. These connectors are an integral part of the I-Line circuit breakers, as is the circuit breaker mounting bracket.

- Push-To-Trip Button

Push-to-Trip is a standard feature of Schneider Electric molded case circuit breakers that allows the circuit breaker to be manually tripped without exposure to live parts. The Push-to-Trip button is located on the face of each molded case circuit breaker for ease of periodic operation.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

International I/O (ON/OFF) markings appear on the face of each Schneider Electric molded case circuit breaker and molded case switch in addition to the standard ON/OFF markings to indicate handle position. When tripped, the handle assumes a center position. To reset the breaker, the handle is moved to the OFF position and then to the ON position. During normal on/off operation, the handle opens and closes the circuit breaker contacts but does not exercise the tripping mechanism. Schneider Electric suggests that the circuit breaker's tripping mechanism be exercised at least annually. Use of the Push-to-Trip system will also check:

- Alarm circuits
- Emergency circuits
- Motor sequencing operations

For maintenance information, application and field testing guides, contact the local Schneider Electric Customer Information Center at 1-888-778-2733.

Circuit Breaker Tripping Characteristics

The tripping characteristics of thermal-magnetic molded case circuit breakers can be represented by a characteristic tripping curve that plots tripping time versus current level. The curve shows the amount of time required for a circuit breaker to trip for currents ranging from minor overloads to maximum interrupting capacity.

- Thermal Tripping Characteristics

The left-hand portion of a tripping curve displays the circuit breaker's thermal response. On low level overcurrents, up to the magnetic tripping level, thermal tripping occurs when a bimetal in the circuit breaker responds to heat associated with overcurrent. The bimetal deflects, unlatching the mechanism, which causes the circuit breaker contacts to open. The larger the overcurrent, the faster the circuit breaker operates to open the circuit (inverse time).

- Magnetic Tripping Characteristics

Figure 4: FI Characteristic Tripping Curve

Multiples of Rated Current

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

- Circuit Breaker Coordination

To determine what level of coordination exists between molded case circuit breakers, a comparison of circuit breaker characteristic tripping curves is necessary.

A coordination study is an organized effort to achieve optimum electrical distribution system protection by determining the appropriate frame sizes, ampere ratings, and settings of overcurrent protective devices. When an overcurrent within the coordination limits occurs in a distribution system, only the protective device nearest the overload or fault opens. Lack of coordination between overcurrent devices can result in upstream devices opening and interrupting electrical distribution in other parts of the system.

- Let-through Current Curves

Figure 5: Maximum Instantaneous Let-through Current

Let-through current curves show the extent to which a current limiting circuit breaker limits the peak current that could flow during a short circuit. On these curves, the slanting straight lines marked $15 \%, 25 \%$ and 45% power factor show the maximum theoretical peak currents that could flow in a faulted circuit having that particular short circuit power factory-with NO current limiting device in the circuit

Short circuits which produce high fault currents typically are associated with low short circuit power factors; that is, high X / R ratios. Since different portions of a system will exhibit various available fault levels and power factors associated with those levels, UL has established that the following power factors be used in short circuit testing:

Table 2: Power Factors in Short Circuit Testing

Test Current RMS Symmetrical (Amperes)	Power Factor (\%)
10,000 or Less	$45-50$
$10,000-20,000$	$25-30$
Over 20,000	$15-20$

Since the peak current let-through curves for the I-Limiter current limiting circuit breakers were derived from tests at the current levels and power factors indicated, the degree of current limitation is expressed by the differential between the maximum available peak current and the actual test letthrough peak current.

The curves extend from the threshold of current limitation through the maximum interrupting rating of the current limiting circuit breaker.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Figure 6: Maximum Let-through I^{2} t Energy

Abstract

Let-through $\mathrm{I}^{2 t}$ curves show the extent to which the current limiting circuit breaker limits energy let-through under short circuit conditions. The theoretical I t let-through of symmetrical sinusoidal current can be calculated. At 100,000 A rms, this would be 83×10^{6} A 2 seconds for $1 / 2$ cycle if NO CURRENT LIMITING DEVICE WERE IN THE CIRCUIT. In contrast, the curves show that with the same level of $100,000 \mathrm{rms}$ symmetrical short circuit amperes available, the 100 A current limiting circuit breaker would limit the energy flow $0.62 \times 10^{6} \mathrm{~A}^{2}$ seconds at 480 volts or $0.27 \times 10^{6} \mathrm{~A}^{2}$ seconds at 240 volts.

Construction

Thermal-magnetic circuit breakers are manufactured and tested according to the following standards and files:

- Underwriters Laboratories Inc. (UL) Listed to UL489 Standard, File E10027,
- National Electrical Manufacturers Association (NEMA) AB-1 Standard,
- Canadian Standards Association (CSA) Certified to CSA C22.2 No. 5-02 Standard, File LR7551,
- International Electrotechnical Commission (IEC) 60947-2 Standard,
- Federal Specification W-C-375B/GEN as Class 11a, 11b; 12a, 12b; and 13a, 13b.

Magnetic only circuit breakers are manufactured and tested according to the following standards and files:

- Underwriters Laboratories Inc. (UL) Recognized to UL489 Standard, File E10027,
- Canadian Standards Association (CSA) Certified to CSA C22.2 No. 5-02 Standard, File LR32390.

Molded case switches are manufactured and tested according to the following standards and files:

- Underwriters Laboratories Inc. (UL) Listed to UL489 Standard, File E33117 or E87159,
- Canadian Standards Association (CSA) Certified to CSA C22.2 No. 5-02 Standard, File LR32390 or LR40970.

Note: Circuit breakers are to be applied by guidelines detailed in the NEC and other local electrical codes.

- Specifications

Cases for molded case circuit breakers are constructed of a glass-reinforced insulating material that provides high dielectric strength. Current carrying components are isolated from the handle and accessory mounting area. The handle position indicates whether the circuit breaker is OFF, ON or tripped.

Schneider Electric molded case circuit breakers:

- Have common tripping of all poles,
- Are equipped with a Push-To-Trip button to manually trip the circuit breaker,
- Can be mounted and operated in any position,
- Are fully tested, UL listed, CSA certified, and IEC rated for reverse connection without restrictive "LINE" or "LOAD" markings.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

- Tripping System

Schneider Electric thermal-magnetic molded case circuit breakers have a permanent trip unit that contains a factory preset thermal trip element and a magnetic trip element in each pole. The thermal trip element is rms sensing. In circuit breakers with frame sizes greater than 100 A , the magnetic trip element is field adjustable. A single adjustment simultaneously adjusts the instantaneous trip point in each pole.

- Terminations

All factory installed mechanical type lugs are UL listed to accept solid or stranded conductors and can be used with wire rated at $60^{\circ} \mathrm{C}$ (sized according to the NEC $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$ temperature rating).
$167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$ and $90^{\circ} \mathrm{C}$ (sized according to the NEC $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$ temperature rating). Most molded case circuit breakers are UL listed to accept field installable mechanical type and compression type lugs.

- UL Requirements

A UL label on a Schneider Electric molded case circuit breaker indicates that the circuit breaker meets the requirements of UL Standard 489 for circuit breakers.

A UL label also means the production procedure is monitored by UL inspectors for continuing conformance to UL performance requirements. These requirements are based on sound engineering principles, research, records of test and field experience, and information gathered from users and inspection authorities. These requirements are subject to revision as necessary.

- UL HACR Type

All UL 489 listed molded case circuit breakers are HACR type.

UL 489 Test Procedures

- Limited Available Fault Current Tests

UL requires a series of tests on a single set of sample circuit breakers for compliance with
UL Standard 489. The tests for thermal-magnetic circuit breakers are described below.
Since molded case switches are derivatives of molded case circuit breakers, some testing of switches is identical to that for circuit breakers. These tests include a 600% overload performance test:

- 200\% Thermal Calibration

Each pole of the circuit breaker must trip within a specified time limit when carrying 200% of its continuous current rating.

- 135\% Thermal Calibration

With all poles connected in series, the circuit breaker must trip within a specified time limit when carrying 135% of its continuous current rating.

- Magnetic Calibration

If the circuit breaker has an adjustable magnetic tripping means, then it must trip within a specified percentage of the marked tripping current.

- Overload

The circuit breaker is operated making and breaking 600% of its continuous current rating, but not less than 150 A.

For circuit breakers through 1600 A, the number of 600% operations is 50 . For larger circuit breakers to 4000 A , the number of operations is 25 .

- Temperature Rise

While carrying 100% of rated current at a $104{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature and mounted in open air, the circuit breaker is checked for temperature rise on a wring terminal. The temperature on the terminal shall not exceed a $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ rise above ambient temperature and must be within specified limits.

- Endurance

The circuit ibreaker must successfully complete the following number of switching operations.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 3: Circuit Breaker Endurance

Frame Size Amperes	Full Load Operations	No Load Operations
$0-100$	6,000	4,000
$101-225$	4,000	4,000
$226-600$	1,000	5,000
$601-800$	500	3,000
$801-2500$	500	2,000
$2501-4000$	400	1,100

- Calibration Retest

Both the 200% and 135% thermal calibration tests are repeated.

- Short Circuit

For circuit breakers rated 240 Vac and higher, two short circuit tests per pole and one test with all poles connected in series is performed. For example, a three-pole circuit breaker receives seven short circuit tests.

For circuit breakers rated 120/240 Vac, three tests are made with all poles connected in series.
The circuit breaker is connected to the test circuit using wire correctly sized for the rating of the circuit breakers. The line leads are not more than four feet in length and the load leads are not more than 10 inches in length.

Note: Successful testing requires that the current be interrupted while monitoring the integrity of the line-end load connection.

- Trip Out

The 200\% thermal calibration test is repeated following the short circuit tests:

- Dielectric

The circuit breaker must withstand, for one minute, twice its rated voltage plus 1000 Vac:

- between line and load terminals with the circuit breaker open, that is, with the circuit breaker in the tripped and off positions,
- between terminals of opposite polarity with the circuit breaker closed, and
- between live parts and the overall enclosure with the circuit breaker both open and closed.

No conditioning of the circuit breaker can take place during or between these tests. There also can be no failure of functional parts at the conclusion of the sequences.

- High Available Fault Current Tests

After qualifying a set of circuit breakers to the standard tests, a manufacturer can have additional circuit breaker samples tested on higher than standard available fault currents.

The following performance requirements apply:

- 200\% Thermal Calibration

Each pole of the circuit breaker must trip within a specified time limit when carrying 200% of its continuous current rating.

- Short Circuit

With the load side terminals connected by 10 -inch lengths of specified cable, the circuit breaker is exposed to a short circuit current for a set time interval. After safe interruption, the circuit breaker is reset and closed again on the short circuit.

- 250\% Thermal Calibration

Each pole of the circuit breaker must trip within a specified time limit when carrying 250% of its continuous current rating.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

- Dielectric Withstand

The circuit breaker is subjected to twice its rated voltage, but not less than 900 Vac.
When the sample circuit breaker passes these tests, circuit breakers of the same construction can be marked or labeled with the higher current interrupting rating.

- Switching Duty

The switching duty (SWD) listing applies only to 15 A and 20 A circuit breakers rated at 277 Vac or less. The circuit breakers are subjected to specified temperature rise tests at predetermined periods during the endurance operations.

- Performance Requirements for Magnetic Trip Only Circuit Breakers

Design performance verification is tested as follows:

1. Verification of calibration
2. Overload
3. Temperature rise
4. Mechanical and electrical endurance
5. Limited fault current
6. Re-verification of calibration
7. Dielectric

Ratings for Molded Case Circuit Breakers

Molded case circuit breakers are selected by their ratings. The ratings must meet or exceed the parameters of the electrical system on which they are used.

- Voltage Rating

A circuit breaker may be rated either for alternating current (ac) or direct current (dc) system applications. The established voltage rating of a circuit breaker is based on design parameters such as clearance of current carrying parts and dielectric withstand tests both through air and over surfaces. Voltage ratings indicate the maximum voltage for the electrical system on which the circuit breaker can be applied. UL Standard 489 recognizes the following ratings:
Table 4: UL Standard 489 Recognized Voltage Ratings

Volts for Alternating Current (ac)	Volts for Direct Current (dc)
120	125
$120 / 240$	$125 / 250$
240	250
277	600
$480 \mathrm{Y} / 277$	-
480	-
600	-

Abstract

A circuit breaker can be rated for either ac or dc system applications or both. Circuit breaker voltage ratings must be equal to or greater than the nominal voltage of the electrical system on which they are used.

Paragraph 240.85 of the 2002 NEC states that a circuit breaker must be applied in the following manner:
240.85—A circuit breaker with a straight voltage rating, such as 240 V or 480 V , shall be permitted to be applied in a circuit in which the nominal voltage between any two conductors does not exceed the circuit breaker's voltage rating. A two-pole circuit breaker shall not be used for protecting a three-phase, corner-grounded delta circuit unless the circuit breaker is marked $1 \varnothing-3 \varnothing$ to indicate such suitability.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

A circuit breaker with a slash rating, such as $120 / 240 \mathrm{~V}$ or $480 \mathrm{Y} / 277 \mathrm{~V}$, shall be permitted to be applied in a solidly grounded circuit where the nominal voltage of any conductor to ground does not exceed the lower of the two values of the circuit breaker's voltage rating and the nominal voltage between any two conductors does not exceed the higher value of the circuit breaker's voltage rating.

FPN: Proper application of molded case circuit breakers on 3-phrase systems, other than solidly grounded WYE, particularly on corner grounded delta systems, considers the circuit breakers' individual pole-interrupting capability.

- Continuous Current Rating

The continuous current rating (or handle rating) of a circuit breaker is defined by NEMA as: "The maximum direct current or rms current, in amperes, at rated frequency which a device or assembly will carry continuously without exceeding the specified limits of observable temperature rise." Continuous current amperage ratings established by the 2002 NEC, paragraph 240.6 are: 15, 20, 25, 30, 35, 40, $45,50,60,70,80,90,100,110,125,150,175,200,225,250,300,350,400,450,500,600,700,800$, 1000, 1200, 1600, 2000, 2500, 3000, 4000, 5000, and 6000 A.

Paragraph 210.20 (A) and 215.3 of the 2002 NEC states:
210.20 (A)-Where a branch circuit supplies continuous loads or any combination of continuous and noncontinuous loads, the rating of the overcurrent device shall not be less than the noncontinuous load plus 125 percent of the continuous load.

Exception: Where the assembly, including the overcurrent devices protecting the branch circuit(s), is listed for operation at 100 percent of its rating, the ampere rating of the overcurrent device shall be permitted to be not less than the sum of the continuous load plus the noncontinuous load.
215.3-Feeders shall be protected against overcurrent in accordance with the provisions of Part I of Article 240. Where a feeder supplies continuous loads or any combination of continuous and noncontinuous loads, the rating of the overcurrent device shall not be less than the noncontinuous load plus 125 percent of the continuous load.
Exception No. 1: Where the assembly, including the overcurrent devices protecting the feeder(s), is listed for operation at 100 percent of its rating, the ampere rating of the overcurrent device shall be permitted to not less than the sum of the continuous load plus the noncontinuous load.

Exception No. 2: Overcurrent protection for feeders over 600 volts, nominal, shall comply with Prt IX of Article 240.

NEC defines a continuous load as: "A load where the maximum current is expected to continue for three hours or more."

UL Standard 489 states that circuit breakers must carry 100% of their continuous current rating indefinitely (without tripping) at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ in free air. Thermal-magnetic circuit breakers are sized per the NEC for 80% continuous current ratings in the intended enclosure. The continuous current rating is indicated on the front of each circuit breaker.

- Interrupting Ratings

Schneider Electric thermal-magnetic molded case circuit breakers can be standard interrupting, high interrupting, extra high interrupting, and time current limiting in construction and are UL listed for the interrupting ratings as shown below.
UL recognizes component combinations (circuit breaker / circuit breaker and fuse / circuit breaker) for series connected interrupting ratings. All series rated combinations are marked on the end use equipment along with the statement, "Caution-Series Rated System."

For 100% rated applications, see Class 602, 611, 612, and 613 catalogs for more information.

Table 5: UL Listed Interrupting Ratings in kA (RMS Symmetrical Amperes)

Ampacity	Catalog Prefix	Maximum Voltage	UL Listed Interrupting ratings (in kA)					
			240 Vac	480 Vac	600 Vac	125 Vdc	250 Vdc	500 Vdc
Standard Interrupting								
		600 Vac	25	18	14	10	10	-
15-100	FA	480 Vac	25	18	-	10	10	-
		240 Vac	10	-	-	5	5	-
70-250	KA	600 Vac	42	25	22	10	10	-
125-600	LA	600 Vac	42	30	22	10	10	-
300-1000	MA	600 Vac	42	30	22	10	10	-
600-1200	NA	600 Vac	100	50	25	-	-	-
600-2000	PA	600 Vac	65	50	42	-	-	-
High Interrupting								
15-100	FH	600 Vac	65	25	18	50	50	-
70-250	KH	600 Vac	65	35	25	50	50	-
125-400	LH	600 Vac	65	35	25	50	50	-
300-1000	MH	600 Vac	65	65	25	50	50	-
600-2000	PH	600 Vac	125	100	65	-	-	-
15-100	FH-DC	500 Vdc	-	-	-	-	-	20
70-250	KH-DC	500 Vdc	-	-	-	-	-	20
125-400	LH-DC	500 Vdc	-	-	-	-	-	20
300-1000	MH-DC	500 Vdc	-	-	-	-	-	20
600-2500	PA-DC	500 Vdc	-	-	-	-	-	25

Extra High Interrupting

$15-100$	FC	480 Vac	100	65	-	-	-	-
$110-250$	KC	480 Vac	100	65	-	-	-	-
$300-600$	LC	600 Vac	100	65	35	-	-	-
$600-1200$	NC	600 Vac	125	100	65	-	-	-
$1600-2500$	PC	600 Vac	125	100	65	-	-	-

Current Limiting

| $20-100$ | FI | 600 Vac | 200 | 200 | 100 | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $110-250$ | KI | 600 Vac | 200 | 200 | 100 | - | - | - |
| $300-600$ | LI | 600 Vac | 200 | 200 | 100 | - | - | - |

Note: These ratings apply to I-Line circuit breakers and circuit breakers with or without lugs.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

The ampere interrupting rating (AIR) of a circuit breaker is the highest current at rated voltage that the circuit breaker is intended to interrupt under standard test conditions. The interrupting rating is shown on the faceplate of the circuit breaker for each voltage level that the circuit breaker can use. Circuit breakers are selected with interrupting ratings equal to or greater than the available short circuit current at the point where the circuit breaker is applied in the system. Circuit breaker interrupting ratings are commonly expressed in rms symmetrical amperes. The industry standardization on rms symmetrical ampere ratings takes into account asymmetrical current conditions by specifying a power factor in the test circuit.
Figure 7: Circuit Breaker Faceplate Label

- Ambient Temperature Rating

To meet the requirements of UL Standard 489, CSA, and IEC, molded case circuit breakers are designed, built and calibrated for use on $50 / 60 \mathrm{Hertz}(\mathrm{Hz})$ ac systems in a $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature.
The ambient temperature is the temperature of the air surrounding a circuit breaker. Thermal-magnetic circuit breakers are temperature sensitive devices, and their rated continuous current carrying capacity is based on a UL specified $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ calibration temperature. The ambient temperature can affect the thermal (overload) tripping characteristics of thermal-magnetic circuit breakers. When applying the circuit breaker at a temperature other than $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, it may be necessary to rerate the circuit breaker to compensate for ambient conditions. Conductors are sized using the ampacity rerating factors shown in NEC Table 310-16 when designating systems for ambient temperatures other than $104{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.
Thermal-magnetic circuit breakers use bimetal strips that bend in response to temperature changes. Current flowing through the circuit breaker creates most of the heat that causes the tripping action. The ambient temperature surrounding the circuit breaker either adds to or subtracts from this available heat.

- Re-rating of Thermal-Magnetic Circuit Breakers for Ambient Conditions

Schneider Electric thermal-magnetic circuit breakers are to be applied in ambient temperatures within a range of 14 to $104^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$. These re-rating guidelines should be followed:

1. At ambient temperatures between $77-104^{\circ} \mathrm{F}\left(25-40^{\circ} \mathrm{C}\right)$, no rerating is necessary.
2. At ambient temperatures between $14-75^{\circ} \mathrm{F}\left(-10-24^{\circ} \mathrm{C}\right)$, thermal-magnetic circuit breakers carry more than their continuous current rating without tripping. Wire and equipment damage can result if they are not in the same low ambient environment as the circuit breaker.
If closer protection of the equipment and wire is required, the increased current carrying capacity of the circuit breaker at the lower ambient temperature should be taken into consideration.
3. At ambient temperatures between $106-140^{\circ} \mathrm{F}\left(41-60^{\circ} \mathrm{C}\right)$ thermal-magnetic circuit breakers carry less than their continuous current rating and must be carefully selected to prevent nuisance tripping.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

The following procedure is used to determine the continuous current carrying capacity of a thermalmagnetic circuit breaker at ambient temperature other than $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ (see data bulletin Determining Current Carrying Capacity in Special Applications for more information):

1. Refer to the ambient rerating curves for the circuit breaker type.
2. Select the curve for the specific amperage rating of the circuit breaker involved. Note in the figure, below, that the curve crosses the $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature line at the circuit breaker's UL listed continuous current rating (handle rating).
3. Follow this curve to the ambient temperature in which the circuit breaker is to be installed.
4. Read the continuous current carrying capacity at this left axis point.
5. Apply any other applicable factors, such as 80% loading per the NEC.

Figure 8: LA Circuit Breaker Ambient Rerating Curves

For example, this figure shows the ambient rerating curves for the LA thermal-magnetic circuit breaker. Determine the continuous current carrying capacity of a 400 A LA circuit breaker applied at $104{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ by finding 40 on the horizontal axis and reading up to the 400 A curve. The circuit breaker carries 400 A , which is its rated capacity. If the circuit breaker is used on a continuous load (3 hours or more). Paragraph 220-10b of the NEC requires that loading not exceed 80% of the rating ($400 \mathrm{~A} \times 80=320 \mathrm{~A}$).

- Frequency Rating

The standard rated frequency for circuit breakers is 60 Hz , but Schneider Electric circuit breakers can be applied on 50 Hz systems without thermal or magnetic re-rating. Other frequencies can affect the thermal, magnetic and short circuit tripping characteristics of circuit breakers.

Applying thermal-magnetic circuit breakers at frequencies above $50 / 60 \mathrm{~Hz}$ requires special consideration of the effects of high frequency on circuit breaker tripping characteristics. Thermal and magnetic operations must be treated separately.

- Thermal Tripping Performance

At frequencies below 60 Hz , the thermal rerating of thermal-magnetic circuit breakers is negligible. However, at frequencies above 60 Hz , thermal rerating is required. High frequency operation causes abnormal heat rise in the current carrying parts because of the skin effect. One of the most common frequency applications is at 400 Hz .

For example, when applying a 200 A kA circuit breaker on a 400 Hz system, the circuit breaker's current carrying capacity is as follows:

- Non-continuous loads (less than three hours): The kA circuit breaker may be applied at 0.92 of its rating, or 184 A .
- Continuous loads (3 hours or more): Paragraph 220-10b of the NEC requires that circuit breaker's loading does not exceed 80% of its rating when used for continuous loads.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

(Unless the circuit breaker is rated for operation at 100\% of its rating). Therefore, the current carrying capacity of a 200 A kA circuit breaker operating under continuous load at 400 Hz would be $200 \times 0.92 \times 0.80=147 \mathrm{~A}$.

Figure 9: 400 Hz Thermal Rerating Multiplier

- Magnetic Tripping Performance

At frequencies above 60 Hz , the interrupting capacity of thermal-magnetic circuit breakers is less than the 60 Hz interrupting capacity. Unless specifically marked on 400 Hz systems, the interrupting capacity of Schneider Electric circuit breakers is reduced to $1 / 10$ th of the 60 Hz interrupting capacity.

Figure 10: 60 Hz Current Multipliers

At frequencies above 60 Hz , more current is necessary to magnetically trip a circuit breaker than at 60 Hz . The figure below shows the multipliers of 60 Hz current that it takes to magnetically trip a circuit breaker when applied at various frequencies. For example, at 60 Hz it takes 1000 A to magnetically trip a 200 A KA circuit breaker at its low setting. At 400 Hz it takes 2600 A (2.6 multiplier) to magnetically trip the same circuit breaker.

- Rerating for Direct Current

Trip curves provide complete time-current characteristics of circuit breakers when applied on ac systems only. Thermal-magnetic circuit breakers (1000 A frame or less) on dc systems retain their thermal tripping characteristics, but a multiplier must be applied to the ac magnetic trip level to determine an equivalent dc trip level.

Below is a list of multipliers for the dc magnetic trip level of each type of thermal-magnetic circuit breaker:
Table 6: Rerating Multipliers for Direct Current

Circuit Breaker	Magnetic Trip Level Multiplier
FA/FH/FC	1.15
KA/KH/KC	Hi Setting 1.15
	Lo Setting 1.3
LA/LH	Hi Setting 1.2
	Lo Setting 1.3
MA/MH	Hi Setting 1.1
	Lo Setting 1.2

For example, the equivalent dc magnetic trip levels for a $200 \mathrm{~A} k A$ circuit breaker would be:

1. ac Hi Setting $=2000 \mathrm{~A}+20 \%$.
2. dc Hi Setting $=2000 \mathrm{~A} \times 1.15=2300 \mathrm{~A}+20 \%$.
3. ac Lo Setting $=1000 A+25 \%$.
4. dc Lo Setting $=1000 \mathrm{~A} \times 1.3=1300 \mathrm{~A}+25 \%$.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

UL Listed 500 Vdc Rated Circuit Breakers

Schneider Electric has UL listed dc thermal-magnetic circuit breakers specifically designed for use on ungrounded dc systems having a maximum short circuit (loaded) voltage of 500 Vdc or a maximum floating (unloaded) voltage of 600 Vdc .

This UL listed dc rating is available on FH. KH, LH, MH and PA molded case circuit breakers. Specific time current characteristic tripping curves are available for these applications.

Return and Exchange Policy

Molded case circuit breakers are factory sealed and no internal inspection or maintenance is required under normal conditions. Important: DO NOT OPEN THE SEALED CASE. Opening of the sealed case voids the UL label and the Schneider Electric warranty.

All damaged or used circuit breakers should be replaced as a unit and returned to the factory for inspection. Upon receipt of the circuit breaker, Schneider Electric performs a thorough inspection of the circuit breaker and issues a test report (on request). Unused circuit breakers and circuit breakers returned for inspection must be returned as instructed by the local Schneider Electric Customer Care Center.
Circuit breakers sent to the factory for inspection or testing are not returned. Schneider Electric offers a new circuit breaker and allows a credit for the circuit breaker that was returned. Price and credit allowances for all replacements of molded case circuit breakers and trip units are determined by Class, as follows.

- Class I

New circuit breakers that have been broken by handling or assembling, by other than Schneider Electric, or in transit and have not been in service.

- Allowance

A replacement circuit breaker is furnished and billed at list price minus the regular discount. When the circuit breaker in need of repair is returned, a credit allowance (42% of the billing price minus any transportation paid by Schneider Electric) is issued against the invoice of the replacing order.

- Class II

New circuit breakers that meet factory inspection standards and are interchangeable electrically and physically with standard units of current manufacture.

- Allowance

A replacement circuit breaker is furnished at the list price minus the regular discount. When the unused circuit breaker is returned, a credit (in the amount of the billing price minus 20% restocking charge and any transportation paid by Schneider Electric) is issued.

- Class III

Inoperative circuit breakers.

- Allowance

A replacement circuit breaker is furnished at the list price minus the regular discount. Upon return of the circuit breaker claimed inoperative, full credit is issued on the basis of the replacement cost plus any transportation costs paid by the customer.

Examination by Customer Care must substantiate the claimed inoperative nature of the material returned.

- Class IV

Exchange of permanent trip circuit breakers (KA, LA, MA or NA) furnished in lieu of circuit breakers specified with interchangeable trip. These circuit breakers can be identified by a label stating they are subject to this exchange policy.

- Allowance

A replacement circuit breaker within the same frame size, but of a different trip rating than that exchanged, is furnished at the lowest recognized competitive list price for a trip unit of the same frame size and trip rating minus the regular discount. This exchange arrangement requires that the replaced circuit breaker be returned to Schneider Electric.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Catalog Numbers

Square D brand circuit breakers by Schneider Electric are ordered by a catalog number that includes the breaker family, description, poles, voltage rating, amperage rating and suffix.

The table below shows a typical catalog number broken down by components. For example, FAL36050V2100, can be broken down as follows:

Table 7: Catalog Numbers

Components	Description
FA	100 A frame circuit breaker
L	Circuit breaker with lugs on both ends
3	Number of poles
6	Voltage rating
050	Continuous current amperage rating (handle rating)
V and 2100	V indicates the Visi-Blade feature and the 2100 indicates a factory installed contact alarm. These two components are the suffix

Table 8: Breakdown of Typical Catalog Number

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 9: PowerPact Q-frame Catalog Numbering System ${ }^{1}$

Number Segment	Character	Description	Q	B	L	3	2	250	42	L W ${ }^{3}$
Circuit Breaker Family	Q									
Circuit Breaker Type (Interrupting Rating)	B	10 kA								
	D	25 kA								
	G	65 kA								
	J	100 kA								
Connection Type	A	I-Line								
	E	Bolt-on I-Line								
	F	No lugs (Bus Connection)								
	L	Lugs on both ends								
	M	Lugs on ON (I) end only								
	P	Lugs on OFF (O) end only								
Poles	2	Two-pole								
	3	Three-pole								
240 Volts Only	2									
Continuous Current Rating (Amperes)	70									
	80									
	90									
	100									
	110									
	125									
	150									
	175									
	200									
	225									
	250									
	000 S 22 = Switch (QB only)									
I-Line Phasing	Two-pole	1 = AB								
		2 = AC								
		$3=\mathrm{BA}$								
		$4=\mathrm{BC}$								
		5 = CA								
		6 = CB								
	Three-pole	None = ABC								
		6 = CBA								
Special Ambient	C	$\mathrm{A}=50 \mathrm{C}$								
Control Taps	L	$\mathrm{U}=$ Control taps applied to ON (I) end								
		V = Control taps applied to OFF (O) end								
		W = Control taps applied to both ends								
Termination Options	T	M = Lugs applied to OFF (O) end; studs with nuts and washers threaded onto ON (I) end								
		$\mathrm{N}=$ Lugs applied to ON (I) end; studs applied to OFF (O) end (nuts/washers in bag, supplied)								
		$\mathrm{P}=$ Studs applied to ON (I) end; Lugs applied to OFF (O) end (nuts/washers in bag, supplied)								
		S = Studs on BOTH ends (nuts/ washers in bag, supplied)								
Special Features	Y	D = Calibration test report supplied								
		$\mathrm{F}=$ Fungus treatment								
		P = Handle Padlock Attachment, ON (I) or OFF (O) position								
		Q = Handle Padlock Attachment, OFF (O) position only								

1 See Class 611, 612, 613, and 734 catalogs for other PowerPact and Masterpact circuit breakers.
2 May be collapsed if none.
3 May be collapsed if none. May be multiple options.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

100 Ampere Frame

This section provides specific information on Schneider Electric 100 A frame thermal-magnetic molded case circuit breakers. For more information, see the "Introduction" in this catalog.

Description

Table 10: Description of 100 A Frame Circuit Breakers

Circuit Breaker	Description
FA/FH	$15-100 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, 250 Vdc, One-, two- and three-pole
FC	$15-100 \mathrm{~A}, 480 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, two- and three-pole
FI	$20-100 \mathrm{~A}, 600$ Vac $50 / 60 \mathrm{~Hz}$, two- and three-pole
FY	$15-30 \mathrm{~A}, 277 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, one-pole

Applications

- FI current limiting circuit breakers are used for electrical systems where high fault currents can occur.
- FA/FH, FC, and FI circuit breakers are used in industrial enclosures, panelboards, switchboards, busway plug-in units, combination starters, or motor control centers.
- FY thermal-magnetic circuit breakers are used in I-Line panelboards and switchboards.

Table 11: 100 A Frame Interrupting Ratings

Catalog Number Prefix		No. of Poles	Cont. Ampere Rating	UL Listed Interrupting Rating (kA)								Federal Specs. W-C-375B/GEN	IEC 60947-2 Icu/lcs (kA) AC Voltage 415/240	
		AC Volts - RMS Symmetrical Amperes		DC Volts										
Unit Mount	I-Line			120	240	$\begin{gathered} \text { 480YI } \\ 277 \end{gathered}$	480	600	125	250	500			
	FY		1	15-30	18	14	14	-	-	-	-	-	11a, 13b	10/2.5
$\begin{gathered} \text { FAL } 240 \\ \text { Vac } \end{gathered}$	$\begin{gathered} \text { FA } 240 \\ \text { Vac } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$-$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	5 5	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 11 a \\ 11 \mathrm{~b}, 12 \mathrm{~b} \\ 11 \mathrm{~b}, 12 \mathrm{~b} \end{gathered}$	10/2.5	
$\begin{gathered} \text { FAL } 480 \\ \text { Vac } \end{gathered}$	$\begin{gathered} \text { FA } 480 \\ \text { Vac } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 18 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & - \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & - \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \text { 11a, 12a, 13a } \\ 13 b \\ 13 b \end{gathered}$	10/2.5	
$\begin{gathered} \text { FAL } 600 \\ \text { Vac } \end{gathered}$	$\begin{gathered} \text { FA } 600 \\ \text { Vac } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 18 a \\ & 18 a \end{aligned}$	10/2.5	
FHL 1	FH ${ }^{1}$	$\begin{gathered} \hline 1 \\ 1 \\ 2,3 \end{gathered}$	$\begin{gathered} \hline 15-30 \\ 35-100 \\ 15-100 \end{gathered}$	$\begin{aligned} & \hline 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 25 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & 18 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 50 \end{aligned}$	$\begin{aligned} & - \\ & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 13 a \\ & 13 a \\ & 22 a \end{aligned}$	10/2.5	
FHL-DC ${ }^{2}$	-	3	-	-	-	-	-	-	-	-	20K	-	-	
FCL	FC	2, 3	20-100	100	100	65	65	-	-	-	-	22a	10/2.5	
FIL	FI	2, 3	20-100	200	200	200	200	100	-	-	-	16a	6/1.5	

[^0]Note: For IEC 60947-2 rated S-line ratings, not UL listed, see Supplemental Digest.

Selection Data

Table 12: 100 A Frame Unit Mount Circuit Breakers ${ }^{1}$

FAL One-pole 15-100 A

Ampere Rating	AC Magnetic Trip Settings Amperes		One-pole Catalog No.	Two-Pole Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
FAL Standard Interrupting						
	Hold	Trip	120 Vac	240 Vac	240 Vac	
15	275	600	FAL12015	FAL22015	FAL32015	
20	275	600	FAL12020	FAL22020	FAL33020	
25	275	600	FAL12025	FAL22025	FAL32025	\#14-\#4 Cu or
30	275	600	FAL12030	FAL22030	FAL32030	
35	400	850	FAL12035	FAL22035	FAL32035	
40	400	850	FAL12040	FAL22040	FAL32040	
45	400	850	FAL12045	FAL22045	FAL32045	
50	400	850	FAL12050	FAL22050	FAL32050	AL100FA
60	830	1450	FAL12060	FAL22060	FAL32060	\#14-\#1/0 Cu or
70	800	1450	FAL12070	FAL22070	FAL32070	\#12-\#1/o Al
80	800	1450	FAL12080	FAL22080	FAL32080	
90	900	1700	FAL12090	FAL22090	FAL32090	
100	900	1700	FAL12100	FAL22100	FAL32100	

FAL Standard Interrupting

FAL/FHL Two-pole 15-100 A

FAL/FHL/FCL Three-pole 15-100 A

	Hold	Trip	277 Vac/125 Vdc	$480 \mathrm{Vac} / 250 \mathrm{Vdc}$	$480 \mathrm{Vac} / 250 \mathrm{Vdc}$	
15	275	600	FAL14015	FAL24015	FAL34015	AL50FA \#14-\#4 Cu or \#12-\#4 AI
20	275	600	FAL14020	FAL24020	FAL34020	
25	275	600	FAL14025	FAL24025	FAL34025	
30	275	600	FAL14030	FAL24030	FAL34030	
35	400	850	FAL14035	FAL24035	FAL34035	AL100FA \#14-\#1/0 Cu or \#12-\#1/o Al
40	400	850	FAL14040	FAL24040	FAL34040	
45	400	850	FAL14045	FAL24045	FAL34045	
50	400	850	FAL14050	FAL24050	FAL34050	
60	800	1450	FAL14060	FAL24060	FAL34060	
70	800	1450	FAL14070	FAL24070	FAL34070	
80	800	1450	FAL14080	FAL24080	FAL34080	
90	900	1700	FAL14090	FAL24090	FAL34090	
100	900	1700	FAL14100	FAL24100	FAL34100	
FAL Standard Interrupting						
	Hold	Trip		$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
15	275	600	-	FAL26015	FAL36015	AL50FA \#14-\#4 Cu or \#12-\#4 Al
20	275	600	-	FAL26020	FAL36020	
25	275	600	-	FAL26025	FAL36025	
30	275	600	-	FAL26030	FAL36030	
35	400	850	-	FAL26035	FAL36035	AL100FA \#14-\#1/0 Cu or \#12-\#1/o Al
40	400	850	-	FAL26040	FAL36040	
45	400	850	-	FAL26045	FAL36045	
50	400	850	-	FAL26050	FAL36050	
60	800	1450	-	FAL26060	FAL36060	
70	800	1450	-	FAL26070	FAL36070	
80	800	1450	-	FAL26080	FAL36080	
90	900	1700	-	FAL26090	FAL36090	
100	900	1700	-	FAL26100	FAL36100	

[^1]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 12: 100 A Frame Unit Mount Circuit Breakers ${ }^{1}$

	Ampere Rating	AC Magnetic Trip Settings Amperes		One-pole Catalog No.	Two-Pole Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
	FHL High Interrupting						
		Hold	Trip	$277 \mathrm{Vac} / 125 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
	15	275	600	FHL16015	FHL26015	FHL36015	
	20	275	600	FHL16020	FHL26020	FHL36020	AL50FA
	25	275	600	FHL16025	FHL26025	FHL36025	\#14-\#4 Cu or
	30	275	600	FHL16030	FHL26030	FHL36030	
	35	400	850	FHL16035	FHL26035	FHL36035	
	40	400	850	FHL16040	FHL26040	FHL36040	
	45	400	850	FHL16045	FHL26045	FHL36045	
	50	400	850	FHL16050	FHL26050	FHL36050	AL100FA
	60	800	1450	FHL16060	FHL26060	FHL36060	\#14-\#1/0 Cu or
	70	800	1450	FHL16070	FHL26070	FHL36070	\#12-\#1/0 Al
	80	800	1450	FHL16080	FHL26080	FHL36080	
	90	900	1700	FHL16090	FHL26090	FHL36090	
	100	900	1700	FHL16100	FHL26100	FHL36100	
	FCL Extra High Interrupting						
		Hold	Trip		$480 \mathrm{Vac}{ }^{2}$	480 Vac	
	15	275	600	-	FCL24015	FCL34015	
	20	275	600	-	FCL24020	FCL34020	CU30FA
	25	275	600	-	FCL24025	FCL34025	\#14-\#10 Cu
	30	275	600	-	FCL24030	FCL34030	
	35	400	850	-	FCL24035	FCL34035	
	40	400	850	-	FCL24040	FCL34040	
	45	400	850	-	FCL24045	FCL34045	
	50	400	850	-	FCL24050	FCL34050	AL100FA4
	60	800	1450	-	FCL24060	FCL34060	\#14-\#3 Cu or
	70	800	1450	-	FCL24070	FCL34070	\#12-\#1 Al
	80	800	1450	-	FCL24080	FCL34080	
	90	900	1700	-	FCL24090	FCL34090	
	100	900	1700	-	FCL24100	FCL34100	
FIL I-Limiter\qquad							
		Hold	Trip		600 Vac	600 Vac	
FIL Two- and Three-pole 20-100 A	20 30	275 275	600 600	-	FIL26020 FIL26030	FIL36020 FIL36030	AL50FA 1-\#14-\#4 Cu or 1-\#12-\#4 AI
	40	400	850	-	FIL26040	FIL36040	
	50	400	850	-	FIL26050	FIL36050	
	60	800	1700	-	FIL26060	FIL36060	AL100FA
	70	800	1700	-	FIL26070	FIL36070	1-\#14-\#1/0 Cu or
	80	800	1700	-	FIL26080	FIL36080	1-\#12-\#1/0 Al
	90	800	1700	-	FIL26090	FIL36090	
	100	800	1700	-	FIL26100	FIL36100	
	${ }^{1} \mathrm{FCL}$ two-pole circuit breaker built using three-pole module.						
	${ }^{2}$ Rated 277 Vac 15 and 20 A FY circuit breakers are rated for switching duty (SWD). 15, 20, 25, and 30 A FA I-Line circuit breakers are also available (no SWD rating).						

-Continued on next page

Table 13: 100 A Frame I-Line Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes		One-pole ${ }^{1}$ Catalog No.	Two-Pole 1 Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
FA Standard Interrupting						
	Hold	Trip		240 Vac	240 Vac	
15	275	600	-	FA22015()	FA32015	
20	275	600	-	FA22020()	FA33020	AL50FA
25	275	600	-	FA22025 ()	FA32025	$\begin{aligned} 1-\# 14-\# 4 \\ 1-\# 12-\# 4 \end{aligned}$
30	275	600	-	FA22030()	FA32030	
35	400	850	-	FA22035()	FA32035	
40	400	850	-	FA22040()	FA32040	
45	400	850	-	FA22045 ()	FA32045	
50	400	850	-	FA22050()	FA32050	AL100FA
60	830	1450	-	FA22060()	FA32060	1-\#14-\#1/0 Cu or
70	800	1450	-	FA22070()	FA32070	1-\#12-\#1/0 Al
80	800	1450	-	FA22080()	FA32080	
90	900	1700	-	FA22090 ()	FA32090	
100	900	1700	-	FA22100()	FA32100	
FA Standard Interrupting						
	Hold	Trip	277 Vac/125 Vdc	$480 \mathrm{Vac} / 250 \mathrm{Vdc}$	$480 \mathrm{Vac} / 250 \mathrm{Vdc}$	
15	275	600	FY14015() ${ }^{2}$	FA24015()	FA34015	
20	275	600	FY14020() ${ }^{2}$	FA24020 ()	FA34020	$\xrightarrow{\text { AL50FA }}$
25	275	600	FY14025() ${ }^{2}$	FA24025 ()	FA34025	$\begin{gathered} 1-\# 14-\# 4 \mathrm{Cu} \text { or } \\ 1-\# 12-\# 4 \mathrm{Al} \end{gathered}$
30	275	600	FY14030() ${ }^{2}$	FA24030 ()	FA34030	
35	400	850	FA14035() ${ }^{3}$	FA24035()	FA34035	
40	400	850	FA14040() ${ }^{3}$	FA24040()	FA34040	
45	400	850	FA14045() ${ }^{3}$	FA24045()	FA34045	
50	400	850	FA14050() ${ }^{3}$	FA24050()	FA34050	AL100FA
60	800	1450	FA14060() ${ }^{3}$	FA24060()	FA34060	1-\#14-\#1/0 Cu or
70	800	1450	FA14070() ${ }^{3}$	FA24070()	FA34070	1-\#12-\#1/0 Al
80	800	1450	FA14080($)^{3}$	FA24080()	FA34080	
90	900	1700	FA14090($)^{3}$	FA24090()	FA34090	
100	900	1700	FA14100() ${ }^{3}$	FA24100()	FA34100	
FA Standard Interrupting						
	Hold	Trip		$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
15	275	600	-	FA26015()	FA36015	
20	275	600	-	FA26020()	FA36020	AL50FA
25	275	600	-	FA26025()	FA36025	$1-\# 12-\# 4 \mathrm{Al}$
30	275	600	-	FA26030()	FA36030	
35	400	850	-	FA26035()	FA36035	
40	400	850	-	FA26040()	FA36040	
45	400	850	-	FA26045 ()	FA36045	
50	400	850	-	FA26050()	FA36050	AL100FA
60	800	1450	-	FA26060()	FA36060	1-\#14-\#1/0 Cu or
70	800	1450	-	FA26070 ()	FA36070	1-\#12-\#1/0 Al
80	800	1450	-	FA26080()	FA36080	
90	900	1700	-	FA26090()	FA36090	
100	900	1700	-	FA26100()	FA36100	

[^2]-Continued on next page

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

FA/FH Three-pole FC Two- and Three-pole 4-1/2 in. Mounting Height

Table 13: 100 A Frame I-Line Circuit Breakers (continued)

FI Two- and Three-pole 4-1/2 in. Mounting Height

Ampere Rating	AC Magnetic Trip Settings Amperes		One-pole ${ }^{1}$ Catalog No.	Two-Pole ${ }^{1}$ Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
FH High Interrupting						
	Hold	Trip	277 Vac/125 Vdc	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
15	275	600	FH16015()	FH26015()	FH36015	
20	275	600	FH16020()	FH26020()	FH36020	AL50FA
25	275	600	FH16025()	FH26025()	FH36025	$1-\# 12-\# 4 \mathrm{Al}$
30	275	600	FH16030()	FH26030()	FH36030	
35	400	850	FH16035()	FH26035()	FH36035	
40	400	850	FH16040()	FH26040()	FH36040	
45	400	850	FH16045()	FH26045 ()	FH36045	
50	400	850	FH16050()	FH26050()	FH36050	AL100FA
60	800	1450	FH16060()	FH26060()	FH36060	1-\#14-\#1/0 Cu or
70	800	1450	FH16070()	FH26070 ()	FH36070	1-\#12-\#1/0 Al
80	800	1450	FH16080()	FH26080()	FH36080	
90	900	1700	FH16090()	FH26090()	FH36090	
100	900	1700	FH16100()	FH26100 ()	FH36100	
FC Extra High Interrupting						
	Hold	Trip		480 Vac	480 Vac	
15	275	600	-	FC24015 ()	FC34015	
20	275	600	-	FC24020()	FC34020	CU30FA4
25	275	600	-	FC24025 ()	FC34025	1-\#14-\#10 Cu
30	275	600	-	FC24030()	FC34030	
35	400	850	-	FC24035()	FC34035	
40	400	850	-	FC24040 ()	FC34040	
45	400	850	-	FC24045()	FC34045	
50	400	850	-	FC24050()	FC34050	AL100FA4
60	800	1450	-	FC24060()	FC34060	1-\#14-\#3 Cu or
70	800	1450	-	FC24070 ()	FC34070	1-\#12-\#1 Al
80	800	1450	-	FC24080()	FC34080	
90	900	1700	-	FC24090()	FC34090	
100	900	1700	-	FC24100()	FC34100	
Fl I-Limiter Current Limiting						
	Hold	Trip		600 Vac	600 Vac	
20	275	600	-	FI26020()	FI36020	AL50FA 1-\#14-\#4 Cu or
30	275	600	-	FI26030()	FI36030	1-\#12-\#4 AI
40	400	850	-	FI26040()	FI36040	
50	400	850	-	FI26050()	FI36050	
60	800	1700	-	FI26060()	FI36060	AL100FA
70	800	1700	-	FI26070()	FI36070	1-\#14-\#1/0 Cu or
80	800	1700	-	FI26080()	FI36080	1-\#12-\#1/0 Al
90	800	1700	-	FI26090()	FI36090	
100	800	1700	-	FI26100()	FI36100	

1 One and two-pole circuit breaker catalog numbers are completed by adding the required phase connection letters as a suffix to the catalog number.
2 Rated 277 Vac 15 and 20 A FY circuit breakers are rated for switching duty (SWD). 15, 20, 25, and 30 A FA I-Line circuit breakers are also available (no SWD rating).
3 Rated 277 Vac, 125 Vdc except FY, which has no dc rating. 15-30 A breakers suitable for use with 140 or $167^{\circ} \mathrm{F}\left(60\right.$ or $\left.75^{\circ} \mathrm{C}\right)$ conductors. 35-100 A circuit breakers are suitable for use with $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$ conductors.
Cumiter Current Limiting -

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Dimensions

Figure 11: FAL, FHL, FCL 100 A Frame

FCL two-pole circuit breaker dimension is the same as a three-pole circuit breaker.

Dimensions: $\begin{gathered}\text { in. } \\ (\mathrm{mm})\end{gathered}$

Figure 12: FIL 100 A Frame

Dimensions: $\begin{gathered}\text { in. } \\ (\mathrm{mm})\end{gathered}$

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Tripping Curves

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

I-LIMITER ${ }^{\circledR}$ CURRENT LIMITING CIRCUIT BREAKERS
FI 100 A Frame at 240,480 and 600 Vac, $3 \varnothing$
25-100 A
Curve No. 820-3 Peak Let-Through Current I_{p} and 820-4 Let-Through ${ }^{12}$ t

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

225 / 250 Ampere Frame

This section provides specific information on Schneider Electric 225 / 250 A frame thermal-magnetic molded case circuit breakers. For more information, see the "Introduction" in this catalog.

Description

Table 14: Description of 225 / 250 A Frame Circuit Breakers

Circuit Breaker	Description
QB, QD, QG, QJ	$100-225 \mathrm{~A}, 240 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, two- and three-pole.
KA/KH	$70-250 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$ two- and three-pole
KC	$110-250 \mathrm{~A}, 480 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$, two- and three-pole
KI	$110-250 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, two- and three-pole
current limiting	

Applications

- KI current limiting circuit breakers are used for electrical systems where high fault currents can occur.
- KA/KH, KC and KI circuit breakers are used in industrial enclosures, panelboards, switchboards, busway plug-in units, combination starters and motor control centers.
- QB, QD, QG, QJ (250 A Q-frame) circuit breakers are used in individual enclosures, metering devices, panelboards 225 A maximum I-Line, and switchboards.

Table 15: $\quad 250$ A PowerPact Q-frame Interrupting Ratings (225 A I-Line) ${ }^{1}$

Catalog Number Prefix		No. of Poles	Cont. Ampere Rating	UL Listed Interrupting Rating (kA)									Federal Specs. W-C-375B/GEN	IEC 60947-2 Icu/lcs (kA) AC Voltage 415/240	
		AC Volts - RMS Symmetrical Amperes		DC Volts											
Unit Mount	I-Line			120	$\begin{aligned} & 120 / \\ & 240 \end{aligned}$	240	$\begin{gathered} 480 \mathrm{Y} / \\ 277 \end{gathered}$	480	600	125	250	500			
QBL QBM	QBA QBE		2	70-250 ${ }^{2}$	-	-	10	-	-	-	-	-	-	12b	10/5
QBF		3	-		-	10	-	-	-	-	-	-	12b	10/5	
QDL QDM	QDA QDE	2	70-250 ${ }^{2}$	-	-	25	-	-	-	-	-	-	14b	10/5	
QDF		3		-	-	25	-	-	-	-	-	-	14b	10/5	
$\begin{aligned} & \text { QGL } \\ & \text { QGM } \end{aligned}$	$\begin{aligned} & \text { QGA } \\ & \text { QGE } \end{aligned}$	2	70-250 ${ }^{2}$	-	-	65	-	-	-	-	-	-	15b	10/5	
QGF		3		-	-	65	-	-	-	-	-	-	15b	10/5	
$\begin{aligned} & \text { QJL } \\ & \text { QJM } \end{aligned}$	$\begin{aligned} & \text { QJA } \\ & \text { QJE } \end{aligned}$	2	70-250 ${ }^{2}$	-	-	100	-	-	-	-	-	-	15b	10/5	
QJF		3	70-250 ${ }^{2}$	208Y/120 Vac: 100 kA				-	-	-	-	-	-	10/5	

[^3]Table 16: 250 A Frame Interrupting Ratings

Catalog Number Prefix		No. of Poles	Cont. Ampere Rating	UL Listed Interrupting Rating (kA)									Federal Specs. W-C-375B/GEN	IEC 60947-2 Icu/lcs (kA) AC Voltage$415 / 240$	
		AC Volts - RMS Symmetrical Amperes		DC Volts											
Unit Mount	I-Line			120	$\begin{aligned} & 120 / \\ & 240 \end{aligned}$	240	$\begin{gathered} 480 \mathrm{YI} \\ 277 \end{gathered}$	480	600	125	250	500			
KAL	KA		2, 3	70-250	42	42	42	25	25	22	10	10	-	19a, 20a	10/2.5
KHL 1	KH ${ }^{1}$	2, 3	70-250	65	65	65	35	35	25	10	10	-	23a	10/2.5	
KHL-DC ${ }^{2}$	-	3	-	-	-	-	-	-	-	-	-	20	-	-	
KCL	KC	2, 3	110-250	100	100	100	65	65	-	-	-	-	23a	65/65	
KIL	KI	2, 3	110-250	200	200	200	200	200	100	-	-	-	16a	130/65	

1 Separate UL rating available for 240 Vac and 480 Vac grounded B single phase systems. Circuit breakers must be ordered with 5861 suffix.
2 UL listed 500 Vdc rating for use on ungrounded systems. Must be connected three-poles in series. Consult the Schneider Electric Customer Care Center for additional information 1-888-778-2733.

Selection Data

Table 17: 250 A Frame Unit Mount Circuit Breakers

	Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
	KAL Standard Interrupting					
		Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
	70	350	700	KAL26070	KAL36070	
	80	400	800	KAL26080	KAL36080	
	90	450	900	KAL26090	KAL36090	
	100	500	1000	KAL26100	KAL36100	
	110	550	1100	KAL26110	KAL36110	
	125	625	1250	KAL26125	KAL36125	
	150	750	1500	KAL26150	KAL36150	
	175	875	1750	KAL26175	KAL36175	
	200	1000	2000	KAL26200	KAL36200	
	225	1125	2250	KAL26225	KAL36225	
	250	1250	2500	KAL26250	KAL36250	
	KHL High Interrupting					
		Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
	70	350	700	KHL26070	KHL36070	
	80	400	800	KHL26080	KHL36080	
	90	450	900	KHL26090	KHL36090	
	100	500	1000	KHL26100	KHL36100	
	110	550	1100	KHL26110	KHL36110	
	125	625	1250	KHL26125	KHL36125	
KAL/KHL Two- and Three-pole 70-250 A	150	750	1500	KHL26150	KHL36150	1-\#6-350 kcmil
	175	875	1750	KHL26175	KHL36175	
	200	1000	2000	KHL26200	KHL36200	
	225	1125	2250	KHL26225	KHL36225	
	250	1250	2500	KHL26250	KHL36250	

${ }^{1}$ UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
-Continued on next page

KIL Two- and Three-pole 110-250 A

Table 17: 250 A Frame Unit Mount Circuit Breakers (continued)

KA Two- and Three-pole 70-250 A
4-1/2 in. Mounting Height

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
KCL Extra High Interrupting					
	Low	High	480 Vac	480 Vac	
110	550	1100	KCL24110	KCL34110	
125	625	1250	KCL24125	KCL24125	AL250KA
150	750	1500	KCL24150	KCL34150	1-\#6-350 kcmil
175	875	1750	KCL24175	KCL34175	
200	1000	2000	KCL24200	KCL34200	
225	1125	2250	KCL24225	KCL34225	AL250KI
250	1250	2500	KCL24250	KCL34250	1-1/0-350 kcmil
KIL I-Limiter Current Limiting					
	Low	High	600 Vac	600 Vac	
110	550	1100	KIL26110	KIL36110	
125	625	1250	KIL26125	KIL36125	AL250KA
150	750	1500	KIL26150	KIL36150	1-\#6-350 kcmil
175	875	1750	KIL26175	KIL36175	
200	1000	2000	KIL26200	KIL36200	
225	1125	2250	KIL26225	KIL36225	AL250KI
250	1250	2500	KIL26250	KIL36250	1-1/0-350 kcmil

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.

Table 18: 250 A Frame I-Line Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole ${ }^{2}$ Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
KA Standard Interrupting					
	Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
70	350	700	KA26070 ()	KA36070	
80	400	800	KA26080()	KA36080	
90	450	900	KA26090 ()	KA36090	
100	500	1000	KA26100 ()	KA36100	
110	550	1100	KA26110()	KA36110	
125	625	1250	KA26125()	KA36125	
150	750	1500	KA26150()	KA36150	1-\#6-350 kcmil
175	875	1750	KA26175 ()	KA36175	
200	1000	2000	KA26200 ()	KA36200	
225	1125	2250	KA26225()	KA36225	
250	1250	2500	KA26250()	KA36250	

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
2 Two-pole circuit breaker catalog numbers are completed by adding required phase connection letters as a suffix to the catalog number.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 18: 250 A Frame I-Line Circuit Breakers (continued)

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole ${ }^{2}$ Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
KH High Interrupting					
	Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
70	350	700	KH26070()	KH36070	
80	400	800	KH26080()	KH36080	
90	450	900	KH26090()	KH36090	
100	500	1000	KH26100 ()	KH36100	
110	550	1100	KH26110()	KH36110	
125	625	1250	KH26125()	KH36125	
150	750	1500	KH26150()	KH36150	
175	875	1750	KH26175 ()	KH36175	
200	1000	2000	KH26200 ()	KH36200	
225	1125	2250	KH26225()	KH36225	
250	1250	2500	KH26250()	KH36250	
KC Extra High Interrupting					
	Low	High	480 Vac	480 Vac	
110	550	1100	KC24110()	KC34110	
125	625	1250	KC24125()	KC34125	AL250KA
150	750	1500	KC24150 ()	KC34150	1-\#6-350 kcmil
175	875	1750	KC24175()	KC34175	
200	1000	2000	KC24200()	KC34200	
225	1125	2250	KC24225()	KC34225	
250	1250	2500	KC24250()	KC34250	1-10-350
KI I-Limiter Current Limiting					
	Low	High	600 Vac	600 Vac	
110	550	1100	KI26110()	KI36110	
125	625	1250	KI26125()	KI36125	AL250KA
150	750	1500	KI26150()	KI36150	1-\#6-350 kcmil
175	875	1750	KI26175()	KI36175	
200	1000	2000	KI26200()	KI36200	
225	1125	2250	KI26225()	KI36225	
250	1250	2500	KI26250()	KI36250	

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
2 Two-pole circuit breaker catalog numbers are completed by adding required phase connection letters as a suffix to the catalog number.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Dimensions

Figure 13: KAL, KHL, KCL, KIL 250 A Frame

Dimensions: $\underset{(\mathrm{mm})}{\underset{\mathrm{in}}{ } \text {. }}$

Tripping Curves

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

PowerPact Tripping Curves

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

600 Ampere Frame

This section provides specific information on Schneider Electric 600 A frame thermal-magnetic molded case circuit breakers. For more information, see the "Introduction" in this catalog.

Description

Table 19: Description of 600 A Frame Circuit Breakers

Circuit Breakers	Description
LC/LI	$300-600 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, two- and three-pole

Applications

LC and LI circuit breakers are used in industrial enclosures, panelboards, switchboards, busway plug-in units, combination starters and motor control centers.

Table 20: 600 A Frame Interrupting Ratings

Catalog Number Prefix		No. of Poles	Cont. Ampere Rating	UL Listed Interrupting Rating (kA)								Federal Specs. W-C-375B/GEN	IEC 60947-2 Icu/lcs (kA) AC Voltage 415/240	
		AC Volts - RMS Symmetrical Amperes		DC Volts										
Unit Mount	I-Line			120	240	$\begin{gathered} \text { 480YI } \\ 277 \end{gathered}$	480	600	125	250	500			
LCL	LC		2, 3	300-400	-	100	-	65	35	-	-	-	23a	65/65
LCL	LC	2, 3	450-600	-	100	-	65	35	-	-	-	23a	65/50	
LIL	LI	2, 3	300-600	-	200	-	200	100	-	-	-	23a	-	

Selection Data

LCL/LIL
Two- and Three-pole

Table 21: $\quad 600$ A Frame Unit Mount Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes 1	Two-Pole Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range

LCL Extra High Interrupting					
	Low	High	600 Vac	600 Vac	
300	1500	3200	LCL26300	LCL36300	AL600Li35
350	1750	3200	LCL26350	LCL36350	2-\#1-350 kcmil
400	2000	3200	LCL26400	LCL36400	
450	2250	4200	LCL26450	LCL36450	AL600LI5
500	2500	4200	LCL26500	LCL36500	2-4/0-500 kcmil
600	3000	4200	LCL26600	LCL36600	

LIL I-Limiter Current Limiting

	Low	High	600 Vac/250 Vdc	600 Vac/250 Vdc	
300	1500	3200	LIL26300	LIL36300	AL600LI35
350	1750	3200	LIL26350	LIL36350	2-\#1-350 kcmil
400	2000	3200	LIL26400	LIL36400	
450	2250	4200	LIL26450	LIL36450	AL600LI5
500	2500	4200	LIL26500	LIL36500	2-4/0-500 kcmil
600	3000	4200	LIL26600	LIL36600	

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.

Table 22: $\quad 600$ A I-Line Mount Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole ${ }^{2}$ Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
LC Extra High Interrupting					
	Low	High	600 Vac	600 Vac	
300	1500	3200	LC26300()	LC36300	AL600L 35
350	1750	3200	LC26350()	LC36350	
400	2000	3200	LC26400()	LC36400	2-\#1-350 kcmil
450	2250	4200	LC26450()	LC36450	
500	2500	4200	LC26500()	LC36500	
600	3000	4200	LC26600()	LC36600	2-4/0-500 kcmil
LI I-Limiter Current Limiting					
	Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
300	1500	3200	li26300()	li36300	AL 600 L i35
350	1750	3200	li26350()	li36350	
400	2000	3200	li26400()	li36400	2-\#1-350 kcmir
450	2250	4200	LI26450()	LI36450	
500	2500	4200	LI26500()	LI36500	
600	3000	4200	LI26600()	LI36600	2-4/0-500 kcmil

1 Two-pole circuit breaker catalog numbers are completed by adding required phase connection letters as a suffix to the catalog number.
2 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.

Dimensions

Figure 14: LCL, LIL 600 A Frame

Dimensions: $\begin{gathered}\text { in. } \\ (\mathrm{mm}\end{gathered}$

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Tripping Curves

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Let-through Curves

I-LIMITER CURRENT LIMITING CIRCUIT BREAKERS
LI Series 2, 3 and LXI Series 2B, 3B 400 A Frame at 240, 480 and 600 Vac, $3 \varnothing$
300-400 A
LXI Series 2B, 3B 250 A Frame at 240, 480, and 600 Vac, $3 \varnothing$
100-250 A
Curve No. 830-15 Let-Through I^{2} t and 830-16 Peak Let-Through Current I_{p}

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

I-LIMITER CURRENT LIMITING CIRCUIT BREAKERS LI Series 2, 3 and LXI Series 2B, 3B 600 A Frame at 240, 480 and 600 Vac, $3 \varnothing$

450-600 A
Curve No. 830-17 Let-Through I^{2} t and 830-18 Peak Let-Through Current I_{p}

Curve No. 0830TC0218
March 2002
Drawing No. B48095-830-18
(Replaces No. 0830TC9618)

830-18

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

800 / 1000 Ampere Frame

This section provides specific information on Schneider Electric 800 / 1000 A frame thermal-magnetic molded case circuit breakers. For more information, see the Introduction in this catalog.

MA/MH Two- and Three-pole 9" Mounting Height 300-800 A

Description

Table 23: Description of 800 / 1000 A Frame Circuit Breakers

Circuit Breaker	Description
MA/MH	$300-800 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 250 \mathrm{Vdc}$, two- and three-pole
MAL/MHL	$300-1200 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 250 \mathrm{Vdc}$, two- and three-pole

Applications

MA / MH circuit breakers are used in industrial enclosures, panelboards, switchboards, busway plug-in units, combination starters and motor control centers.

Table 24: $800 / 1000$ A Frame Interrupting Ratings

Catalog Number Prefix		No. of Poles	Cont. Ampere Rating	UL Listed Interrupting Rating (kA)								Federal Specs. W-C-375B/GEN	IEC 60947-2 Icu/lcs (kA) AC Voltage	
		AC Volts - RMS Symmetrical Amperes		DC Volts										
Unit Mount	I-Line			120	240	$\begin{gathered} \text { 480YI } \\ 277 \end{gathered}$	480	600	125	250	500		415/240	
MAL	-		2, 3	300-1000	42	42	30	30	22	14	14	-	21a	30/30
-	MA	2, 3	300-800	42	42	30	30	22	14	14	-	21a	30/30	
MHL ${ }^{1}$	-	2, 3	300-1000	65	65	65	65	25	-	-	-	23a	65/33	
-	MH ${ }^{1}$	2, 3	300-800	65	65	65	65	25	14	14	-	23a	65/33	
LHL-DC ${ }^{2}$	-	3	-	-	-	-	-	-	-	-	20	-	-	

1 Separate UL rating available for 240 Vac and 480 Vac grounded B single phase systems. Cirbuit breakers must be ordered with 5861 suffix. See Supplemental Digest for specific ratings.
2 UL listed 500 Vdc rating for use on ungrounded systems. Must be connected 3 poles in series. Consult the Schneider Electric Customer Care center for additional information 1-888-778-2733.

Selection Data

Table 25: $\quad \mathbf{8 0 0}$ A I-Line Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$	Two-Pole 2 Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range

MA Standard Interrupting

MAL/MHL
Two- and Three-pole 300-1000 A

	Low	High	600 Vac/250 Vdc	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
300	1500	3000	MA26300()	MA36300	
350	1750	3500	MA26350()	MA36350	
400	2000	4000	MA26400()	MA36400	
450	2250	4500	MA26450()	MA36450	AL900MA
500	2500	5000	MA26500()	MA36500	$3-\# 3 / 0-500 \mathrm{kcmil}$
600	3000	6000	MA26600()	MA36600	
700	3500	7000	MA26700()	MA36700	
800	4000	8000	MA26800()	MA36800	

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
2 Two-pole circuit breaker catalog numbers are completed by adding required phase connection letters as a suffix to the catalog number.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 25: 800 A I-Line Circuit Breakers (continued)

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole ${ }^{2}$ Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
MH High Interrupting					
	Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
300	1500	3000	MH26300()	MH36300	
350	1750	3500	MH26350()	MH36350	
400	2000	4000	MH26400 ()	MH36400	
450	2250	4500	MH26450()	MH36450	AL900MA
500	2500	5000	MH26500 ()	MH36500	3-\#3/0-500 kcmil
600	3000	6000	MH26600 ()	MH36600	
700	3500	7000	MH26700 ()	MH36700	
800	4000	8000	MH26800()	MH36800	

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
2 Two-pole circuit breaker catalog numbers are completed by adding required phase connection letters as a suffix to the catalog number.

Table 26: 1000 A Frame Unit Mount Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole ${ }^{2}$ Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
MAL Standard Interrupting					
	Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
300	1500	3000	MAL26300	MAL36300	
350	1750	3500	MAL26350	MAL36350	
400	2000	4000	MAL26400	MAL36400	
450	2250	4500	MAL26450	MAL36450	
500	2500	5000	MAL26500	MAL36500	AL900MA
600	3000	6000	MAL26600	MAL36600	3-\#3/0-350 kcmil
700	3500	7000	MAL26700	MAL36700	
800	4000	8000	MAL26800	MAL36800	
900	4500	9000	MAL26900	MAL36900	
1000	5000	10000	MAL261000	MAL361000	
1200	5100	10200	MHL261200	MHL361200	$\begin{gathered} \text { AL1000MA } \\ 4-\# 1 / 0-500 \mathrm{kcmil} \end{gathered}$
MHL High Interrupting					
	Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
300	1500	3000	MHL26300	MHL36300	
350	1750	3500	MHL26350	MHL36350	
400	2000	4000	MHL26400	MHL36400	
450	2250	4500	MHL26450	MHL36450	
500	2500	5000	MHL26500	MHL36500	AL900MA
600	3000	6000	MHL26600	MHL36600	3-\#3/0-500 kcmil
700	3500	7000	MHL26700	MHL36700	
800	4000	8000	MHL26800	MHL36800	
900	4500	9000	MHL26900	MHL36900	
1000	5000	10000	MHL261000	MHL361000	
1200	5100	10200	MAL261200	MAL361200	$\begin{gathered} \text { AL1000MA } \\ 4-\# 1 / 0-350 \mathrm{kcmil} \end{gathered}$

[^4]
Dimensions

Figure 15: MAL, MHL 800 / 1000 A Frame

Dimensions: $\begin{gathered}\text { in. } \\ (\mathrm{mm})\end{gathered}$

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Tripping Curves

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

1200 Ampere Frame

This section provides specific information on Schneider Electric 1200 A frame thermal-magnetic molded case circuit breakers. For more information, see the "Introduction" in this catalog.

Description

Table 27: Description of 1200 A Frame Circuit Breakers

Circuit Breaker	Description
NA/NC	$600-1200 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$,
two- and three-pole	

Applications

NA and NC circuit breakers are used in industrial enclosures, panelboards and switchboards.

Table 28: 1200 A Frame Interrupting Ratings

Catalog Number Prefix		No. of Poles	Cont. Ampere Rating	UL Listed Interrupting Rating (kA) AC Volts - RMS Symmetrical Amperes					Federal Specs. W-C-375B/GEN	IEC 60947-2 Icu/lcs (kA) AC Voltage 415/240
Unit Mount	I-Line			120	240	$\begin{gathered} \text { 480Y/ } \\ 277 \end{gathered}$	480	600		
NAL	NA	2, 3	600-1200	100	100	50	50	25	23a	50/25
NCL	NC	2, 3	600-1200	125	125	100	100	65	25a	70/35

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Selection Data

Table 29: 1200 A Unit Mount Circuit Breakers

NAL/NCL
Two- and Three-pole 600-1200 A

Ampere Rating	AC Magnetic Trip Settings Amperes		Two-Pole Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
NAL High Interrupting					
	Low	High	600 Vac	600 Vac	
600	4000	8000	NAL26600	NAL36600	
700	4000	8000	NAL26700	NAL36700	
800	4000	8000	NAL26800	NAL36800	AL1200NE6
900	5000	10000	NAL26900	NAL36900	4-\#3/0-600 kcmil
1000	5000	10000	NAL261000	NAL361000	
1200	5000	10000	NAL261200	NAL361200	
NCL Extra High Interrupting					
	Low	High	600 Vac	600 Vac	
600	4000	8000	NCL26600	NCL36600	
700	4000	8000	NCL26700	NCL36700	
800	4000	8000	NCL26800	NCL36800	AL1200NE6
900	5000	10000	NCL26900	NCL36900	$4-\# 3 / 0-600 \mathrm{kcmil}$
1000	5000	10000	NCL261000	NCL361000	
1200	5000	10000	NCL261200	NCL361200	

Table 30: 1200 A Frame I-Line Circuit Breakers

NA/NC
Two- and Three-pole 15 in. Mounting Height 600-1200 A

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole ${ }^{2}$ Catalog No.	Three-Pole Catalog No.	Standard Lug Kit Wire Range
NA High Interrupting					
	Low	High	240 Vac	240 Vac	
600	4000	8000	NA26600 ()	NA36600	
700	4000	8000	NA26700 ()	NA36700	
800	4000	8000	NA26800 ()	NA36800	
900	5000	10000	NA26900 ()	NA36900	$4-\# 3 / 0-600 \mathrm{kcmil}$
1000	5000	10000	NA261000()	NA361000	
1200	5000	10000	NA261200()	NA361200	
NC Extra High Interrupting					
	Low	High	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	$600 \mathrm{Vac} / 250 \mathrm{Vdc}$	
600	4000	8000	NC26600()	NC36600	
700	4000	8000	NC26700()	NC36700	
800	4000	8000	NC26800 ()	NC36800	
900	5000	10000	NC26900 ()	NC36900	4-\#3/0-600 kcmil
1000	5000	10000	NC261000()	NC361000	
1200	5000	10000	NC261200()	NC361200	

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
2 Two-pole circuit breaker catalog numbers are completed by adding required phase connection letters as a suffix to the catalog number.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Dimensions

Figure 16: NAL, NCL 1200 A Frame

Dimensions: $\underset{(\mathrm{mm})}{\mathrm{in} .}$

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Tripping Curves

This curve is to be used for application and coordination purposes only. The EZ-AMP overlay feature at the bottom of the page should be used during coordination studies.
All time/current characteristic curve data is based on $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient cold start. Terminations are made with conductors of appropriate length and ratings.

TIME IN SECONDS

$\stackrel{8}{4}$
8 \% 8
\% \$888
§ิ

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

2000 / 2500 Ampere Frame

This section provides specific information on Schneider Electric 2000 / 2500 A frame thermal-magnetic molded case circuit breakers. For more information, see the "Introduction" in this catalog.

Description

Table 31: Description of 2000 / 2500 A Frame Circuit Breakers

Circuit Breaker	Description
PAF/PHF	$600-2000 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, two- and three-pole
PCF	$600-2500 \mathrm{~A}, 600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, two- and three-pole

Applications

PAF, PHF and PCF circuit breakers are used in industrial enclosures, switchboards and busway plug-in units.

Table 32: 2000 / 2500 A Frame Interrupting Ratings

Catalog Number Prefix	No. of Poles	Cont. Ampere Rating	UL Listed Interrupting Rating (kA)						Federal Specs. W-C-375B/GEN	IEC 60947-2 Icu/lcs (kA) AC Voltage
			AC Volts - RMS Symmetrical Amperes					$\begin{gathered} \text { DC } \\ \text { Volts } \end{gathered}$		
Unit Mount			120	240	$480 \mathrm{Y} /$ 277	480	600	500		415/240
PAF	2, 3	600-1200	65	65	50	50	42	-	24a	50
PAF-DC	3	$\begin{aligned} & 1200- \\ & 2000 \end{aligned}$	-	-	-	-	-	25K	-	-
PHF ${ }^{1}$	2, 3	600-2000	125	125	100	100	65	-	25a	100
PCF ${ }^{1}$	2, 3	$\begin{aligned} & 1600- \\ & 2500 \end{aligned}$	125	125	100	100	65	-	25a	100

1 Separate UL rating available for 240 Vac and 480 Vac grounded B single phase systems. Circuit breakers must be ordered with 5861 suffix. See Supplemental Digest for specific ratings.

Selection Data

Table 33: 2000 A Unit Mount Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole, 600 Vac		Three-Pole, 600 Vac	
			Frame Only	Rating Columns Two Per Kit	Frame Only	Rating Columns Three Per Kit
	Low	High	Catalog No.	Kit Catalog No.	Catalog No.	Kit Catalog No.
PAF Standard Interrupting - Complete Breaker Requires Frame and Rating Columns						
600	3200	9000	PAF2026	PA2600RC	PAF2036	PA3600RC
700	3200	9000		PA2700RC		PA3700RC
800	3200	9000		PA2800RC		PA3800RC
1000	3500	9000		PA21000RC		PA31000RC
1200	3500	9000		PA21200RC		PA31200RC
1400	4500	9000		PA21400RC		PA31400RC
1600	5000	10000		PA21600RC		PA31600RC
1800	6500	11000		PA21800RC		PA31800RC
2000	8000	12000		PA22000RC		PA32000RC

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
-Continued on next page

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 33: 2000 A Unit Mount Circuit Breakers (continued)

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole, 600 Vac		Three-Pole, 600 Vac	
			Frame Only	Rating Columns Two Per Kit	Frame Only	Rating Columns Three Per Kit
	Low	High	Catalog No.	Kit Catalog No.	Catalog No .	Kit Catalog No.
PHF High Interrupting - Complete Breaker Requires Frame and Rating Columns						
600	3200	9000	PHF2026	PA2600RC	PHF2036	PA3600RC
700	3200	9000		PA2700RC		PA3700RC
800	3200	9000		PA2800RC		PA3800RC
1000	3500	9000		PA21000RC		PA31000RC
1200	3500	9000		PA21200RC		PA31200RC
1400	4500	9000		PA21400RC		PA31400RC
1600	5000	10000		PA21600RC		PA31600RC
1800	6500	11000		PA21800RC		PA31800RC
2000	8000	12000		PA22000RC		PA32000RC

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.

Table 34: $\quad 2500$ A Unit Mount Circuit Breakers

Ampere Rating	AC Magnetic Trip Settings Amperes ${ }^{1}$		Two-Pole, 600 Vac		Three-Pole, 600 Vac	
			Frame Only	Rating Columns Two Per Kit	Frame Only	Rating Columns Three Per Kit
	Low	High	Catalog No.	Kit Catalog No.	Catalog No.	Kit Catalog No.
PCF High Interrupting - Complete Circuit Breaker Requires Frame and Rating Columns						
1600	6000	12000	PCF2526	PC21600RC	PCF2536	PC31600RC
1800	6000	12000		PC21800RC		PC31800RC
2000	6000	12000		PC22000RC		PC32000RC
2500	8000	14000		PC22500RC		PC32500RC

1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
Figure 17: PAF/PCF Circuit Breaker with Terminal Pad Kit

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Dimensions

Figure 18: PAF, PHF 2000 A Frame

Figure 19: Circuit Breaker with Terminal Pads—PALTB for PAF, PHF A Frame

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Figure 20: PCF 2000 A Frame

Tripping Curves

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Curve No. 0676TC8502
Drawing No. 48095-676-02

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Accessories

This section describes the UL listed accessories available for Schneider Electric thermal-magnetic molded case circuit breakers, Mag-Gard magnetic only instantaneous trip circuit breakers and molded case switches. These accessories increase application versatility and meet the demands of modern electrical distribution systems.

The following table lists the accessories available for Schneider Electric thermal-magnetic circuit breakers, magnetic only circuit breakers and molded case switches.

Table 35: Accessories Available

	Circuit Breaker Frame																					
Accessory	FA	FH	FC	FI	FY	$\begin{aligned} & \text { QB } 1 \\ & \text { QD } 1 \\ & \text { QG } 1 \\ & \text { QJ } 1 \end{aligned}$	KA	KH	KC	KI	Q4	LA	LI	LC	LH	MA	MH	NA	NC	PAF	PHF	PCF
Shunt Trip	X	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Ground Fault Shunt Trip	X	X	X	X			X	X	X	X	X	X			X	X	X	X	X	X	X	X
Undervoltage Trip	X	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Auxiliary Switch	X	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Alarm Switch	X	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Cylinder Lock ${ }^{2}$	X	X	X	X			X	X			X	X			X	X	X					
Ground Fault Module	X	X	X	X			X	X	X	X												
Handle Padlock Attachment	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Walking Beam	X						X					X			X	X	X					
Front Mount Mechanical Interlock						X																
Combination Handle Tie and Lock Off	X	X	X	X	X			X														
Handle Extension	X	X	X	X			X				X	X	X	X	X	X	X	X	X	X		
Electrical Operator	X	X	X	X			X				X	X			X	X	X			X	X	X

1 For PowerPact Q-frame information see Class 734.
2 Cylinder locks not available on FA/FH Mag-Gard circuit breakers.

Factory and Field Installation Types

Note: See Catalog Numbers for an explanation of the catalog numbering system.
Some electrical accessories are factory installed while others are field installable.

- Factory Installed Accessories

Factory installed accessories are internally mounted and provided with minimum 18-inch lead wires.
Factory installed devices cannot be removed or repaired in the field.
Factory installed accessories are ordered by adding the correct suffix number to the standard circuit breaker catalog number (i.e., a three-pole, $600 \mathrm{Vac}, 100 \mathrm{~A}$ molded case circuit breaker with a 120/240 Vac shunt trip would be FAL361001021). Suffix numbers for some combinations of factory installed electrical accessories are listed in this section. If the combination is not listed in one of the tables, order the combination by description.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

The table below shows suffix numbers for the following combinations of factory installed accessories for the FA, FH, FC, FI, KA, KH, KC, and KI thermal-magnetic circuit breakers, magnetic only circuit breakers and molded case switches. Additional combinations are available; please contact the Schneider Electric Customer Care Center at: 1-888-778-2733.

Table 36: Suffixes for Factory Installed Accessories ${ }^{1}$

Device Suffix	Shunt Trip		Shunt Trip			Undervoltage Trip		Undervoltage Trip		Auxiliary Switches			Not Compatible With:
	$\begin{gathered} 24 \\ \text { Vdc } \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Vdc} \end{gathered}$	$\begin{gathered} 24 \\ \text { Vac } \end{gathered}$	$\begin{gathered} 120 / 240 \\ \text { Vac } \end{gathered}$	$\begin{gathered} 277 / 480 \\ \text { Vac } \end{gathered}$	$\begin{gathered} 24 \\ \text { Vdc } \end{gathered}$	$\begin{gathered} 48 \\ \text { Vdc } \end{gathered}$	$\begin{aligned} & 120 \\ & \text { Vac } \end{aligned}$	240 Vac	1A-1B	2A-2B	3A-3B	
1027	X												
1386	X									X			FA 2P
1426	X										X		FA 2P
1472	X											X	FA 2P, FA 3P, FI, KC, KI
1028		X											
1390		X								X			FA 2P
1433		X									X		FA 2P
1477		X										X	FA 2P, FA 3P, FI, KC, KI
1042			X										
1441			X							X			FA 2P
1442			X								X		FA 2P
1021				X									
1380				X						X			FA 2P
1422				X							X		FA 2P
1466				X								X	FA 2P, FA 3P, FI, KC, KI
1037					X								
1388					X					X			FA 2P
1427					X						X		FA 2P
1127						X							
1616						X				X			FA 2P
1625						X					X		FA 2P
1128							X						FI, KC, KI
1627							X				X		$\begin{gathered} \mathrm{FA}, 2 \mathrm{P}, \mathrm{FI}, \\ \mathrm{KC}, \mathrm{KI} \end{gathered}$
1670							X					X	FA 2P, FA 3P, FI, KC, KI
1121								X					
1590								X		X			FA 2P
1595								X			X		FA 2P
1631								X				X	$\begin{gathered} \text { FA 2P, FA 3P, } \\ \text { FI, KC, KI } \end{gathered}$
1124									X				
1581									X	X			FA 2P
1619									X		X		FA 2P
1611									X			X	FA 2P, FA 3P, FI, KC, KI
1212										X			FA 2P use 1202 suffix
												Continued	d on next page

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 36: Suffixes for Factory Installed Accessories ${ }^{1}$ (continued)

Device Suffix	Shunt Trip		Shunt Trip			Undervoltage Trip		Undervoltage Trip		Auxiliary Switches			Not Compatible With:
	$\begin{gathered} 24 \\ \text { Vdc } \end{gathered}$	$\begin{gathered} 48 \\ \text { Vdc } \end{gathered}$	$\begin{gathered} 24 \\ \text { Vac } \end{gathered}$	$\begin{gathered} 120 / 240 \\ \text { Vac } \end{gathered}$	$\begin{gathered} 277 / 480 \\ \text { Vac } \end{gathered}$	$\begin{gathered} 24 \\ \text { Vdc } \end{gathered}$	$\begin{gathered} 48 \\ \text { Vdc } \end{gathered}$	$\begin{aligned} & 120 \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & 240 \\ & \text { Vac } \end{aligned}$	1A-1B	2A-2B	3A-3B	
1352											x		
1354											X^{2}		FA 2P
1364												x^{3}	FA 2P
1218												X^{4}	FA 2P, FA 3P, FI, KC, KI

1 The FA one-pole Circuit Breaker is not included in this table.
2 Circuit breaker has 2 sets of 2A2B auxiliary contacts.
3 The FA three-pole, FI, KC, and KI circuit breakers will include 1A1B in the left pole and 2A2B in the right pole to achieve 3A3B.
4 Circuit breaker has 2 sets of 3A3B contacts.

- Factory Installed Combinations of Electrical Accessories

Table 37: Available Factory Installed Accessory Combinations ${ }^{1} 2$

FA, FH, FC and FI Thermal-Magnetic Circuit Breakers			
Accessory	OnePole	TwoPole	ThreePole
A / S (1A1B or 2A2B)		X	X
A/S (3A3B or 4A4B)			X
A/S (1A1B or 2 A 2 B), B/A		X	X
A/S (3A3B or 4A4B), B/A			X
A/S (1A1B or 2A2B), B/A, S/T			X
A/S (1A1B or 2A2B), S/T			X
A/S (1A1B or 2A2B), B/A, UVR			X
A/S (1A1B or 2A2B), UVR			X
B/A	X	X	X
B/A, S/T		X	X
B/A, UVR		X	X
S/T		X	X
S/T, B/A, UVR			X
S/T, UVR			X
UVR		X	X
CL			X
CL, A / S (1A1B or 2A2B)			X
CL, B/A, A/S (1A1B or 2A2B)			X
CL, B/A			X
CL, B/A, S/T			X
CL, S/T			X
CL, B/A, UVR			X
CL, UVR			X

KA and KH Circuit Breakers	
Accessory	Two-or ThreePole
A / S (1A1B or 2 A 2 B or 3A3B)	X
A/S (4A4B or 5A5B or 6A6B)	X
A/S (1A1B or 2A2B or 3A3B), B/A	X
A/S (4A4B or 5A5B or 6A6B), B/A	X
$\underset{S / T}{A / S}(1 \mathrm{~A} 1 \mathrm{~B} \text { or } 2 \mathrm{~A} 2 \mathrm{~B} \text { or } 3 \mathrm{~A} 3 \mathrm{~B}), \mathrm{B} / \mathrm{A},$	X
A/S (1A1B or 2A2B or 3A3B), S/T	X
$\underset{\text { UVR }}{\mathrm{A} / \mathrm{S}(1 \mathrm{~A} 1 \mathrm{~B} \text { or 2A } 2 \mathrm{~A} \text { or } 3 \mathrm{~A}), \mathrm{B} / \mathrm{A},}$	X
A/S (1A1B or 2A2B or 3A3B), UVR	X
B/A	X
B/A, S/T	X
B/A, UVR	X
S/T	X
S/T, B/A, UVR	X
S/T, UVR	X
UVR	X
CL	X
CL, A/S (1A1B or 2A2B or 3A3B)	X
$C L, B / A, A / S(1 A 1 B$ or $2 A 2 B$ or 3A3B)	X
CL, B/A	X
CL, B/A, S/T	X
CL, S/T	X
CL, B/A, UVR	X
CL, UVR	X

KC and KI Circuit Breakers	
Accessory	Two- or ThreePole
A/S (1A1B or 2A2B)	X
A/S (3A3B or 4A4B)	x
A/S (1A1B or 2A2B), B/A	x
A/S (3A3B or 4A4B), B/A	X
$\begin{gathered} \mathrm{A} / \mathrm{S}(1 \mathrm{~A} 1 \mathrm{~B} \text { or } 2 \mathrm{~A} 2 \mathrm{~B}), \mathrm{B} / \mathrm{A}, \\ \mathrm{~S} / \mathrm{T} \end{gathered}$	X
A/S (1A1B or 2A2B), S/T	X
$\begin{gathered} \mathrm{A} / \mathrm{S}(1 \mathrm{~A} 1 \mathrm{~B} \text { or } 2 \mathrm{~A} 2 \mathrm{~B}), \mathrm{B} / \mathrm{A}, \\ \mathrm{UVR} \end{gathered}$	X
A/S (1A1B or 2A2B), UVR	x
B/A	X
B/A, S/T	X
B/A, UVR	x
S/T	X
S/T, B/A, UVR	X
S/T, UVR	X
UVR	x
CL	x
CL, A/S (1A1B or 2A2B)	X
$\begin{gathered} \text { CL, B/A, A/S (1A1B or } \\ 2 A 2 B) \end{gathered}$	X
CL, B/A	X
CL, B/A, S/T	X
CL, S/T	X
CL, B/A, UVR	X
CL, UVR	X

[^5]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

- Field Installable Accessories

Field installable accessories can be installed, interchanged or replaced in the field without affecting the circuit breaker's UL listing or interrupting ratings. Field installable accessories cannot be used in a mounting location or a pole that has a factory installed only accessory. Field installable electrical accessories and circuit breakers are shipped separately. The following thermal-magnetic circuit breakers, magnetic only circuit breakers and molded case switches accept UL listed, Schneider Electric field installable accessories:

- Q4, LA, and LH Series 4 and higher
- LI and LC Series 1 and higher
- MA and MH Series 2 and higher
- PA, PH, and PC Series 4 and higher
- NA and NC Series 1 and higher

Shunt Trip

The shunt trip accessory is used to trip the circuit breaker from a remote location by using a trip coil energized from a separate circuit. When energized by a push button or other pilot device, the shunt trip causes the circuit breaker to trip. The trip coil has coil clearing contacts to break the coil circuit when the circuit breaker opens.

Shunt trips are available for two and three-pole thermal-magnetic circuit breakers, magnetic only circuit breakers and molded case switches with standard control voltage ratings to 480 Vac or 24 Vdc . Additional ac control voltage ratings to 600 Vac are supplied with a 120 Vac rated coil and a control voltage transformer for user mounting. Control voltages above 480 Vac are not UL listed. A 120 Vac shunt trip operates at 55% or more of rated voltage and all other shunt trips operate at 75% or more of rated voltage.

Ground Fault Shunt Trip

A ground fault shunt trip operates in the same manner as a standard shunt trip, except that since the trip coil is rated for continuous duty, no coil clearing contact is needed. This accessory was designed for use with the Micrologic Ground Fault Module (GFM).

Table 38: Shunt Trip-Selection Data

Trip Type	Control Voltage	Factory Installed Shunt Trip Suffix	Field Installable Shunt Trip Catalog Number 1
Shunt Trip	$24 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	1042	() 1042
	$48 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	1048	() 1048
	120-240 Vac $50 / 60 \mathrm{~Hz}$	1021	() 1021
	$120-240$ Vac 400 Hz	1046s	() $1046{ }^{2}$
	208-480 Vac $50 / 60 \mathrm{~Hz}$	-	() $1086{ }^{3}$
	277-480 Vac $50 / 60 \mathrm{~Hz}$	1037	() $1037{ }^{4}$
	$600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	1026s	() $1026{ }^{2}$
	6 Vdc	1040	() 1040
	12 Vdc	1039	() 1039
	24 Vdc	1027	() 1027
	48 Vdc	1028	() 1028
	72 Vdc	1038	() 1038
	125 Vdc	1029	() 1029
	250 Vdc	1030	() 1030
Ground Fault Shunt Trip	$24 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	G	() G 4

[^6]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Figure 21: Ground Fault and Shunt Trip Wiring Diagram

Shunt Trip Wiring Diagram Color Code Black Leads

Ground Fault Shunt Trip Wiring Diagram Color Code Orange

Table 39: Shunt Trip Electrical Specifications ${ }^{1}$

Voltage Rating		Maximum Current in Milliamps (RMS)		Coil Burden Max. VA		Minimum Recommended Supply Transformer (VA)
AC	24	850	(3650)	20.4	(88)	25
	48	540	-	26	-	50
	120	240	(4000)	29	(54)	50
	208	515	(500)	107	(104)	50
	240	740	-	154	-	50
	277	50	-	13.9	-	25
	480	93	-	44.6	-	50
DC	6	1714	(6000)	10.3	(36)	-
	12	800	(6000)	9.6	(72)	-
	24	1500	(460)	36	(11)	-
	48	750	(920)	36	(44)	-
	72	200	(208)	14.4	(15)	-
	125	350	(80)	43.7	(10)	-
	250	60	(160)	15	(40)	-

1 () Values in parenthesis apply to field installable devices used in PA/PC frame circuit breakers.

Table 40: Shunt Trip \& Undervoltage Trip Clearing Times

Circuit Breaker	Average Clearing Time, Milliseconds
FA	16
KA	20
LA, Q4	25
MA	33
NA	35
PA, PC	40

Undervoltage Trip

The undervoltage trip accessory reduces the possibility of damage to the electrical equipment when a reduction or loss of system voltage occurs. When the voltage drops below a level established by UL 489 requirements for more than 3 milliseconds, the undervoltage trip mechanism (undervoltage trip release) trips the circuit breaker or molded case switch and prevents it from being reclosed until this voltage level is restored.

Table 41: UL 489 Undervoltage Trip Requirements

To Trip Circuit Breaker	Undervoltage Trip MUST Trip	Undervoltage Trip MAY Trip	Undervoltage Trip MUST NOT Trip	
Percent of Rated Voltage	0%	35%	70%	
To reseal Undervoltage Tip		Undervoltage Trip MAY Pickup and Seal	Undervoltage Trip MUST Pickup and Seal	

Undervoltage trip accessories are available on two and three-pole circuit breakers and molded case switches with standard control voltage ratings to 240 Vac or 24 Vdc . Additional ac control voltage ratings up to 600 Vac can be supplied with a 120 Vac rated device and control voltage transformer for user mounting. Optional dc voltage ratings up to 250 Vdc are available and can be supplied with a 24 Vdc undervoltage trip release and a step down resistor for field installation. Voltage ratings above 24 Vac or 240 Vdc are not UL listed.

Table 42: Undervoltage Trip-Selection Data

Voltage	Factory Installed Suffix	Field Installable Catalog Number ${ }^{1}$
$24 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	1143	() 1143
48 Vac 400 Hz	11572	() 11572
$120 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	1121	() 1121
$208 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	1122	() 1122
$240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	1124	() 1124
277 Vac $50 / 60 \mathrm{~Hz}$	$1142{ }^{2}$	() $1142{ }^{2}$
$380 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	$1148{ }^{2}$	() $1148{ }^{2}$
$415 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	11492	() 11492
$440 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	$1134{ }^{2}$	() $1134{ }^{2}$
$480 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	$1125{ }^{2}$	() 1125^{2}
$600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	$1126{ }^{2}$	() $1126{ }^{2}$
6 Vdc	1136	() 1136
12 Vdc	1133	() 1133
24 Vdc	1127	() 1127
48 Vdc	$1128{ }^{3}$	() $1128{ }^{2}$
72 Vdc	$1135{ }^{3}$	() $1135{ }^{2}$
125 Vdc	11293	() 11292
250 Vdc	$1130{ }^{3}$	() $1130{ }^{2}$

[^7]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

UVTD Undervoltage Trip Time-delay Unit

Undervoltage Trip Time-delay Unit

The undervoltage trip time-delay unit, when connected in series with a 120 Vac undervoltage trip, introduces an adjustable time delay of 0.1 to 0.6 seconds in the release of the undervoltage trip coil. This prevents momentary voltage fluctuations from releasing the undervoltage trip coil and nuisance tripping the circuit breaker.

The time delay unit can be mounted separately (Catalog Number UVTD), or mounted in a 1-1/2-inch single pole FA I-Line circuit breaker space (Catalog Number UVTD1). It can be wired into existing circuits already equipped with 120 Vac undervoltage trip.

Table 43: Undervoltage Trip Electrical Specifications

Voltage Rating		Maximum Current in Milliamps (RMS)	Maximum Inrush	Coil Burden (VA) Sealed	Minimum Recommended Supply Transformer (VA)
AC	24	170	4.1	3.4	25
	120	63	7.6	5.4	25
	208	30	6.2	4.1	25
	240	32	7.6	5.5	25
	$277{ }^{1}$	63	7.6	5.4	25
	$380{ }^{1}$	63	7.6	5.4	25
	$415{ }^{1}$	63	7.6	5.4	25
	$440{ }^{1}$	63	7.6	5.4	25
	$480{ }^{1}$	63	7.6	5.4	25
	$600{ }^{1}$	63	7.6	5.4	25
DC	6	400	2.4	2.4	-
	12	185	2.2	2.2	-
	24	69	1.6	1.6	-
	$48{ }^{2}$	64	3.1	3.1	-
	72^{2}	45	3.2	3.2	-
	125^{2}	40	5	5	-
	$250{ }^{2}$	21	5.2	5.2	-
	$300{ }^{2}$	21	6.2	6.2	-

[^8]
Auxiliary Switch

The auxiliary switch accessory monitors the circuit breaker's contact status and provides a remote signal indicating whether the contact is open or closed. When the circuit breaker is in the OFF or tripped state, the auxiliary switch's A contact is open and the B contact is closed. When the circuit breaker is ON, the B contact is open and the A contact is closed.

Maximum Ratings:

- $10 \mathrm{~A} \quad 120$ Vac or 240 Vac
- $1 / 3 \mathrm{hp} \quad 120 \mathrm{Vac}$ or $240 \mathrm{Vac}(1 / 4 \mathrm{hp}-F A$ and KA$)$
- 4 A 120 Vac lamp load
- $1 / 2 \mathrm{~A} \quad 120 \mathrm{Vdc}$
- $1 / 4 \mathrm{~A} \quad 120 \mathrm{Vdc}$

Table 44: Auxiliary Switch—Selection Data

Type of Contacts	Factory Installed Suffix	Field Installable Catalog Number
1A and 1B	1212	$(\quad) 1212$
2A and 2B	1352	$(\quad) 1352$
3A and 3B	1364	$(\quad) 13641$

1 Complete accessory catalog number by adding appropriate circuit breaker prefix (LA1, MA1, NA1 or PA1).

Auxiliary Switch Wiring Diagram

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Alarm Switch

The alarm switch accessory monitors the circuit breaker's trip status and is used to provide a remote warning signal indicating the circuit breaker has tripped. This signal can be used in conjunction with a horn, pilot light or some other indicator.

The contact on the standard alarm switch is open when the circuit breaker is in the OFF or ON position and is closed when the circuit breaker is in the tripped position.

Alarm switches are actuated when the circuit breaker is tripped as a result of an overload, short circuit, undervoltage trip operation, shunt trip operation or a result of a manual Push-To-Trip operation.

Standard construction is with Normally Open (N.O.) contacts. Maximum ratings are 7 A at 120 or 240 Vac.

Table 45: Alarm Switch—Selection Data

Normally Open 2100 Circuit Breaker Tripped	Normally Closed 2103 Circuit Breaker Tripped	Type of Contacts	Factory Installed Suffix	Field Installable Catalog Number 1

Circuit Breaker OFF or ON
Circuit Breaker OFF or ON

1 Complete accessory catalog number by adding appropriate circuit breaker prefix (NA1 only)
2 Not UL listed.

Table 46: Endurance Operations For Electrical Accessories ${ }^{12}$

Circuit Breaker Frame Size	UL 489 Operations				Schneider Electric Certified Operations	
	Circuit Breaker		Auxiliary Switch	Shunt Trip UVR Alarm Switch	Auxiliary Switch	Shunt Trip UVR Alarm Switch
	Load	No Load				
100 A	6,000	4,000	10,000	600	10,000	10,000
	6,000	4,000	10,000	600	10,000	10,000
225 A	4,000	4,000	8,000	400	8,000	8,000
250 A	1,000	5,000	6,000	100	6,000	6,000
400 A	1,000	5,000	1,000	100	6,000	6,000
600 A	500	2,000	500	50	2,500	2,500
800 A	500	2,000	500	50	2,500	2,500
1200 A	500	2,000	500	50	2,500	2,500
2500 A	500	2,000	500	50	2,500	2,500

[^9]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Micrologic Ground Fault Module

The Micrologic Ground Fault Module (GFM) is a UL listed self-powered ground fault sensing device
 that signals a circuit breaker ground fault shunt trip. It is available for use with unit mount or I-Line construction circuit breakers.

Table 47: Ground Fault Module-Selection Data

Companion Circuit Breaker Prefix	Catalog Number	Enclosure Space Required		Ground Fault Pickup Adjustment Range Amperes
	Panelboard	Switchboard $/$ Enclosure	FC	GFM100FA
FIL, FI	GFM100FI	LA	KA	$20-100$
KAL, KHL, KCL, KIL, KA, KH, KC, KI	GFM250	LA	LA	$20-100$

Fewer components are required at the branch level since the GFM eliminates the need for a control test panel and relay device. The integral Push-to-Test button allows testing at the job site and eliminates the need for costly primary injection testing. The GFM uses electronic circuitry to provide branch circuit ground fault protection using a compact module that mounts directly to the OFF and lugs of the circuit breaker. By eliminating the need for wiring external ground fault relays and sensors, the GFM saves space and reduces labor costs.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Standard features include:

- All GFMs supplied for I-line mounting, are easily converted to unit mount by removing the I-line brackets.
- Molded case circuit breakers using the GFM require a ground fault shunt trip (add suffix G to the circuit breaker catalog number when ordering).
- All GFMs must be used with a three-pole circuit breaker.
- Up to 200,000 A short circuit withstand rating at 600 Vac.
- Adjustable ground fault pickup settings

GFM100FA and GFM100FI modules are adjustable from 20 A through 100 A . GFM250 module is adjustable from 40 A through 200 A.

- Adjustable ground fault delay settings

Actual time-delay varies with the magnitude of the ground fault.

- Sealable adjustments

A clear plastic shield that fits over posts protruding from the module and can be sealed by attaching a sealing wire through the hole in the posts.

- Integral Push-To-Trip Button

A button on the face of the GFM allows testing of the ground fault system without the need for any peripheral equipment. This meets the requirements of NEC230-95(c).

Note: A 120 Vac 60 Hz power source capable of supplying 0.5 A is required to power the test feature.

- Zone selective interlocking

Zone selective interlocking (ZSI) is standard with upstream Micrologic trip system circuit breakers. The GFM can also be zone interlocked with the GC-100 ground fault system by using a restraint interface module (Catalog Number RIM32).

- Ground fault indication

A pop-out indicator on the face of the GFM indicates the module has sensed a ground fault and initiated a tripping signal to the companion circuit breaker.

- Neutral current transformer

A neutral current transformer (CT) is supplied with each GFM for three-phase four-wire applications or one-phase three-wire applications.

Figure 22: Ground Fault Module Dimensions

Electrical Operators

Electrical operators provide ON, OFF and reset control from remote location of thermal-magnetic molded case circuit breakers, magnetic only molded case circuit breakers and molded case switches. When a remote indication of the circuit breaker status is required, use of circuit breaker with a 1A1B auxiliary switch for ON-OFF indication or with an alarm switch for trip indication.

- Electrical Operator Endurance

The UL Standard 489 endurance requirement for an electrical operator is equal to the circuit breaker's noload endurance requirement. For example, 100 A circuit breakers are required to sustain a minimum of 4,000 operations to meet UL requirements. There are two types of electrical operators available: side mount and top mount.

- Side Mount Electrical Operators (MO1)

Side mount electrical operators are field installable on FA, FH, FC, FI, KA, KH, KC, KL, Q4, LA, LH, MA and MH families of molded case circuit breakers and molded case switches. Unit mount circuit breakers require a separate mounting pan to mount the circuit breaker flush with the electrical operator. The operators may be field installed on circuit breakers in I-Line panelboards and switchboards without a mounting pan, but require 4-1/2 inches of circuit breaker mounting space. The operators require a single pole, double throw maintained contact switch and 120 Vac control voltage.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

- Top Mount Electrical Operators (MO2)

Top mount electrical operators are field installable on KA, KH, KC, KL, Q4, LA, LH, MA, MH, PA, PH and PC families of circuit breakers. They are intended for use on indoor, NEMA Type 1 applications. The top mount electrical operator requires a single pole, double throw switch and the proper control voltage.

The PAMO2 is an electronically controlled motor-gear reduction operating mechanism that installs to the top surface of a PA, PH or PC circuit breaker or molded case switch. The device can be operated in the ON or OFF position using low energy control circuitry. The PAMO2 requires momentary, continuous or solid state contacts and the correct control voltages.
Table 48: Electrical Operators

Characteristics Of Electrical Operators					
Motor Operator Catalog No.	Circuit Breaker Prefix	Closing Time (Sec.)	Current (Amps)		Endurance Operations
			Inrush (Peak)	Cont.	
Side Mount Motor Operators					
FAMO1	FA/FH/FC/FI	0.80	2.0	0.71	4000
KAMO1	KA/KH/KC/KI	0.90	2.0	0.71	4000
LAMO1	Q4/LA/LH	0.65	18.0	4.2	3000
MAMO1	MA/MH	0.65	18.0	4.2	3000

Top Mounted Motor Operators

KAMO2120AC5C	KA/KH/KC/KI	0.30	13.6	5.5	5000
KAMO2120AC	KA/KH/KC/KI	0.30	16.0	6.0	5000
KAMO2240AC	KA/KH/KC/KI	0.30	7.0	3.0	5000
KAMO224DC	KA/KH/KC/KI	0.30	35.0	22.5	5000
KAMO2125DC	KA/KH/KC/KI	0.30	13.2	6.6	5000
LAMO2120AC5C	Q4/LA/LH	0.30	13.6	5.0	5000
LAMO2120AC	Q4/LA/LH	0.30	14.0	5.5	5000
LAMO2240AC	Q4/LA/LH	0.30	7.0	3.0	5000
LAMO224DC	Q4/LA/LH	0.30	35.0	22.5	5000
LAMO2125DC	Q4/LA/LH	0.30	13.2	6.6	5000
MAMO2120AC5C	MA/MH	0.30	23	9.4	5000
MAMO2120AC	MA/MH	0.30	14.0	5.5	5000
MAMO2240AC	MA/MH	0.30	7.0	3.0	5000
MAMO224DC	MA/MH	0.30	35.0	22.5	5000
MAMO2125DC	MA/MH	0.30	13.2	6.5	5000
				5000	
PAMO2		0.30	40.0	10.0	5

Electrical Operator-Selection Data				
Motor Operator Catalog No.	Circuit Breaker Prefix	Control Voltage	Recommended Control Transformer	Mounting Pan Cat. No.

Side Mount Motor Operators

FAMO1	FA/FH/FC/FI	120 Vac	EO-1 50VA	N/A
	$\begin{array}{\|c} \hline \text { FAL/FHL/FCL/ } \\ \text { FIL } \end{array}$			FAMOP
KAMO1	KA/KH/KC/KI	120 Vac	EO-1 50VA	N/A
	KAL/KHL/KCL/ KIL			KAMOP
LAMO1	Q4/LA/LH	120 Vac	EO-3 150VA	N/A
	Q4L/LAL/LHL			LAMOP
MAMO1	MA/MH	120 Vac	EO-3 50VA	N/A
	MAL/MHL			FAMOP

Top Mounted Motor Operators

-	-	-	-	N/A
KAMO2120AC	KA/KH/KC/KI	120 Vac	EO-4 300VA	
KAMO2240AC	KA/KH/KC/KI	240 Vac	EO-4 300VA	
KAMO224DC	KA/KH/KC/KI	24 Vac	-	
KAMO2125DC	KA/KH/KC/KI	125 Vac	-	
-	-	-	-	N/A
LAMO2120AC	Q4/LA/LH	120 Vac	EO-4 300VA	
LAMO2240AC	Q4/LA/LH	240 Vac	EO-4 300VA	
LAMO224DC	Q4/LA/LH	24 Vac	-	
LAMO2125DC	Q4/LA/LH	125 Vac	-	
-	-	-	-	
MAMO2120AC	MA/MH	120 Vac	EO-1 300VA	
MAMO2240AC	MA/MH	240 Vac	EO-1 300VA	
MAMO224DC	MA/MH	24 Vac	-	
MAMO2125DC	MA/MH	125 Vac	-	
PAMO2	PA/PH/PC	$\begin{aligned} & 120 \mathrm{Vac} \\ & 48 \mathrm{Vdc} \\ & 24 \mathrm{Vdc} \\ & \hline \end{aligned}$	EO-1 200VA	

Figure 23: Electrical Operator Side Mount Dimensions and Wiring Diagram

Table 49: Electrical Operator Mounting Dimensions, Inches (mm)

Electrical Operator	A		B		C		D		E		F		G		H	
	in.	mm														
FAMO1	0.40	10.16	10.20	259.08	10.69	269.24	0.40	10.16	7.72	196.09	8.58	217.93	5.72	14.29	-	-
KAMO1	0.40	10.16	10.20	259.08	10.50	269.24	0.40	10.16	7.72	196.09	8.58	217.93	5.81	147.57	-	-
LAMO1	0.50	12.70	12.06	306.32	12.50	317.50	2.38	60.45	6.13	166.70	9.63	244.60	12.25	311.15	7.53	191.26
MAMO1	0.45	11.43	15.06	382.52	14.94	379.48	2.37	60.20	6.74	171.19	10.88	276.35	13.50	342.90	7.53	191.26

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Figure 24: Top Mount Electrical Operator Dimensions and Wiring Diagrams

Mounting Dimensions for Electrical Operator
Mounting Dimensions for Electrical Operator

Internal Schematic

Figure 25: PAMO2 Electrical Operator Suggested Wiring Diagrams

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Padlock Attachment

Circuit Breaker Handle Accessories

Several handle accessories are available to lock the circuit breaker. See table below to select the desired accessories.

Table 50: Circuit Breaker Handle Accessories-Selection Data

Accessories	Circuit Breaker	No. of Poles	Catalog Number	Locks Circuit Breaker	
				ON 1	OFF
Handle Padlock Attachment	PA, PC	2, 3	PAPAF	-	X
	FY	1	HPAFYQ	X	X
	Q2	2, 3	HPAFYQ	X	X
	FA,FH, FC	1, 2, 3	HPAFK	X	X
	FI, KI, KA, KH, KC	2, 3	HPAFK	X	X
	LA, LH, Q4, MA, MH	2, 3	HPALM	X^{2}	X
	LC, LI	2, 3	HPALI	X	X
	NA, NC	2, 3	HPANE	X	X
Handle Extension	LA, LH, Q4	2, 3	LAHEX	-	-
	MA, MH, NA, NC	2, 3	MAHEX	-	-
Handle Extension \& Padlock Attachment	LC, LI	2, 3	AHEXLI	-	-
	LA, LH, Q4, MA, MH	2, 3	HPAXLM	X ${ }^{1}$	X
Handle Tie	2-FA	3	FKHT	-	-
	$\begin{array}{\|c\|} \hline 2-\mathrm{KA}, \\ 2-\mathrm{FI} \text { or 2-KI or 1-FI \& 1-KI } \end{array}$	2, 3	FKHT	-	-
	2LA or 2 Q4	2, 3	LAHT	-	-
California Title 24 Combination Handle Tie \& Lock-off	FY	(3) Single Pole	FY3HT	-	-
	FA, FH, FC	(3) Single Pole	FY3HT	-	-

1 Circuit breaker will trip free when locked in the ON position.
$2 \mathrm{MA}, \mathrm{MH}$ circuit breakers will not lock in the ON position.

Circuit Breaker Cylinder Locks

A key cylinder lock prevents the circuit breaker from being reset or turned ON. Cylinder locks cannot be used to lock the circuit breaker in the ON position. The cylinder lock key can be removed in the UNLOCKED or LOCKED OFF position. A key cylinder lock is available for Schneider Electric FA, KA, LA and MA frame circuit breakers.

Table 51: Cylinder Lock-Selection Data

Accessory	Circuit Breaker	Factory Installed Catalog No. (Suffix)	Field Installed Catalog Number
	FA, FH, FC, FI, KA, KH, KC, KI	CL ${ }^{1}$	-
	LA, LH, Q4	-	LA1CL
	MA, MH	-	MA1CL

[^10]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Walking Beam Mechanical Interlock

The walking beam mechanical interlock is used with two circuit breakers to maintain essential loads during power outages. It is UL listed for FA, KA, LA and MA circuit breakers, 15 A through 1000 A. Manual and automatic transfer schemes use these interlocked circuit breakers.

Mechanically interlocked circuit breakers are intended to prohibit both power sources from being simultaneously connected to the load. The circuit breakers are equipped with an actuator button that operates with and detects the position of the circuit breaker contacts.

Walking beam interlocks are available with circuit breakers for unit mounting, but identical frame size circuit breakers must be used. The circuit breakers can be manually or motor operated.

- Unit Mounting

Pre-drilled and tapped mounting pans ease the mounting of all required components. To establish the correct dimensional relationships, Schneider Electric suggests using the mounting pans when installing these interlocks.

Table 52: Walking Beam—Selection Data

Circuit Breaker		Walking Beam Assembly	Mounting Pan
Prefix	Suffix	Catalog Number	Catalog Number
Manually Operated	WB		
FAL	WB	FA4WB	FAWBP4
KAL	WB	KA4WB	KAWBP4
LAL, LHL	WB	LA6WB	LAWBP6
MAL, MHL		MA9WB	MAWBP9
Electrically Operated	WBMO		KAWBP9
FAL	WBMO	FA9WB	KAWBP9
KAL	WBMO	KA9WB	LAWBP10
LAL, LHL	WB	LA10WB	MAWBP13
MAL, MHL		MA13WB	M

Figure 26: Walking Beam Mechanical Interlock

Requires two circuit breakers with WB suffix, one walking beam assembly and one mounting pan.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

- Dimensions

The dimensions shown below are for two unit-mounted circuit breakers that are installed on the appropriate mounting pan include the walking beam assembly. The dimensions also show the electrically operated version.

Requires two circuit breakers with WB suffix, one walking beam assembly and one mounting pan.

Table 53: Electrical Operator Mounting Dimensions

Circuit Breaker	Dimensions															
	A		B		C		D		E		F		G		H	
	in.	mm														
Manually Operated																
FAL	0.562	14.27	5.74	145.80	6.38	162.05	0.50	12.70	10.25	260.35	10.75	273.05	5.77	146.56	1.5	38.10
KAL	0.50	12.70	7.81	198.37	8.50	215.90	0.50	12.70	10.25	260.35	10.75	273.05	6.38	162.05	1.5	38.10
LAL, LHL	0.75	19.05	10.25	260.35	11.25	285.75	0.52	13.21	13.37	339.60	14.00	355.60	7.48	190.00	1.5	38.10
MAL, MHL	0.68	17.27	12.39	314.71	14.12	358.65	0.56	14.22	19.56	496.82	20.12	511.05	8.13	206.50	1.5	38.10
Electrically Operated																
FAL	0.50	12.70	7.88	200.15	8.50	215.90	0.50	12.70	19.25	488.95	19.75	501.65	7.22	183.39	1.5	38.10
KAL	0.50	12.70	9.75	247.65	10.25	260.35	0.50	12.70	19.25	488.95	19.75	501.65	7.31	185.67	1.5	38.10
LAL, LHL	0.75	19.05	12.75	323.85	13.75	349.25	0.56	14.22	22.56	573.02	23.12	587.25	9.03	229.36	1.5	38.10
MAL, MHL	0.68	17.27	13.43	341.12	14.12	358.65	0.56	14.22	28.56	725.42	29.12	739.65	8.13	206.50	1.5	38.10

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Operating Mechanisms

- Door Mounted

Type L door mounted, variable depth operating mechanisms are kits featuring heavy duty, all metal construction with trip indication. All of the operating mechanisms can be padlocked in the OFF position when the enclosure door is open. The kits include handle assemblies, padlocks, door drilling template and shafts. Handle assemblies can be locked in the OFF position with up to three padlocks that also lock the door closed. The three-inch handle accepts one padlock. A door drilling template is supplied with each kit to ease installation. The kits are rated for installation into NEMA Type 1, 3, 3R and 12 enclosures. All NEMA Type 1, 3, 3R and 12 handle assemblies are painted: the handle is flat black, and the base ring is silver.

Figure 27: Door Mounted Variable Depth Operating Mechanisms

3 in. Handle
Assemblies NEMA
1, 3, 3R, 12

Standard Handle Assemblies NEMA
1, 3, 3R, 12

Operating Mechanism

Long NEMA 4

Special 3 in. Version NEMA 4

- Flange Mounted, Variable Depth

Designed for installation in custom built control enclosures where main or branch circuit protective devices are required. All circuit breaker operating mechanisms are field convertible or either right- or left-hand flanged mounting.

Type RN1 Operating Mechanism (Circuit Breaker Not Included)

- Door Closing Mechanisms

Class 9423 door closing mechanisms are designed for use on small to medium size single door control enclosures. They are primarily designed for use with the Class 9422 flange-mounted disconnect switches and circuit breaker operating mechanisms. However, they can be used independently.

When used on properly designed and gasketed NEMA Type 12 industrial use enclosures, they meet NFPA 70 standards.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

UL Listed Terminations

Schneider Electric supplies all thermal-magnetic molded case circuit breakers, Mag-Gard instantaneous trip circuit breakers and molded case switches (1200 A frame and smaller) with mechanical-type aluminum alloy lugs suitable for use with either aluminum or copper wire.

I-line circuit breakers are supplied with mechanical-type lugs on the OFF end.
Additionally, Schneider Electric offers a large selection of UL Listed lugs to meet individual termination requirements for almost every application. Besides the mechanical lugs, Schneider Electric can supply copper mechanical lugs or our exclusive aluminum or copper Versa-Crimp compression lugs. Power distribution connectors permit multiple conductor installation in control panel applications.

Control Wire Terminations

Mechanical lugs with provisions for separate control wire terminations are available in kit form. They can be field or factory installed.

The FA-T adaptor has been designed for mounting on the FA 100 A frame circuit breaker, between the circuit breaker lug and its terminal. It has a tab extension suitable for attachment of 250 -inch slip-on connectors. Fully insulated type connectors must be used to prevent live parts from extending into the wiring gutter area.

On larger frame circuit breakers, provision is made for securing the control wire directly to the circuit breaker lug with provided \#6-32 screws, threaded directly into the lug body. Use ring type connectors crimped to the control wire to provide secure terminations for control wiring. These control terminations are UL recognized components for use with Schneider Electric circuit breakers.

Table 54: Control Wire Termination Kits-Selection Data

Circuit Breaker Prefix	Catalog Number	Qty. Per Kit	UL Listed Wire Size
FA, FAL, FH, FHL, FC, FCL	FA-T 1	2	-
KA, KAL, KH, KHL, KC, KCL	AL250 KAT	2	One \#4-\#300 MCM Al or Cu
LA, LAL, LH, LHL	-	2	One \#1-\#600 MCM Al or Cu or
MA, MAL, MH, MHL	AL900 LAT		Two \#1-\#250 MCM Al or Cu
NA, NAL, NC, NCL	AL1200 NE6T	1	Three 3/0-\#500 MCM Al or Cu

1 Use fully insulated 250 slip-on connectors

Lug Delete

In certain applications, a circuit breaker does not require lugs on one or both ends. This can be accomplished by ordering a standard circuit breaker and removing the lugs. The alternative is to order the circuit breaker without lugs.

Table 55: Lug-Selection Data

Lug Configuration		Circuit Breaker Catalog Number
ON End	OFF End	"Prefix" Indication
No Lugs	No Lugs	"F"
(e.g. KAF36150)		

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 56: Mechanical Lug Kit Wire Ranges and Torques—Selection Data1

Lug Kit	No. of Lugs Per Kit	Circuit Breaker	Number of Wires Per Lug and Wire Ranges			Lug Mounting Screw Torque		Wire Binding Screw Torque		
			No. Wires	Domestic	Metric	lb-in.	$\mathrm{N} \cdot \mathrm{m}$	Wire	lb-in.	$\mathrm{N} \cdot \mathrm{m}$
AL50FA	3	FA, FH, FI	1	\#14-\#4 Cu or \#12-\#4 Al	$\begin{gathered} 2.5-25 \mathrm{~mm}^{2} \\ 4-25 \mathrm{~mm}^{2} \end{gathered}$	40	4.5	Cu \#14-\#4 STR/SOL Al \#12-\#4 STR Al \#12-\#10 SOL	$\begin{aligned} & 35 \\ & 35 \\ & 15 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 1.7 \end{aligned}$
AL100FA4	3	FC	1	$\begin{gathered} \text { \#14-\#3 Cu or } \\ \text { \#12-\#1 Al } \end{gathered}$	-	65	7.3	Cu \#14-\#3 STR Cu \#14-\#8 SOL Al \#8-\#1 STR Al \#12-\#10 SOL	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 7.3 \\ & 7.3 \\ & 7.3 \end{aligned}$
AL100FA	3	FA, FH, FI	1	\#14-1/0 Cu or \#12-1/0 AI	$\begin{gathered} 2.5-50 \mathrm{~mm}^{2} \\ 4-50 \mathrm{~mm}^{2} \end{gathered}$	40	4.5	Cu \#14-1/0 STR Al \#12-1/0 STR Al \#12-\#10 SOL	$\begin{aligned} & 80 \\ & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & 4.5 \end{aligned}$
AL100TF	3	FA, FH	1	\#12-\#3 Cu	-	50	5.7	Cu \#12-\#3 STR Cu \#12-\#10 SOL	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & 5.6 \end{aligned}$
AL250KA	3	KA, KH, KC, KI	1	\#6-\#350 kcmil	$25-185 \mathrm{~mm}^{2}$	80	9.0	-	250	28.2
AL250KI	3	KC, KI	1	1/0-\#350 kcmil	$50-185 \mathrm{~mm}^{2}$	80	9.0	-	250	28.2
AL400LA	1	Q4, LA, LH	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { \#0-\#600 kcmil or } \\ & \text { \#1-\#250 kcmil } \end{aligned}$	$\begin{aligned} & 50-300 \mathrm{~mm}^{2} \\ & 50-120 \mathrm{~mm}^{2} \end{aligned}$	180	20.0	-	300	33.9
AL800MA7	1	MA, MH	2	\#500-\#750 kcmil	$240-300 \mathrm{~mm}^{2}$	180	20.0	-	300	33.9
AL900MA	1	MA, MH	3	3/0-\#500 kcmil	$95-240 \mathrm{~mm}^{2}$	180	20.0	-	300	33.9
AL1000MA	1	MA, MH	4	1/0-\#350 kcmil	$50-185 \mathrm{~mm}^{2}$	180	20.0	-	300	33.9
AL1200NE6	1	NA, NC	4	3/0-\#600 kcmil	$95-300 \mathrm{~mm}^{2}$	250	28.2	-	330	37.3
AL2500PA	2	PAF, PHF, PCF	1	3/0-\#750 kcmil	$95-300 \mathrm{~mm}^{2}$	840		-	550	
CU30FA4	3	FC	1	\#14-\#10 Cu	-	N/A	N/A	\#14-\#10 STR/SOL	35	4.0
CU100FA	3	FA, FH, FI	1	\#14-\#1 Cu	$2.5-50 \mathrm{~mm}^{2}$	50	5.7	Cu \#3-\#1 STR Cu \#6-\#4 STR Cu \#8 STR/SOL Cu \#14-\#10 STR/SOL	$\begin{aligned} & 50 \\ & 45 \\ & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 5.7 \\ & 5.1 \\ & 4.5 \\ & 4.0 \end{aligned}$
CU100TF	3	FA, FH	1	\#12-\#3 Cu	-	50	5.7	Cu \#12-\#3 STR Cu \#12-\#10 SOL	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$
CU250KA	3	KA, KH, KC, KI	1	\#6-\#250 MCM Cu	$16-20 \mathrm{~mm}^{2}$	80	9.0	-	250	22.6
CU400LA	1	Q4, LA, LH	2	\#1-\#600 MCM Cu \#1-\#250 MCM Cu	$\begin{aligned} & 50-300 \mathrm{~mm}^{2} \\ & 50-120 \mathrm{~mm}^{2} \end{aligned}$	180	20.0	-	300	33.9
CU1000MA	1	MA, MH	3	3/0-\#500 MCM Cu	$95-240 \mathrm{~mm}^{2}$	300	33.9	-	300	33.9
CU1200NE6	1	NA, NC	4	3/0-\#600 MCM Cu	$95-300 \mathrm{~mm}^{2}$	250	28.2	330		37.3

[^11]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

VC250KA3

VC250KA35

VC400LA3

Table 57: Versatile Compression Lug Kit Wire Ranges and Mounting Screw Torques—Selection Data

Lug Kit	No. of Lugs Per Kit	Circuit Breaker	Versatile System Wire Ranges ${ }^{1}$		Lug Mounting Screw Torque		Versa-Crimp Tool Type	Mounting Hole Dia.	
			Domestic	Metric	Ib-in.	$\mathrm{N} \cdot \mathrm{m}$		in.	mm
VC100FA	1	FA, FH, FC, FI	\#8-1/0	$10-50 \mathrm{~mm}^{2}$	50	5.7	VC-6	0.265	6.7
VC250KA3	1	KA, KH, KC, KI	\#4-\#300 MCM	$25-150 \mathrm{~mm}^{2}$	50	5.7	VC-6	0.265	6.7
VC250KA35	1	KA, KH, KC, KI	\#250-\#350 MCM	$120-185 \mathrm{~mm}^{2}$	50	5.7	VC-6	0.375	9.5
VC400LA3	2	LA, LH, Q4	\#4-\#300 MCM	$25-150 \mathrm{~mm}^{2}$	180	20.0	VC-6	0.375	9.5
VC400LA5	1	LA, LH, Q4	2/0-\#500 MCM	$70-240 \mathrm{~mm}^{2}$	250	28.2	VC-6	0.390	9.9
VC400LA7	1	LA, LH, Q4	\#500-\#750 MCM AI or \#500 MCM Cu	$\begin{aligned} & 240-300 \mathrm{~mm}^{2} \mathrm{Al} \\ & \text { or } 240 \mathrm{~mm}^{2} \mathrm{Cu} \end{aligned}$	250	28.2	VC-6FT or VC-8	0.390	9.9
VC800MA5	2	MA, MH	2/0-\#500 MCM	$70-240 \mathrm{~mm}^{2} \mathrm{Cu}$	300	33.9	VC-6	0.500	12.7
VC800MA7	2	MA, MH	\#500-\#750 MCM AI or \#500 MCM Cu	$\begin{aligned} & 240-300 \mathrm{~mm}^{2} \mathrm{Al} \\ & \text { or } 240 \mathrm{~mm}^{2} \mathrm{Cu} \end{aligned}$	300	33.9	VC-6FT or VC-8	0.500	12.7
VC1200NE5	4	NA, NC	2/0-\#500 MCM	$70-240 \mathrm{~mm}^{2} \mathrm{Cu}$	600	67.8	VC-6	0.500	12.7
VC1200NE7	4	NA, NC	\#500-\#750 MCM AI or \#500 MCM Cu	$\begin{aligned} & 240-300 \mathrm{~mm}^{2} \mathrm{Al} \\ & \text { or } 240 \mathrm{~mm}^{2} \mathrm{Cu} \end{aligned}$	600	67.8	VC-6FT or VC-8	0.500	12.7
VC2000PA5	1	PA, PH	2/0-\#500 MCM	$70-240 \mathrm{~mm} \mathrm{Cu}{ }^{2}$	600	67.8	VC-6	0.500	12.7
VC2000PA7	1	PA, PH, PCF	\#500-\#750 MCM AI or \#500 MCM Cu	$\begin{aligned} & 240-300 \mathrm{~mm}^{2} \mathrm{Al} \\ & \text { or } 240 \mathrm{~mm}^{2} \mathrm{Cu} \end{aligned}$	800	67.8	VC-6FT or VC-8	0.500	12.7
CVC100FA	1	FA, FH, FI	\#6-1/0	$16-50 \mathrm{~mm}^{2} \mathrm{Cu}$	50	5.7	VC-6	0.265	6.7
CVC250KA3	1	KA, KH, KC, KI	2/0-\#300 MCM Cu	$70-150 \mathrm{~mm} \mathrm{Cu}{ }^{2}$	50	5.7	VC-6	0.265	6.7
CVC400LA3	2	LA, LH, Q4	2/0-\#300 MCM Cu	$70-150 \mathrm{~mm}^{2} \mathrm{Cu}$	180	20.0	VC-6	0.375	9.5
CVC400LA5	1	LA, LH, Q4	\#250-\#500 MCM Cu	$120-240 \mathrm{~mm}^{2} \mathrm{Cu}$	250	28.2	VC-6	0.390	9.9
CVC800MA5	2	MA, MH	\#250-\#500 MCM Cu	$120-240 \mathrm{~mm}^{2} \mathrm{Cu}$	300	33.9	VC-6	0.500	12.7
CVC1200NE5	4	NA, NC	\#250-\#500 MCM Cu	$120-240 \mathrm{~mm}^{2} \mathrm{Cu}$	600	67.8	VC-6	0.500	12.7
CVC1200NE7	4	NA, NC	\#500-\#750 MCM Cu	$240-300 \mathrm{~mm}^{2} \mathrm{Cu}$	600	67.8	VC-6FT or VC-8	0.500	12.7

1 Unless otherwise specified, wire ranges are for both aluminum and copper conductors.

Power Distribution Connectors

Power distribution connectors can be used for multiple lead wire connections on one circuit breaker. Field installable kits, including aluminum alloy connectors and all necessary mounting hardware, are available for the Schneider Electric FA, KA, LA, Q4 and MA molded case circuit breakers. Each is UL Listed (per UL Standard 486a) for copper wire only. Power distribution connectors are for use on the OFF end of the circuit breaker only, when the OFF end is connected to the load.

Table 58: Power Distribution Connectors-Selection Data

Lug Kit	No. of Lugs Per Kit	Circuit Breaker	Wire Ranges (Copper only)		Lug Mounting Screw Torque		Wire Binding Screw Torque		
			Domestic	Metric	lb-in.	$N \cdot m$	Wire Size	lb-in.	$\mathrm{N} \cdot \mathrm{m}$
PDC6FA6	FA, FH, FI	6	\#14-\#6	$2.5-16 \mathrm{~mm}^{2}$	40	4.5	$\begin{gathered} \# 14-\# 10 \\ \# 8-\# 6 \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 2.3 \\ & 2.8 \end{aligned}$
PDC3FA2	FA, FH, FI	3	\#14-\#2	$2.5-35 \mathrm{~mm}^{2}$	40	4.5	$\begin{gathered} \hline \# 14-\# 8 \\ \# 6-\# 2 \end{gathered}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$
PDC6KA4	KA, KH, KC, KI	6	\#14-\#4	$2.5-25 \mathrm{~mm}^{2}$	80	9.0	$\begin{gathered} \# 14-\# 10 \\ \# 8-\# 4 \end{gathered}$	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 4.0 \end{aligned}$
PDC3KA20	KA, KH, KC, KI	3	(2) \#14-\#1	$2.5-50 \mathrm{~mm}^{2}$	80	9.0	$\begin{gathered} \text { \#14-\#8 } \\ \# 4-\# 1 \end{gathered}$	$\begin{array}{r} 35 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$
			(1) \#12-2/0	$4-70 \mathrm{~mm}^{2}$			\#12-2/0	50	57
PDC6LA20	LA, LH, Q4	6	\#12-2/0	$4-70 \mathrm{~mm}^{2}$	180	20.0	\#12 \#6-\#10 \#20-\#4	$\begin{aligned} & 35 \\ & 45 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.1 \\ & 5.7 \\ & \hline \end{aligned}$
PDC12LA4	LA, LH, Q4	12	\#14-\#4	$2.5-25 \mathrm{~mm}^{2}$	180	20.0	$\begin{gathered} \# 14-\# 10 \\ \# 8-\# 4 \end{gathered}$	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 2.3 \\ & 4.0 \end{aligned}$
PDC4LA250	LA, LH, Q4	4	(3) \#14-\#1	$2.5-35 \mathrm{~mm}^{2}$	180	20.0	$\begin{gathered} \# 6-\# 14 \\ \# 1-\# 4 \end{gathered}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$
			(1) $2 / 0 \# 250 \mathrm{kcmil}$	35-120 mm²			$\begin{gathered} 2 / 0-4 / 0 \\ \# 250 \mathrm{kcmil} \end{gathered}$	$\begin{aligned} & 180 \\ & 190 \end{aligned}$	$\begin{aligned} & \hline 14.7 \\ & 21.4 \end{aligned}$
PDC6MA20	MA, MH, ME, MX	6	\#12-2/0	$4.70 \mathrm{~mm}^{2}$	180	20.0	$\begin{gathered} \# 12 \\ \# 6-\# 10 \\ 2 / 0-\# 4 \\ 2 / 0-\# 4 \end{gathered}$	$\begin{aligned} & 35 \\ & 45 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 51 \\ & 57 \\ & 57 \end{aligned}$
PDC12MA4	MA, MH, ME, MX	12	\#14-\#4	$2.5-25 \mathrm{~mm}^{2}$	180	20.0	$\begin{gathered} \text { \#14-\#10 } \\ \# 8-\# 4 \end{gathered}$	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 4.0 \end{aligned}$

Rear Connecting Studs

Rear Connecting Studs

Rear connecting studs are designed to allow rear termination in applications, such as control panels where wire gutter space may be limited. The studs can be bolted directly to the bus bars or lugs can be attached to the studs. Long and short studs should be alternated on adjacent poles to assure proper electrical clearance. These studs are not UL Listed.

Table 59: Rear Connecting Studs—Selection Data ${ }^{1}$

Circuit Breaker Catalog Number Prefix	Ampere Ratings	Stud Catalog Number	Dimensions			
			in. (mm)			
			Overall Length	Back of Circuit Breaker	Diameter	Threads / in.
$\begin{aligned} & \text { FAL } \\ & \text { FHL } \end{aligned}$	15-100	FAS-20	$\begin{gathered} 2.25(57.15) \\ 5.72 \text { (145.29) } \end{gathered}$	$\begin{gathered} 2.00(50.8) \\ 5.08(129.03) \end{gathered}$	$\begin{aligned} & 0.125(3.18) \\ & 0.318(8.08) \end{aligned}$	$\begin{gathered} 16(406.4) \\ 5.30(134.62) \end{gathered}$
$\begin{aligned} & \text { FAL } \\ & \text { FHL } \end{aligned}$	15-100	FAS-42	$\begin{gathered} 4.875(123.82) \\ 2.383(60.54) \end{gathered}$	$\begin{aligned} & 4.25(107.95) \\ & 0.795(20.19) \end{aligned}$	$\begin{aligned} & 0.125(3.18) \\ & 0.318 \text { (8.08) } \end{aligned}$	$\begin{gathered} 16(406.4) \\ 6.30(160.02) \end{gathered}$
$\begin{aligned} & \mathrm{KAL} \\ & \mathrm{KHL} \end{aligned}$	70-225	KAS-21	$\begin{gathered} 2.25(57.15) \\ 5.72 \text { (145.29) } \end{gathered}$	$\begin{gathered} 2.125(53.98) \\ 5.398(137.11) \end{gathered}$	$\begin{gathered} 0.50(12.7) \\ 1.27(32.26) \end{gathered}$	$\begin{gathered} 13(330.2) \\ 5.19(131.83) \end{gathered}$

[^12]
Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Table 59: Rear Connecting Studs—Selection Data ${ }^{1}$ (continued)

Circuit Breaker Catalog Number Prefix	Ampere Ratings	Stud Catalog Number	Dimensions			
			in. (mm)			
			Overall Length	Back of Circuit Breaker	Diameter	Threads / in.
$\begin{aligned} & \mathrm{KAL} \\ & \mathrm{KHL} \end{aligned}$	70-225	KAS-45	$\begin{gathered} 2.125(53.98) \\ 13.018(330.66) \end{gathered}$	$\begin{gathered} 4.825(122.56) \\ 11.748(298.40) \end{gathered}$	$\begin{gathered} 0.50(12.7) \\ 1.27(32.26) \end{gathered}$	$\begin{gathered} 13(330.2) \\ 5.19(131.83) \end{gathered}$
LAL LHL	125-400	LAS-54	$\begin{gathered} 6.188 \text { (157.18) } \\ 15.718 \text { (399.24) } \end{gathered}$	$\begin{gathered} 5.50(139.7) \\ 13.97(354.84) \end{gathered}$	$\begin{gathered} 0.75(19.05) \\ 1.905(48.39) \end{gathered}$	$\begin{gathered} 16(406.4) \\ 6.30(160.02) \end{gathered}$
$\begin{aligned} & \mathrm{LAL} \\ & \mathrm{LHL} \end{aligned}$	125-400	LAS-114	$\begin{aligned} & 12.188 \text { (309.58) } \\ & 30.958 \text { (786.33) } \end{aligned}$	$\begin{gathered} 11.50(292.1) \\ 29.21(741.93) \end{gathered}$	$\begin{gathered} 0.75(19.05) \\ 1.905(48.39) \end{gathered}$	$\begin{gathered} 16(406.4) \\ 6.30(160.02) \end{gathered}$
MAL MHL	300-1000	MAS-54	$\begin{gathered} 6.188 \text { (157.18) } \\ 15.718 \text { (399.24) } \end{gathered}$	$\begin{gathered} 5.50(139.7) \\ 13.97(354.84) \end{gathered}$	$\begin{gathered} 1.25(31.75) \\ 3.175(80.65) \end{gathered}$	$\begin{gathered} 12 \text { (304.8) } \\ 4.72 \text { (117.89) } \end{gathered}$
MAL MHL	300-1000	MAS-114	$\begin{aligned} & 12.188 \text { (309.58) } \\ & 30.958 \text { (786.33) } \end{aligned}$	$\begin{gathered} 11.50(292.1) \\ 29.21(741.93) \end{gathered}$	$\begin{gathered} 1.25(31.75) \\ 3.175(80.65) \end{gathered}$	$\begin{gathered} 12(304.8) \\ 4.72(117.89) \end{gathered}$

1 Use alternate length studs on adjacent poles to obtain proper voltage spacing.

I-Line Accessories

- Top-feed I-Line

I-Line panelboards may require the use of a top-feed I-Line circuit breaker in applications where a topfeed main circuit breaker is required. This involves having the I-Line jaw connectors on the OFF end of the circuit breaker, as opposed to the standard location on the ON end. To designate this construction, place MT at the end of the circuit breaker catalog number (i.e. KA36150 becomes KA36150MT). Not available for FY circuit breakers.

- I-Line Electric Joint Compound

I-Line circuit breakers, I-Line busway plug-on units, and I-Line panelboards and switchboards are supplied with factory applied joint compound on the plug-on connectors. The compound contributes to the overall performance of the connection. If removed, the joint compound should be reapplied. Order catalog number PIC-7201 for a 2-ounce container of compound especially formulated for the I-Line, QMB and Model IV MCC connections.

KA Insert Kit

The standard lugs supplied with KA, KH, KC and KI circuit breakers and molded case switches (Series 2 and higher) are secured with a screw fastened through the circuit breaker terminal into the lug body. If the standard lug is removed and a bolted connection to the circuit breaker terminal pad is desired, the AL250KAIN threaded insert kit is required to make this connection. The AL250KAIN is inserted below the terminal pad and secured by a wire retaining clip. See figure below.

Table 60: Insert Kit—Selection Data

Kit Catalog	Inserts Per kit	Circuit Breakers
AL250KAIN	3	$\mathrm{KA}, \mathrm{KH}, \mathrm{KC}, \mathrm{KI}$

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

LC, LI, LE, LX and LXI Circuit Breaker Termination Clip Kit

The standard lugs supplied with LC and LI circuit breakers are secured by means of a screw fastened through the circuit breaker terminal into the lug body. If the standard lug is removed and a bolted connection to the circuit breaker terminal is desired, the AL600IN threaded terminal clip kit is required to make this connection. The AL600IN clip snaps onto the bottom of the terminal. For ordering information, see the chart below.

Table 61: Termination Clip Kit—Selection Data

Kit Catalog	Inserts Per kit	Circuit Breakers
AL250KAIN	3	$\mathrm{KA}, \mathrm{KH}, \mathrm{KC}, \mathrm{KI}$

Replacement Handles

Replacement handle assemblies for PAF, PHF and PCF circuit breakers (manufactured after March 1975) are available as follows:

Table 62: Replacement Handles-Selection Data

Circuit Breaker Catalog Number Prefix	Replacement Handle Catalog Number
PAF, PHF, PCF	HRPA

Mechanical Key Interlock Adaptor Plate

An adaptor plate is available for PAF, PHF and PCF circuit breakers that can be added under the circuit breaker handle to allow mechanical interlocking with a key interlock (not included). The kit, Catalog Number PAKK, includes all the necessary hardware to mount onto the circuit breaker handle.

Legacy Thermal-Magnetic / Magnetic Only Molded Case Circuit Breakers

Mag-Gard Circuit Breaker LAF36400

Visi-blade Circuit Breakers

Visi-blade construction is a modification to the cover of a thermal-magnetic circuit breaker, a molded case switch, or a Mag-Gard circuit breaker, which provides a window through which the position of the movable contacts can be verified. Luminescent paint is applied to the moveable contact arms to indicate their position. Visi-blade circuit breakers are UL Listed except for the FH. Visi-blade construction is available only on circuit breakers listed in the following table. Add suffix letter V to the circuit breaker catalog number (i.e. FAL36100V).

Table 63: Visi-blade Circuit Breakers

Circuit Breaker Prefix	Amperes
FA, FH ${ }^{1}$	$15-100$
KA, KH	$70-250$
LA, LH	$125-400$
MA, MH	$300-1000$

1 FH Visi-blade circuit breaker is not UL Listed.

Sub-feed Lugs

Sub-feed lug kits are UL Listed for use on listed equipment. They have plug-on jaw construction and plug-on to the I-Line bus stack in the same manner as branch circuit breakers. Lugs on these devices accommodate the same wire sizes as the equivalent ampere rated circuit breakers.

Table 64: I-Line Sub-feed Lug Kits-Selection Data

Ampere Rating	Ht. (in.)	Catalog Number	Max. Short Circuit System Ratings RMS Symmetrical Amperes			Protected by Circuit Breaker	Standard I-Line Panelboard
			240 Vac	480 Vac	600 Vac		
100	4-1/2	SL100	65,000	25,000	18,000	FH	HCN, HCM, HCW, HCWM, HCWM-U
225	4-1/2	SL225	65,000	35,000	25,000	KH	HCM, HCW, HCWM, HCWM-U
			200,000	200,000	100,000	KI	
400	6	SL400 ${ }^{1}$	65,000	35,000	25,000	LH	HCW, HCWM, HCWM-U
800	9	SL800	65,000	65,000	25,000	MH	HCM, HCW, HCWM, HCWM-U
1200	15	SL1200	126,000	100,000	65,000	NC	HCW, HCWM, HCWM-U

[^13]Table 65: Terminations

Catalog No.	No. Poles	Ampere Rating	Standard Lug Kit Catalog No.	Standard Lug Wire Size $\mathbf{1}^{1}$
SL100	3	100	AL100FA	$\# 4-1 / 0 \mathrm{Cu}$ or \#12-1/0 AI
SL225	3	225	-	$\# 4-\# 300 \mathrm{kcmil}$
SL400	3	400	AL400LA	$(1) \# 1-\# 600 \mathrm{kcmil}$ or (2)-\#1-\#250 kcmil
SL800	3	800	AL800MA	$(3) 3 / 0-\# 500 \mathrm{kcmil}$
SL1200	3	1200	AL1200NE6	$(4) 3 / 0-\# 600 \mathrm{kcmil}$

[^14]Schneider Electric USA, Inc.
800 Federal Street
Andover, MA 01810 USA
888-778-2733
www.schneider-electric.us

Schneider Electric and Square D are trademarks owned by Schneider Electric Industries SAS or its affiliated companies. All other trademarks are the property of their respective owners.
0601CT9101 R11/15
© 1991-2015 Schneider Electric All Rights Reserved

[^0]: 1 Separate UL rating available for 240 Vac and 480 Vac grounded B single phase systems. Circuit breakers must be ordered with 5861 suffix.
 2 UL listed 500 Vdc rating for use on ungrounded systems. Must be connected three-poles in series. Consult the Schneider Electric Customer Care Center for additional information 1-888-778-2733.

[^1]: ${ }^{1}$ FCL two-pole circuit breaker built using three-pole module.

[^2]: ${ }^{1}$ FCL two-pole circuit breaker built using three-pole module.
 ${ }^{2}$ Rated 277 Vac 15 and 20 A FY circuit breakers are rated for switching duty (SWD). 15, 20, 25, and 30 A FA I-Line circuit breakers are also available (no SWD rating).
 3^{3} Rated 277 Vac, 125 Vdc except FY, which has no dc rating. 15-30 A breakers suitable for use with 140 or $167{ }^{\circ} \mathrm{F}\left(60\right.$ or $\left.75^{\circ} \mathrm{C}\right)$ conductors. 35-100 A circuit breakers are suitable for use with $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$ conductors.

[^3]: 1 See Class 611, 612, 613, and 734 catalogs for other PowerPact and Masterpact circuit breakers.
 2225 A I-Line.

[^4]: 1 UL magnetic trip setting tolerances are $-20 \% /+30 \%$ (Low) and $-20 \% /+30 \%$ (High) from the nominal values shown.
 2 Two-pole circuit breaker catalog numbers are completed by adding required phase connection letters as a suffix to the catalog number.

[^5]: 1 Cylinder Lock not available on FA/FH Mag-Gard.
 2 LEGEND - A/S=Auxiliary Switch, B/A=Bell Alarm, S/T=Shunt Trip, UVR=Undervoltage Trip, CL=Cylinder Lock.

[^6]: 1 Complete accessory catalog number by adding appropriate circuit breaker prefix (LA1, MA1, NA1, or PA1).
 2 Not UL listed.
 3 PA1 prefix only.
 4 Not available with PA1 prefix.

[^7]: 1 Complete accessory catalog number by adding appropriate circuit breaker prefix (LA1, MA1, NA1, or PA1). Compatibility with circuit breaker must be verified.
 2 Not UL listed.
 3 UL listed only on PA, PC, PE circuit breakers.

[^8]: 1 Includes a separate control voltage transformer. Not UL listed
 2 Includes a separate resistor.

[^9]: 1 Operations are at rated voltage and current.
 2 One tripping operation is defined as a close-trip-reset operation of the circuit breaker.

[^10]: 1 Factory installed cylinder locks are available for t-pole circuit breakers only. Cylinder locks are not available on FA/FH Mag-Gard magnetic only circuit breakers.

[^11]: 1 STR = Stranded, SOL = Solid.

[^12]: 1 Use alternate length studs on adjacent poles to obtain proper voltage spacing.

[^13]: 1 SL400 cannot be used in HCM panelboards due to inadequate wire bending space.

[^14]: 1 Unless otherwise specified, wire sizes apply to both aluminum and copper conductors.

